/** * @license * Copyright 2010-2024 Three.js Authors * SPDX-License-Identifier: MIT */ const REVISION = '169'; const MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2, ROTATE: 0, DOLLY: 1, PAN: 2 }; const TOUCH = { ROTATE: 0, PAN: 1, DOLLY_PAN: 2, DOLLY_ROTATE: 3 }; const CullFaceNone = 0; const CullFaceBack = 1; const CullFaceFront = 2; const CullFaceFrontBack = 3; const BasicShadowMap$1 = 0; const PCFShadowMap$1 = 1; const PCFSoftShadowMap$1 = 2; const VSMShadowMap = 3; const FrontSide = 0; const BackSide = 1; const DoubleSide = 2; const NoBlending = 0; const NormalBlending = 1; const AdditiveBlending = 2; const SubtractiveBlending = 3; const MultiplyBlending = 4; const CustomBlending = 5; const AddEquation = 100; const SubtractEquation = 101; const ReverseSubtractEquation = 102; const MinEquation = 103; const MaxEquation = 104; const ZeroFactor = 200; const OneFactor = 201; const SrcColorFactor = 202; const OneMinusSrcColorFactor = 203; const SrcAlphaFactor = 204; const OneMinusSrcAlphaFactor = 205; const DstAlphaFactor = 206; const OneMinusDstAlphaFactor = 207; const DstColorFactor = 208; const OneMinusDstColorFactor = 209; const SrcAlphaSaturateFactor = 210; const ConstantColorFactor = 211; const OneMinusConstantColorFactor = 212; const ConstantAlphaFactor = 213; const OneMinusConstantAlphaFactor = 214; const NeverDepth = 0; const AlwaysDepth = 1; const LessDepth = 2; const LessEqualDepth = 3; const EqualDepth = 4; const GreaterEqualDepth = 5; const GreaterDepth = 6; const NotEqualDepth = 7; const MultiplyOperation = 0; const MixOperation = 1; const AddOperation = 2; const NoToneMapping = 0; const LinearToneMapping = 1; const ReinhardToneMapping = 2; const CineonToneMapping = 3; const ACESFilmicToneMapping = 4; const CustomToneMapping = 5; const AgXToneMapping = 6; const NeutralToneMapping = 7; const AttachedBindMode = 'attached'; const DetachedBindMode = 'detached'; const UVMapping = 300; const CubeReflectionMapping = 301; const CubeRefractionMapping = 302; const EquirectangularReflectionMapping = 303; const EquirectangularRefractionMapping = 304; const CubeUVReflectionMapping = 306; const RepeatWrapping = 1000; const ClampToEdgeWrapping = 1001; const MirroredRepeatWrapping = 1002; const NearestFilter = 1003; const NearestMipmapNearestFilter = 1004; const NearestMipMapNearestFilter = 1004; const NearestMipmapLinearFilter = 1005; const NearestMipMapLinearFilter = 1005; const LinearFilter = 1006; const LinearMipmapNearestFilter = 1007; const LinearMipMapNearestFilter = 1007; const LinearMipmapLinearFilter = 1008; const LinearMipMapLinearFilter = 1008; const UnsignedByteType = 1009; const ByteType = 1010; const ShortType = 1011; const UnsignedShortType = 1012; const IntType = 1013; const UnsignedIntType = 1014; const FloatType = 1015; const HalfFloatType = 1016; const UnsignedShort4444Type = 1017; const UnsignedShort5551Type = 1018; const UnsignedInt248Type = 1020; const UnsignedInt5999Type = 35902; const AlphaFormat = 1021; const RGBFormat = 1022; const RGBAFormat = 1023; const LuminanceFormat = 1024; const LuminanceAlphaFormat = 1025; const DepthFormat = 1026; const DepthStencilFormat = 1027; const RedFormat = 1028; const RedIntegerFormat = 1029; const RGFormat = 1030; const RGIntegerFormat = 1031; const RGBIntegerFormat = 1032; const RGBAIntegerFormat = 1033; const RGB_S3TC_DXT1_Format = 33776; const RGBA_S3TC_DXT1_Format = 33777; const RGBA_S3TC_DXT3_Format = 33778; const RGBA_S3TC_DXT5_Format = 33779; const RGB_PVRTC_4BPPV1_Format = 35840; const RGB_PVRTC_2BPPV1_Format = 35841; const RGBA_PVRTC_4BPPV1_Format = 35842; const RGBA_PVRTC_2BPPV1_Format = 35843; const RGB_ETC1_Format = 36196; const RGB_ETC2_Format = 37492; const RGBA_ETC2_EAC_Format = 37496; const RGBA_ASTC_4x4_Format = 37808; const RGBA_ASTC_5x4_Format = 37809; const RGBA_ASTC_5x5_Format = 37810; const RGBA_ASTC_6x5_Format = 37811; const RGBA_ASTC_6x6_Format = 37812; const RGBA_ASTC_8x5_Format = 37813; const RGBA_ASTC_8x6_Format = 37814; const RGBA_ASTC_8x8_Format = 37815; const RGBA_ASTC_10x5_Format = 37816; const RGBA_ASTC_10x6_Format = 37817; const RGBA_ASTC_10x8_Format = 37818; const RGBA_ASTC_10x10_Format = 37819; const RGBA_ASTC_12x10_Format = 37820; const RGBA_ASTC_12x12_Format = 37821; const RGBA_BPTC_Format = 36492; const RGB_BPTC_SIGNED_Format = 36494; const RGB_BPTC_UNSIGNED_Format = 36495; const RED_RGTC1_Format = 36283; const SIGNED_RED_RGTC1_Format = 36284; const RED_GREEN_RGTC2_Format = 36285; const SIGNED_RED_GREEN_RGTC2_Format = 36286; const LoopOnce = 2200; const LoopRepeat = 2201; const LoopPingPong = 2202; const InterpolateDiscrete = 2300; const InterpolateLinear = 2301; const InterpolateSmooth = 2302; const ZeroCurvatureEnding = 2400; const ZeroSlopeEnding = 2401; const WrapAroundEnding = 2402; const NormalAnimationBlendMode = 2500; const AdditiveAnimationBlendMode = 2501; const TrianglesDrawMode = 0; const TriangleStripDrawMode = 1; const TriangleFanDrawMode = 2; const BasicDepthPacking = 3200; const RGBADepthPacking = 3201; const RGBDepthPacking = 3202; const RGDepthPacking = 3203; const TangentSpaceNormalMap = 0; const ObjectSpaceNormalMap = 1; // Color space string identifiers, matching CSS Color Module Level 4 and WebGPU names where available. const NoColorSpace = ''; const SRGBColorSpace = 'srgb'; const LinearSRGBColorSpace = 'srgb-linear'; const DisplayP3ColorSpace = 'display-p3'; const LinearDisplayP3ColorSpace = 'display-p3-linear'; const LinearTransfer = 'linear'; const SRGBTransfer = 'srgb'; const Rec709Primaries = 'rec709'; const P3Primaries = 'p3'; const ZeroStencilOp = 0; const KeepStencilOp = 7680; const ReplaceStencilOp = 7681; const IncrementStencilOp = 7682; const DecrementStencilOp = 7683; const IncrementWrapStencilOp = 34055; const DecrementWrapStencilOp = 34056; const InvertStencilOp = 5386; const NeverStencilFunc = 512; const LessStencilFunc = 513; const EqualStencilFunc = 514; const LessEqualStencilFunc = 515; const GreaterStencilFunc = 516; const NotEqualStencilFunc = 517; const GreaterEqualStencilFunc = 518; const AlwaysStencilFunc = 519; const NeverCompare = 512; const LessCompare = 513; const EqualCompare = 514; const LessEqualCompare = 515; const GreaterCompare = 516; const NotEqualCompare = 517; const GreaterEqualCompare = 518; const AlwaysCompare = 519; const StaticDrawUsage = 35044; const DynamicDrawUsage = 35048; const StreamDrawUsage = 35040; const StaticReadUsage = 35045; const DynamicReadUsage = 35049; const StreamReadUsage = 35041; const StaticCopyUsage = 35046; const DynamicCopyUsage = 35050; const StreamCopyUsage = 35042; const GLSL1 = '100'; const GLSL3 = '300 es'; const WebGLCoordinateSystem = 2000; const WebGPUCoordinateSystem = 2001; /** * https://github.com/mrdoob/eventdispatcher.js/ */ class EventDispatcher { addEventListener( type, listener ) { if ( this._listeners === undefined ) this._listeners = {}; const listeners = this._listeners; if ( listeners[ type ] === undefined ) { listeners[ type ] = []; } if ( listeners[ type ].indexOf( listener ) === -1 ) { listeners[ type ].push( listener ); } } hasEventListener( type, listener ) { if ( this._listeners === undefined ) return false; const listeners = this._listeners; return listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== -1; } removeEventListener( type, listener ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ type ]; if ( listenerArray !== undefined ) { const index = listenerArray.indexOf( listener ); if ( index !== -1 ) { listenerArray.splice( index, 1 ); } } } dispatchEvent( event ) { if ( this._listeners === undefined ) return; const listeners = this._listeners; const listenerArray = listeners[ event.type ]; if ( listenerArray !== undefined ) { event.target = this; // Make a copy, in case listeners are removed while iterating. const array = listenerArray.slice( 0 ); for ( let i = 0, l = array.length; i < l; i ++ ) { array[ i ].call( this, event ); } event.target = null; } } } const _lut = [ '00', '01', '02', '03', '04', '05', '06', '07', '08', '09', '0a', '0b', '0c', '0d', '0e', '0f', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '1a', '1b', '1c', '1d', '1e', '1f', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '2a', '2b', '2c', '2d', '2e', '2f', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '3a', '3b', '3c', '3d', '3e', '3f', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '4a', '4b', '4c', '4d', '4e', '4f', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '5a', '5b', '5c', '5d', '5e', '5f', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '6a', '6b', '6c', '6d', '6e', '6f', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '7a', '7b', '7c', '7d', '7e', '7f', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '8a', '8b', '8c', '8d', '8e', '8f', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', '9a', '9b', '9c', '9d', '9e', '9f', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'aa', 'ab', 'ac', 'ad', 'ae', 'af', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'ba', 'bb', 'bc', 'bd', 'be', 'bf', 'c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'ca', 'cb', 'cc', 'cd', 'ce', 'cf', 'd0', 'd1', 'd2', 'd3', 'd4', 'd5', 'd6', 'd7', 'd8', 'd9', 'da', 'db', 'dc', 'dd', 'de', 'df', 'e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'ea', 'eb', 'ec', 'ed', 'ee', 'ef', 'f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'fa', 'fb', 'fc', 'fd', 'fe', 'ff' ]; let _seed = 1234567; const DEG2RAD = Math.PI / 180; const RAD2DEG = 180 / Math.PI; // http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136 function generateUUID() { const d0 = Math.random() * 0xffffffff | 0; const d1 = Math.random() * 0xffffffff | 0; const d2 = Math.random() * 0xffffffff | 0; const d3 = Math.random() * 0xffffffff | 0; const uuid = _lut[ d0 & 0xff ] + _lut[ d0 >> 8 & 0xff ] + _lut[ d0 >> 16 & 0xff ] + _lut[ d0 >> 24 & 0xff ] + '-' + _lut[ d1 & 0xff ] + _lut[ d1 >> 8 & 0xff ] + '-' + _lut[ d1 >> 16 & 0x0f | 0x40 ] + _lut[ d1 >> 24 & 0xff ] + '-' + _lut[ d2 & 0x3f | 0x80 ] + _lut[ d2 >> 8 & 0xff ] + '-' + _lut[ d2 >> 16 & 0xff ] + _lut[ d2 >> 24 & 0xff ] + _lut[ d3 & 0xff ] + _lut[ d3 >> 8 & 0xff ] + _lut[ d3 >> 16 & 0xff ] + _lut[ d3 >> 24 & 0xff ]; // .toLowerCase() here flattens concatenated strings to save heap memory space. return uuid.toLowerCase(); } function clamp$1( value, min, max ) { return Math.max( min, Math.min( max, value ) ); } // compute euclidean modulo of m % n // https://en.wikipedia.org/wiki/Modulo_operation function euclideanModulo( n, m ) { return ( ( n % m ) + m ) % m; } // Linear mapping from range to range function mapLinear( x, a1, a2, b1, b2 ) { return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 ); } // https://www.gamedev.net/tutorials/programming/general-and-gameplay-programming/inverse-lerp-a-super-useful-yet-often-overlooked-function-r5230/ function inverseLerp( x, y, value ) { if ( x !== y ) { return ( value - x ) / ( y - x ); } else { return 0; } } // https://en.wikipedia.org/wiki/Linear_interpolation function lerp( x, y, t ) { return ( 1 - t ) * x + t * y; } // http://www.rorydriscoll.com/2016/03/07/frame-rate-independent-damping-using-lerp/ function damp( x, y, lambda, dt ) { return lerp( x, y, 1 - Math.exp( - lambda * dt ) ); } // https://www.desmos.com/calculator/vcsjnyz7x4 function pingpong( x, length = 1 ) { return length - Math.abs( euclideanModulo( x, length * 2 ) - length ); } // http://en.wikipedia.org/wiki/Smoothstep function smoothstep$1( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * ( 3 - 2 * x ); } function smootherstep( x, min, max ) { if ( x <= min ) return 0; if ( x >= max ) return 1; x = ( x - min ) / ( max - min ); return x * x * x * ( x * ( x * 6 - 15 ) + 10 ); } // Random integer from interval function randInt( low, high ) { return low + Math.floor( Math.random() * ( high - low + 1 ) ); } // Random float from interval function randFloat( low, high ) { return low + Math.random() * ( high - low ); } // Random float from <-range/2, range/2> interval function randFloatSpread( range ) { return range * ( 0.5 - Math.random() ); } // Deterministic pseudo-random float in the interval [ 0, 1 ] function seededRandom( s ) { if ( s !== undefined ) _seed = s; // Mulberry32 generator let t = _seed += 0x6D2B79F5; t = Math.imul( t ^ t >>> 15, t | 1 ); t ^= t + Math.imul( t ^ t >>> 7, t | 61 ); return ( ( t ^ t >>> 14 ) >>> 0 ) / 4294967296; } function degToRad( degrees ) { return degrees * DEG2RAD; } function radToDeg( radians ) { return radians * RAD2DEG; } function isPowerOfTwo( value ) { return ( value & ( value - 1 ) ) === 0 && value !== 0; } function ceilPowerOfTwo( value ) { return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) ); } function floorPowerOfTwo( value ) { return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) ); } function setQuaternionFromProperEuler( q, a, b, c, order ) { // Intrinsic Proper Euler Angles - see https://en.wikipedia.org/wiki/Euler_angles // rotations are applied to the axes in the order specified by 'order' // rotation by angle 'a' is applied first, then by angle 'b', then by angle 'c' // angles are in radians const cos = Math.cos; const sin = Math.sin; const c2 = cos( b / 2 ); const s2 = sin( b / 2 ); const c13 = cos( ( a + c ) / 2 ); const s13 = sin( ( a + c ) / 2 ); const c1_3 = cos( ( a - c ) / 2 ); const s1_3 = sin( ( a - c ) / 2 ); const c3_1 = cos( ( c - a ) / 2 ); const s3_1 = sin( ( c - a ) / 2 ); switch ( order ) { case 'XYX': q.set( c2 * s13, s2 * c1_3, s2 * s1_3, c2 * c13 ); break; case 'YZY': q.set( s2 * s1_3, c2 * s13, s2 * c1_3, c2 * c13 ); break; case 'ZXZ': q.set( s2 * c1_3, s2 * s1_3, c2 * s13, c2 * c13 ); break; case 'XZX': q.set( c2 * s13, s2 * s3_1, s2 * c3_1, c2 * c13 ); break; case 'YXY': q.set( s2 * c3_1, c2 * s13, s2 * s3_1, c2 * c13 ); break; case 'ZYZ': q.set( s2 * s3_1, s2 * c3_1, c2 * s13, c2 * c13 ); break; default: console.warn( 'THREE.MathUtils: .setQuaternionFromProperEuler() encountered an unknown order: ' + order ); } } function denormalize( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint32Array: return value / 4294967295.0; case Uint16Array: return value / 65535.0; case Uint8Array: return value / 255.0; case Int32Array: return Math.max( value / 2147483647.0, -1 ); case Int16Array: return Math.max( value / 32767.0, -1 ); case Int8Array: return Math.max( value / 127.0, -1 ); default: throw new Error( 'Invalid component type.' ); } } function normalize$1( value, array ) { switch ( array.constructor ) { case Float32Array: return value; case Uint32Array: return Math.round( value * 4294967295.0 ); case Uint16Array: return Math.round( value * 65535.0 ); case Uint8Array: return Math.round( value * 255.0 ); case Int32Array: return Math.round( value * 2147483647.0 ); case Int16Array: return Math.round( value * 32767.0 ); case Int8Array: return Math.round( value * 127.0 ); default: throw new Error( 'Invalid component type.' ); } } const MathUtils = { DEG2RAD: DEG2RAD, RAD2DEG: RAD2DEG, generateUUID: generateUUID, clamp: clamp$1, euclideanModulo: euclideanModulo, mapLinear: mapLinear, inverseLerp: inverseLerp, lerp: lerp, damp: damp, pingpong: pingpong, smoothstep: smoothstep$1, smootherstep: smootherstep, randInt: randInt, randFloat: randFloat, randFloatSpread: randFloatSpread, seededRandom: seededRandom, degToRad: degToRad, radToDeg: radToDeg, isPowerOfTwo: isPowerOfTwo, ceilPowerOfTwo: ceilPowerOfTwo, floorPowerOfTwo: floorPowerOfTwo, setQuaternionFromProperEuler: setQuaternionFromProperEuler, normalize: normalize$1, denormalize: denormalize }; class Vector2 { constructor( x = 0, y = 0 ) { Vector2.prototype.isVector2 = true; this.x = x; this.y = y; } get width() { return this.x; } set width( value ) { this.x = value; } get height() { return this.y; } set height( value ) { this.y = value; } set( x, y ) { this.x = x; this.y = y; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y ); } copy( v ) { this.x = v.x; this.y = v.y; return this; } add( v ) { this.x += v.x; this.y += v.y; return this; } addScalar( s ) { this.x += s; this.y += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; return this; } subScalar( s ) { this.x -= s; this.y -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; return this; } divide( v ) { this.x /= v.x; this.y /= v.y; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } applyMatrix3( m ) { const x = this.x, y = this.y; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ]; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ]; return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); return this; } roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); return this; } negate() { this.x = - this.x; this.y = - this.y; return this; } dot( v ) { return this.x * v.x + this.y * v.y; } cross( v ) { return this.x * v.y - this.y * v.x; } lengthSq() { return this.x * this.x + this.y * this.y; } length() { return Math.sqrt( this.x * this.x + this.y * this.y ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ); } normalize() { return this.divideScalar( this.length() || 1 ); } angle() { // computes the angle in radians with respect to the positive x-axis const angle = Math.atan2( - this.y, - this.x ) + Math.PI; return angle; } angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( clamp$1( theta, -1, 1 ) ); } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y; return dx * dx + dy * dy; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); return this; } rotateAround( center, angle ) { const c = Math.cos( angle ), s = Math.sin( angle ); const x = this.x - center.x; const y = this.y - center.y; this.x = x * c - y * s + center.x; this.y = x * s + y * c + center.y; return this; } random() { this.x = Math.random(); this.y = Math.random(); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; } } class Matrix3 { constructor( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { Matrix3.prototype.isMatrix3 = true; this.elements = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( n11 !== undefined ) { this.set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ); } } set( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) { const te = this.elements; te[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31; te[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32; te[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33; return this; } identity() { this.set( 1, 0, 0, 0, 1, 0, 0, 0, 1 ); return this; } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrix3Column( this, 0 ); yAxis.setFromMatrix3Column( this, 1 ); zAxis.setFromMatrix3Column( this, 2 ); return this; } setFromMatrix4( m ) { const me = m.elements; this.set( me[ 0 ], me[ 4 ], me[ 8 ], me[ 1 ], me[ 5 ], me[ 9 ], me[ 2 ], me[ 6 ], me[ 10 ] ); return this; } multiply( m ) { return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ]; const a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ]; const a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ]; const b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ]; const b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ]; const b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31; te[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32; te[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31; te[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32; te[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31; te[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32; te[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s; te[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s; te[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s; return this; } determinant() { const te = this.elements; const a = te[ 0 ], b = te[ 1 ], c = te[ 2 ], d = te[ 3 ], e = te[ 4 ], f = te[ 5 ], g = te[ 6 ], h = te[ 7 ], i = te[ 8 ]; return a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g; } invert() { const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n12 = te[ 3 ], n22 = te[ 4 ], n32 = te[ 5 ], n13 = te[ 6 ], n23 = te[ 7 ], n33 = te[ 8 ], t11 = n33 * n22 - n32 * n23, t12 = n32 * n13 - n33 * n12, t13 = n23 * n12 - n22 * n13, det = n11 * t11 + n21 * t12 + n31 * t13; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv; te[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv; te[ 3 ] = t12 * detInv; te[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv; te[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv; te[ 6 ] = t13 * detInv; te[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv; te[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv; return this; } transpose() { let tmp; const m = this.elements; tmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp; tmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp; tmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp; return this; } getNormalMatrix( matrix4 ) { return this.setFromMatrix4( matrix4 ).invert().transpose(); } transposeIntoArray( r ) { const m = this.elements; r[ 0 ] = m[ 0 ]; r[ 1 ] = m[ 3 ]; r[ 2 ] = m[ 6 ]; r[ 3 ] = m[ 1 ]; r[ 4 ] = m[ 4 ]; r[ 5 ] = m[ 7 ]; r[ 6 ] = m[ 2 ]; r[ 7 ] = m[ 5 ]; r[ 8 ] = m[ 8 ]; return this; } setUvTransform( tx, ty, sx, sy, rotation, cx, cy ) { const c = Math.cos( rotation ); const s = Math.sin( rotation ); this.set( sx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx, - sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty, 0, 0, 1 ); return this; } // scale( sx, sy ) { this.premultiply( _m3.makeScale( sx, sy ) ); return this; } rotate( theta ) { this.premultiply( _m3.makeRotation( - theta ) ); return this; } translate( tx, ty ) { this.premultiply( _m3.makeTranslation( tx, ty ) ); return this; } // for 2D Transforms makeTranslation( x, y ) { if ( x.isVector2 ) { this.set( 1, 0, x.x, 0, 1, x.y, 0, 0, 1 ); } else { this.set( 1, 0, x, 0, 1, y, 0, 0, 1 ); } return this; } makeRotation( theta ) { // counterclockwise const c = Math.cos( theta ); const s = Math.sin( theta ); this.set( c, - s, 0, s, c, 0, 0, 0, 1 ); return this; } makeScale( x, y ) { this.set( x, 0, 0, 0, y, 0, 0, 0, 1 ); return this; } // equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 9; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 9; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; return array; } clone() { return new this.constructor().fromArray( this.elements ); } } const _m3 = /*@__PURE__*/ new Matrix3(); function arrayNeedsUint32( array ) { // assumes larger values usually on last for ( let i = array.length - 1; i >= 0; -- i ) { if ( array[ i ] >= 65535 ) return true; // account for PRIMITIVE_RESTART_FIXED_INDEX, #24565 } return false; } const TYPED_ARRAYS = { Int8Array: Int8Array, Uint8Array: Uint8Array, Uint8ClampedArray: Uint8ClampedArray, Int16Array: Int16Array, Uint16Array: Uint16Array, Int32Array: Int32Array, Uint32Array: Uint32Array, Float32Array: Float32Array, Float64Array: Float64Array }; function getTypedArray( type, buffer ) { return new TYPED_ARRAYS[ type ]( buffer ); } function createElementNS( name ) { return document.createElementNS( 'http://www.w3.org/1999/xhtml', name ); } function createCanvasElement() { const canvas = createElementNS( 'canvas' ); canvas.style.display = 'block'; return canvas; } const _cache$2 = {}; function warnOnce( message ) { if ( message in _cache$2 ) return; _cache$2[ message ] = true; console.warn( message ); } function probeAsync( gl, sync, interval ) { return new Promise( function ( resolve, reject ) { function probe() { switch ( gl.clientWaitSync( sync, gl.SYNC_FLUSH_COMMANDS_BIT, 0 ) ) { case gl.WAIT_FAILED: reject(); break; case gl.TIMEOUT_EXPIRED: setTimeout( probe, interval ); break; default: resolve(); } } setTimeout( probe, interval ); } ); } function toNormalizedProjectionMatrix( projectionMatrix ) { const m = projectionMatrix.elements; // Convert [-1, 1] to [0, 1] projection matrix m[ 2 ] = 0.5 * m[ 2 ] + 0.5 * m[ 3 ]; m[ 6 ] = 0.5 * m[ 6 ] + 0.5 * m[ 7 ]; m[ 10 ] = 0.5 * m[ 10 ] + 0.5 * m[ 11 ]; m[ 14 ] = 0.5 * m[ 14 ] + 0.5 * m[ 15 ]; } function toReversedProjectionMatrix( projectionMatrix ) { const m = projectionMatrix.elements; const isPerspectiveMatrix = m[ 11 ] === -1; // Reverse [0, 1] projection matrix if ( isPerspectiveMatrix ) { m[ 10 ] = - m[ 10 ] - 1; m[ 14 ] = - m[ 14 ]; } else { m[ 10 ] = - m[ 10 ]; m[ 14 ] = - m[ 14 ] + 1; } } /** * Matrices converting P3 <-> Rec. 709 primaries, without gamut mapping * or clipping. Based on W3C specifications for sRGB and Display P3, * and ICC specifications for the D50 connection space. Values in/out * are _linear_ sRGB and _linear_ Display P3. * * Note that both sRGB and Display P3 use the sRGB transfer functions. * * Reference: * - http://www.russellcottrell.com/photo/matrixCalculator.htm */ const LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = /*@__PURE__*/ new Matrix3().set( 0.8224621, 0.177538, 0.0, 0.0331941, 0.9668058, 0.0, 0.0170827, 0.0723974, 0.9105199, ); const LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = /*@__PURE__*/ new Matrix3().set( 1.2249401, -0.2249404, 0.0, -0.0420569, 1.0420571, 0.0, -0.0196376, -0.0786361, 1.0982735 ); /** * Defines supported color spaces by transfer function and primaries, * and provides conversions to/from the Linear-sRGB reference space. */ const COLOR_SPACES = { [ LinearSRGBColorSpace ]: { transfer: LinearTransfer, primaries: Rec709Primaries, luminanceCoefficients: [ 0.2126, 0.7152, 0.0722 ], toReference: ( color ) => color, fromReference: ( color ) => color, }, [ SRGBColorSpace ]: { transfer: SRGBTransfer, primaries: Rec709Primaries, luminanceCoefficients: [ 0.2126, 0.7152, 0.0722 ], toReference: ( color ) => color.convertSRGBToLinear(), fromReference: ( color ) => color.convertLinearToSRGB(), }, [ LinearDisplayP3ColorSpace ]: { transfer: LinearTransfer, primaries: P3Primaries, luminanceCoefficients: [ 0.2289, 0.6917, 0.0793 ], toReference: ( color ) => color.applyMatrix3( LINEAR_DISPLAY_P3_TO_LINEAR_SRGB ), fromReference: ( color ) => color.applyMatrix3( LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 ), }, [ DisplayP3ColorSpace ]: { transfer: SRGBTransfer, primaries: P3Primaries, luminanceCoefficients: [ 0.2289, 0.6917, 0.0793 ], toReference: ( color ) => color.convertSRGBToLinear().applyMatrix3( LINEAR_DISPLAY_P3_TO_LINEAR_SRGB ), fromReference: ( color ) => color.applyMatrix3( LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 ).convertLinearToSRGB(), }, }; const SUPPORTED_WORKING_COLOR_SPACES = new Set( [ LinearSRGBColorSpace, LinearDisplayP3ColorSpace ] ); const ColorManagement = { enabled: true, _workingColorSpace: LinearSRGBColorSpace, get workingColorSpace() { return this._workingColorSpace; }, set workingColorSpace( colorSpace ) { if ( ! SUPPORTED_WORKING_COLOR_SPACES.has( colorSpace ) ) { throw new Error( `Unsupported working color space, "${ colorSpace }".` ); } this._workingColorSpace = colorSpace; }, convert: function ( color, sourceColorSpace, targetColorSpace ) { if ( this.enabled === false || sourceColorSpace === targetColorSpace || ! sourceColorSpace || ! targetColorSpace ) { return color; } const sourceToReference = COLOR_SPACES[ sourceColorSpace ].toReference; const targetFromReference = COLOR_SPACES[ targetColorSpace ].fromReference; return targetFromReference( sourceToReference( color ) ); }, fromWorkingColorSpace: function ( color, targetColorSpace ) { return this.convert( color, this._workingColorSpace, targetColorSpace ); }, toWorkingColorSpace: function ( color, sourceColorSpace ) { return this.convert( color, sourceColorSpace, this._workingColorSpace ); }, getPrimaries: function ( colorSpace ) { return COLOR_SPACES[ colorSpace ].primaries; }, getTransfer: function ( colorSpace ) { if ( colorSpace === NoColorSpace ) return LinearTransfer; return COLOR_SPACES[ colorSpace ].transfer; }, getLuminanceCoefficients: function ( target, colorSpace = this._workingColorSpace ) { return target.fromArray( COLOR_SPACES[ colorSpace ].luminanceCoefficients ); }, }; function SRGBToLinear( c ) { return ( c < 0.04045 ) ? c * 0.0773993808 : Math.pow( c * 0.9478672986 + 0.0521327014, 2.4 ); } function LinearToSRGB( c ) { return ( c < 0.0031308 ) ? c * 12.92 : 1.055 * ( Math.pow( c, 0.41666 ) ) - 0.055; } let _canvas; class ImageUtils { static getDataURL( image ) { if ( /^data:/i.test( image.src ) ) { return image.src; } if ( typeof HTMLCanvasElement === 'undefined' ) { return image.src; } let canvas; if ( image instanceof HTMLCanvasElement ) { canvas = image; } else { if ( _canvas === undefined ) _canvas = createElementNS( 'canvas' ); _canvas.width = image.width; _canvas.height = image.height; const context = _canvas.getContext( '2d' ); if ( image instanceof ImageData ) { context.putImageData( image, 0, 0 ); } else { context.drawImage( image, 0, 0, image.width, image.height ); } canvas = _canvas; } if ( canvas.width > 2048 || canvas.height > 2048 ) { console.warn( 'THREE.ImageUtils.getDataURL: Image converted to jpg for performance reasons', image ); return canvas.toDataURL( 'image/jpeg', 0.6 ); } else { return canvas.toDataURL( 'image/png' ); } } static sRGBToLinear( image ) { if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { const canvas = createElementNS( 'canvas' ); canvas.width = image.width; canvas.height = image.height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, image.width, image.height ); const imageData = context.getImageData( 0, 0, image.width, image.height ); const data = imageData.data; for ( let i = 0; i < data.length; i ++ ) { data[ i ] = SRGBToLinear( data[ i ] / 255 ) * 255; } context.putImageData( imageData, 0, 0 ); return canvas; } else if ( image.data ) { const data = image.data.slice( 0 ); for ( let i = 0; i < data.length; i ++ ) { if ( data instanceof Uint8Array || data instanceof Uint8ClampedArray ) { data[ i ] = Math.floor( SRGBToLinear( data[ i ] / 255 ) * 255 ); } else { // assuming float data[ i ] = SRGBToLinear( data[ i ] ); } } return { data: data, width: image.width, height: image.height }; } else { console.warn( 'THREE.ImageUtils.sRGBToLinear(): Unsupported image type. No color space conversion applied.' ); return image; } } } let _sourceId = 0; class Source { constructor( data = null ) { this.isSource = true; Object.defineProperty( this, 'id', { value: _sourceId ++ } ); this.uuid = generateUUID(); this.data = data; this.dataReady = true; this.version = 0; } set needsUpdate( value ) { if ( value === true ) this.version ++; } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.images[ this.uuid ] !== undefined ) { return meta.images[ this.uuid ]; } const output = { uuid: this.uuid, url: '' }; const data = this.data; if ( data !== null ) { let url; if ( Array.isArray( data ) ) { // cube texture url = []; for ( let i = 0, l = data.length; i < l; i ++ ) { if ( data[ i ].isDataTexture ) { url.push( serializeImage( data[ i ].image ) ); } else { url.push( serializeImage( data[ i ] ) ); } } } else { // texture url = serializeImage( data ); } output.url = url; } if ( ! isRootObject ) { meta.images[ this.uuid ] = output; } return output; } } function serializeImage( image ) { if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) ) { // default images return ImageUtils.getDataURL( image ); } else { if ( image.data ) { // images of DataTexture return { data: Array.from( image.data ), width: image.width, height: image.height, type: image.data.constructor.name }; } else { console.warn( 'THREE.Texture: Unable to serialize Texture.' ); return {}; } } } let _textureId = 0; class Texture extends EventDispatcher { constructor( image = Texture.DEFAULT_IMAGE, mapping = Texture.DEFAULT_MAPPING, wrapS = ClampToEdgeWrapping, wrapT = ClampToEdgeWrapping, magFilter = LinearFilter, minFilter = LinearMipmapLinearFilter, format = RGBAFormat, type = UnsignedByteType, anisotropy = Texture.DEFAULT_ANISOTROPY, colorSpace = NoColorSpace ) { super(); this.isTexture = true; Object.defineProperty( this, 'id', { value: _textureId ++ } ); this.uuid = generateUUID(); this.name = ''; this.source = new Source( image ); this.mipmaps = []; this.mapping = mapping; this.channel = 0; this.wrapS = wrapS; this.wrapT = wrapT; this.magFilter = magFilter; this.minFilter = minFilter; this.anisotropy = anisotropy; this.format = format; this.internalFormat = null; this.type = type; this.offset = new Vector2( 0, 0 ); this.repeat = new Vector2( 1, 1 ); this.center = new Vector2( 0, 0 ); this.rotation = 0; this.matrixAutoUpdate = true; this.matrix = new Matrix3(); this.generateMipmaps = true; this.premultiplyAlpha = false; this.flipY = true; this.unpackAlignment = 4; // valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml) this.colorSpace = colorSpace; this.userData = {}; this.version = 0; this.onUpdate = null; this.isRenderTargetTexture = false; // indicates whether a texture belongs to a render target or not this.pmremVersion = 0; // indicates whether this texture should be processed by PMREMGenerator or not (only relevant for render target textures) } get image() { return this.source.data; } set image( value = null ) { this.source.data = value; } updateMatrix() { this.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.source = source.source; this.mipmaps = source.mipmaps.slice( 0 ); this.mapping = source.mapping; this.channel = source.channel; this.wrapS = source.wrapS; this.wrapT = source.wrapT; this.magFilter = source.magFilter; this.minFilter = source.minFilter; this.anisotropy = source.anisotropy; this.format = source.format; this.internalFormat = source.internalFormat; this.type = source.type; this.offset.copy( source.offset ); this.repeat.copy( source.repeat ); this.center.copy( source.center ); this.rotation = source.rotation; this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrix.copy( source.matrix ); this.generateMipmaps = source.generateMipmaps; this.premultiplyAlpha = source.premultiplyAlpha; this.flipY = source.flipY; this.unpackAlignment = source.unpackAlignment; this.colorSpace = source.colorSpace; this.userData = JSON.parse( JSON.stringify( source.userData ) ); this.needsUpdate = true; return this; } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) { return meta.textures[ this.uuid ]; } const output = { metadata: { version: 4.6, type: 'Texture', generator: 'Texture.toJSON' }, uuid: this.uuid, name: this.name, image: this.source.toJSON( meta ).uuid, mapping: this.mapping, channel: this.channel, repeat: [ this.repeat.x, this.repeat.y ], offset: [ this.offset.x, this.offset.y ], center: [ this.center.x, this.center.y ], rotation: this.rotation, wrap: [ this.wrapS, this.wrapT ], format: this.format, internalFormat: this.internalFormat, type: this.type, colorSpace: this.colorSpace, minFilter: this.minFilter, magFilter: this.magFilter, anisotropy: this.anisotropy, flipY: this.flipY, generateMipmaps: this.generateMipmaps, premultiplyAlpha: this.premultiplyAlpha, unpackAlignment: this.unpackAlignment }; if ( Object.keys( this.userData ).length > 0 ) output.userData = this.userData; if ( ! isRootObject ) { meta.textures[ this.uuid ] = output; } return output; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } transformUv( uv ) { if ( this.mapping !== UVMapping ) return uv; uv.applyMatrix3( this.matrix ); if ( uv.x < 0 || uv.x > 1 ) { switch ( this.wrapS ) { case RepeatWrapping: uv.x = uv.x - Math.floor( uv.x ); break; case ClampToEdgeWrapping: uv.x = uv.x < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) { uv.x = Math.ceil( uv.x ) - uv.x; } else { uv.x = uv.x - Math.floor( uv.x ); } break; } } if ( uv.y < 0 || uv.y > 1 ) { switch ( this.wrapT ) { case RepeatWrapping: uv.y = uv.y - Math.floor( uv.y ); break; case ClampToEdgeWrapping: uv.y = uv.y < 0 ? 0 : 1; break; case MirroredRepeatWrapping: if ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) { uv.y = Math.ceil( uv.y ) - uv.y; } else { uv.y = uv.y - Math.floor( uv.y ); } break; } } if ( this.flipY ) { uv.y = 1 - uv.y; } return uv; } set needsUpdate( value ) { if ( value === true ) { this.version ++; this.source.needsUpdate = true; } } set needsPMREMUpdate( value ) { if ( value === true ) { this.pmremVersion ++; } } } Texture.DEFAULT_IMAGE = null; Texture.DEFAULT_MAPPING = UVMapping; Texture.DEFAULT_ANISOTROPY = 4; class Vector4 { constructor( x = 0, y = 0, z = 0, w = 1 ) { Vector4.prototype.isVector4 = true; this.x = x; this.y = y; this.z = z; this.w = w; } get width() { return this.z; } set width( value ) { this.z = value; } get height() { return this.w; } set height( value ) { this.w = value; } set( x, y, z, w ) { this.x = x; this.y = y; this.z = z; this.w = w; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; this.w = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setW( w ) { this.w = w; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; case 3: this.w = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; case 3: return this.w; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z, this.w ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; this.w = ( v.w !== undefined ) ? v.w : 1; return this; } add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; this.w += v.w; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; this.w += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; this.w = a.w + b.w; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; this.w += v.w * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; this.w -= v.w; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; this.w -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; this.w = a.w - b.w; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; this.w *= v.w; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; this.w *= scalar; return this; } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z, w = this.w; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w; this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } setAxisAngleFromQuaternion( q ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm // q is assumed to be normalized this.w = 2 * Math.acos( q.w ); const s = Math.sqrt( 1 - q.w * q.w ); if ( s < 0.0001 ) { this.x = 1; this.y = 0; this.z = 0; } else { this.x = q.x / s; this.y = q.y / s; this.z = q.z / s; } return this; } setAxisAngleFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) let angle, x, y, z; // variables for result const epsilon = 0.01, // margin to allow for rounding errors epsilon2 = 0.1, // margin to distinguish between 0 and 180 degrees te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; if ( ( Math.abs( m12 - m21 ) < epsilon ) && ( Math.abs( m13 - m31 ) < epsilon ) && ( Math.abs( m23 - m32 ) < epsilon ) ) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonal and zero in other terms if ( ( Math.abs( m12 + m21 ) < epsilon2 ) && ( Math.abs( m13 + m31 ) < epsilon2 ) && ( Math.abs( m23 + m32 ) < epsilon2 ) && ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) { // this singularity is identity matrix so angle = 0 this.set( 1, 0, 0, 0 ); return this; // zero angle, arbitrary axis } // otherwise this singularity is angle = 180 angle = Math.PI; const xx = ( m11 + 1 ) / 2; const yy = ( m22 + 1 ) / 2; const zz = ( m33 + 1 ) / 2; const xy = ( m12 + m21 ) / 4; const xz = ( m13 + m31 ) / 4; const yz = ( m23 + m32 ) / 4; if ( ( xx > yy ) && ( xx > zz ) ) { // m11 is the largest diagonal term if ( xx < epsilon ) { x = 0; y = 0.707106781; z = 0.707106781; } else { x = Math.sqrt( xx ); y = xy / x; z = xz / x; } } else if ( yy > zz ) { // m22 is the largest diagonal term if ( yy < epsilon ) { x = 0.707106781; y = 0; z = 0.707106781; } else { y = Math.sqrt( yy ); x = xy / y; z = yz / y; } } else { // m33 is the largest diagonal term so base result on this if ( zz < epsilon ) { x = 0.707106781; y = 0.707106781; z = 0; } else { z = Math.sqrt( zz ); x = xz / z; y = yz / z; } } this.set( x, y, z, angle ); return this; // return 180 deg rotation } // as we have reached here there are no singularities so we can handle normally let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) + ( m13 - m31 ) * ( m13 - m31 ) + ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize if ( Math.abs( s ) < 0.001 ) s = 1; // prevent divide by zero, should not happen if matrix is orthogonal and should be // caught by singularity test above, but I've left it in just in case this.x = ( m32 - m23 ) / s; this.y = ( m13 - m31 ) / s; this.z = ( m21 - m12 ) / s; this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 ); return this; } setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; this.w = e[ 15 ]; return this; } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); this.w = Math.min( this.w, v.w ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); this.w = Math.max( this.w, v.w ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); this.w = Math.max( min.w, Math.min( max.w, this.w ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); this.w = Math.max( minVal, Math.min( maxVal, this.w ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); this.w = Math.floor( this.w ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); this.w = Math.ceil( this.w ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); this.w = Math.round( this.w ); return this; } roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); this.z = Math.trunc( this.z ); this.w = Math.trunc( this.w ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; this.w = - this.w; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w; } lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; this.w += ( v.w - this.w ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; this.w = v1.w + ( v2.w - v1.w ) * alpha; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; this.w = array[ offset + 3 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; array[ offset + 3 ] = this.w; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); this.w = attribute.getW( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); this.w = Math.random(); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; yield this.w; } } /* In options, we can specify: * Texture parameters for an auto-generated target texture * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers */ class RenderTarget extends EventDispatcher { constructor( width = 1, height = 1, options = {} ) { super(); this.isRenderTarget = true; this.width = width; this.height = height; this.depth = 1; this.scissor = new Vector4( 0, 0, width, height ); this.scissorTest = false; this.viewport = new Vector4( 0, 0, width, height ); const image = { width: width, height: height, depth: 1 }; options = Object.assign( { generateMipmaps: false, internalFormat: null, minFilter: LinearFilter, depthBuffer: true, stencilBuffer: false, resolveDepthBuffer: true, resolveStencilBuffer: true, depthTexture: null, samples: 0, count: 1 }, options ); const texture = new Texture( image, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace ); texture.flipY = false; texture.generateMipmaps = options.generateMipmaps; texture.internalFormat = options.internalFormat; this.textures = []; const count = options.count; for ( let i = 0; i < count; i ++ ) { this.textures[ i ] = texture.clone(); this.textures[ i ].isRenderTargetTexture = true; } this.depthBuffer = options.depthBuffer; this.stencilBuffer = options.stencilBuffer; this.resolveDepthBuffer = options.resolveDepthBuffer; this.resolveStencilBuffer = options.resolveStencilBuffer; this.depthTexture = options.depthTexture; this.samples = options.samples; } get texture() { return this.textures[ 0 ]; } set texture( value ) { this.textures[ 0 ] = value; } setSize( width, height, depth = 1 ) { if ( this.width !== width || this.height !== height || this.depth !== depth ) { this.width = width; this.height = height; this.depth = depth; for ( let i = 0, il = this.textures.length; i < il; i ++ ) { this.textures[ i ].image.width = width; this.textures[ i ].image.height = height; this.textures[ i ].image.depth = depth; } this.dispose(); } this.viewport.set( 0, 0, width, height ); this.scissor.set( 0, 0, width, height ); } clone() { return new this.constructor().copy( this ); } copy( source ) { this.width = source.width; this.height = source.height; this.depth = source.depth; this.scissor.copy( source.scissor ); this.scissorTest = source.scissorTest; this.viewport.copy( source.viewport ); this.textures.length = 0; for ( let i = 0, il = source.textures.length; i < il; i ++ ) { this.textures[ i ] = source.textures[ i ].clone(); this.textures[ i ].isRenderTargetTexture = true; } // ensure image object is not shared, see #20328 const image = Object.assign( {}, source.texture.image ); this.texture.source = new Source( image ); this.depthBuffer = source.depthBuffer; this.stencilBuffer = source.stencilBuffer; this.resolveDepthBuffer = source.resolveDepthBuffer; this.resolveStencilBuffer = source.resolveStencilBuffer; if ( source.depthTexture !== null ) this.depthTexture = source.depthTexture.clone(); this.samples = source.samples; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } class WebGLRenderTarget extends RenderTarget { constructor( width = 1, height = 1, options = {} ) { super( width, height, options ); this.isWebGLRenderTarget = true; } } class DataArrayTexture extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { super( null ); this.isDataArrayTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; this.layerUpdates = new Set(); } addLayerUpdate( layerIndex ) { this.layerUpdates.add( layerIndex ); } clearLayerUpdates() { this.layerUpdates.clear(); } } class WebGLArrayRenderTarget extends WebGLRenderTarget { constructor( width = 1, height = 1, depth = 1, options = {} ) { super( width, height, options ); this.isWebGLArrayRenderTarget = true; this.depth = depth; this.texture = new DataArrayTexture( null, width, height, depth ); this.texture.isRenderTargetTexture = true; } } class Data3DTexture extends Texture { constructor( data = null, width = 1, height = 1, depth = 1 ) { // We're going to add .setXXX() methods for setting properties later. // Users can still set in DataTexture3D directly. // // const texture = new THREE.DataTexture3D( data, width, height, depth ); // texture.anisotropy = 16; // // See #14839 super( null ); this.isData3DTexture = true; this.image = { data, width, height, depth }; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.wrapR = ClampToEdgeWrapping; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } class WebGL3DRenderTarget extends WebGLRenderTarget { constructor( width = 1, height = 1, depth = 1, options = {} ) { super( width, height, options ); this.isWebGL3DRenderTarget = true; this.depth = depth; this.texture = new Data3DTexture( null, width, height, depth ); this.texture.isRenderTargetTexture = true; } } class Quaternion { constructor( x = 0, y = 0, z = 0, w = 1 ) { this.isQuaternion = true; this._x = x; this._y = y; this._z = z; this._w = w; } static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( t === 0 ) { dst[ dstOffset + 0 ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; return; } if ( t === 1 ) { dst[ dstOffset + 0 ] = x1; dst[ dstOffset + 1 ] = y1; dst[ dstOffset + 2 ] = z1; dst[ dstOffset + 3 ] = w1; return; } if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : -1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { const sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { const x0 = src0[ srcOffset0 ]; const y0 = src0[ srcOffset0 + 1 ]; const z0 = src0[ srcOffset0 + 2 ]; const w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 ]; const y1 = src1[ srcOffset1 + 1 ]; const z1 = src1[ srcOffset1 + 2 ]; const w1 = src1[ srcOffset1 + 3 ]; dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w( value ) { this._w = value; this._onChangeCallback(); } set( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._w ); } copy( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler( euler, update = true ) { const x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos; const sin = Math.sin; const c1 = cos( x / 2 ); const c2 = cos( y / 2 ); const c3 = cos( z / 2 ); const s1 = sin( x / 2 ); const s2 = sin( y / 2 ); const s3 = sin( z / 2 ); switch ( order ) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); } if ( update === true ) this._onChangeCallback(); return this; } setFromAxisAngle( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this._onChangeCallback(); return this; } setFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33; if ( trace > 0 ) { const s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors( vFrom, vTo ) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot( vTo ) + 1; if ( r < Number.EPSILON ) { // vFrom and vTo point in opposite directions r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { this._x = - vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = - vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo( q ) { return 2 * Math.acos( Math.abs( clamp$1( this.dot( q ), -1, 1 ) ) ); } rotateTowards( q, step ) { const angle = this.angleTo( q ); if ( angle === 0 ) return this; const t = Math.min( 1, step / angle ); this.slerp( q, t ); return this; } identity() { return this.set( 0, 0, 0, 1 ); } invert() { // quaternion is assumed to have unit length return this.conjugate(); } conjugate() { this._x *= -1; this._y *= -1; this._z *= -1; this._onChangeCallback(); return this; } dot( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); } normalize() { let l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply( q ) { return this.multiplyQuaternions( this, q ); } premultiply( q ) { return this.multiplyQuaternions( q, this ); } multiplyQuaternions( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); const x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if ( sqrSinHalfTheta <= Number.EPSILON ) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); // normalize calls _onChangeCallback() return this; } const sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this._onChangeCallback(); return this; } slerpQuaternions( qa, qb, t ) { return this.copy( qa ).slerp( qb, t ); } random() { // sets this quaternion to a uniform random unit quaternnion // Ken Shoemake // Uniform random rotations // D. Kirk, editor, Graphics Gems III, pages 124-132. Academic Press, New York, 1992. const theta1 = 2 * Math.PI * Math.random(); const theta2 = 2 * Math.PI * Math.random(); const x0 = Math.random(); const r1 = Math.sqrt( 1 - x0 ); const r2 = Math.sqrt( x0 ); return this.set( r1 * Math.sin( theta1 ), r1 * Math.cos( theta1 ), r2 * Math.sin( theta2 ), r2 * Math.cos( theta2 ), ); } equals( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); } fromArray( array, offset = 0 ) { this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; } fromBufferAttribute( attribute, index ) { this._x = attribute.getX( index ); this._y = attribute.getY( index ); this._z = attribute.getZ( index ); this._w = attribute.getW( index ); this._onChangeCallback(); return this; } toJSON() { return this.toArray(); } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} *[ Symbol.iterator ]() { yield this._x; yield this._y; yield this._z; yield this._w; } } class Vector3 { constructor( x = 0, y = 0, z = 0 ) { Vector3.prototype.isVector3 = true; this.x = x; this.y = y; this.z = z; } set( x, y, z ) { if ( z === undefined ) z = this.z; // sprite.scale.set(x,y) this.x = x; this.y = y; this.z = z; return this; } setScalar( scalar ) { this.x = scalar; this.y = scalar; this.z = scalar; return this; } setX( x ) { this.x = x; return this; } setY( y ) { this.y = y; return this; } setZ( z ) { this.z = z; return this; } setComponent( index, value ) { switch ( index ) { case 0: this.x = value; break; case 1: this.y = value; break; case 2: this.z = value; break; default: throw new Error( 'index is out of range: ' + index ); } return this; } getComponent( index ) { switch ( index ) { case 0: return this.x; case 1: return this.y; case 2: return this.z; default: throw new Error( 'index is out of range: ' + index ); } } clone() { return new this.constructor( this.x, this.y, this.z ); } copy( v ) { this.x = v.x; this.y = v.y; this.z = v.z; return this; } add( v ) { this.x += v.x; this.y += v.y; this.z += v.z; return this; } addScalar( s ) { this.x += s; this.y += s; this.z += s; return this; } addVectors( a, b ) { this.x = a.x + b.x; this.y = a.y + b.y; this.z = a.z + b.z; return this; } addScaledVector( v, s ) { this.x += v.x * s; this.y += v.y * s; this.z += v.z * s; return this; } sub( v ) { this.x -= v.x; this.y -= v.y; this.z -= v.z; return this; } subScalar( s ) { this.x -= s; this.y -= s; this.z -= s; return this; } subVectors( a, b ) { this.x = a.x - b.x; this.y = a.y - b.y; this.z = a.z - b.z; return this; } multiply( v ) { this.x *= v.x; this.y *= v.y; this.z *= v.z; return this; } multiplyScalar( scalar ) { this.x *= scalar; this.y *= scalar; this.z *= scalar; return this; } multiplyVectors( a, b ) { this.x = a.x * b.x; this.y = a.y * b.y; this.z = a.z * b.z; return this; } applyEuler( euler ) { return this.applyQuaternion( _quaternion$4.setFromEuler( euler ) ); } applyAxisAngle( axis, angle ) { return this.applyQuaternion( _quaternion$4.setFromAxisAngle( axis, angle ) ); } applyMatrix3( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z; this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z; this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z; return this; } applyNormalMatrix( m ) { return this.applyMatrix3( m ).normalize(); } applyMatrix4( m ) { const x = this.x, y = this.y, z = this.z; const e = m.elements; const w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] ); this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w; this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w; this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w; return this; } applyQuaternion( q ) { // quaternion q is assumed to have unit length const vx = this.x, vy = this.y, vz = this.z; const qx = q.x, qy = q.y, qz = q.z, qw = q.w; // t = 2 * cross( q.xyz, v ); const tx = 2 * ( qy * vz - qz * vy ); const ty = 2 * ( qz * vx - qx * vz ); const tz = 2 * ( qx * vy - qy * vx ); // v + q.w * t + cross( q.xyz, t ); this.x = vx + qw * tx + qy * tz - qz * ty; this.y = vy + qw * ty + qz * tx - qx * tz; this.z = vz + qw * tz + qx * ty - qy * tx; return this; } project( camera ) { return this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix ); } unproject( camera ) { return this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld ); } transformDirection( m ) { // input: THREE.Matrix4 affine matrix // vector interpreted as a direction const x = this.x, y = this.y, z = this.z; const e = m.elements; this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return this.normalize(); } divide( v ) { this.x /= v.x; this.y /= v.y; this.z /= v.z; return this; } divideScalar( scalar ) { return this.multiplyScalar( 1 / scalar ); } min( v ) { this.x = Math.min( this.x, v.x ); this.y = Math.min( this.y, v.y ); this.z = Math.min( this.z, v.z ); return this; } max( v ) { this.x = Math.max( this.x, v.x ); this.y = Math.max( this.y, v.y ); this.z = Math.max( this.z, v.z ); return this; } clamp( min, max ) { // assumes min < max, componentwise this.x = Math.max( min.x, Math.min( max.x, this.x ) ); this.y = Math.max( min.y, Math.min( max.y, this.y ) ); this.z = Math.max( min.z, Math.min( max.z, this.z ) ); return this; } clampScalar( minVal, maxVal ) { this.x = Math.max( minVal, Math.min( maxVal, this.x ) ); this.y = Math.max( minVal, Math.min( maxVal, this.y ) ); this.z = Math.max( minVal, Math.min( maxVal, this.z ) ); return this; } clampLength( min, max ) { const length = this.length(); return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) ); } floor() { this.x = Math.floor( this.x ); this.y = Math.floor( this.y ); this.z = Math.floor( this.z ); return this; } ceil() { this.x = Math.ceil( this.x ); this.y = Math.ceil( this.y ); this.z = Math.ceil( this.z ); return this; } round() { this.x = Math.round( this.x ); this.y = Math.round( this.y ); this.z = Math.round( this.z ); return this; } roundToZero() { this.x = Math.trunc( this.x ); this.y = Math.trunc( this.y ); this.z = Math.trunc( this.z ); return this; } negate() { this.x = - this.x; this.y = - this.y; this.z = - this.z; return this; } dot( v ) { return this.x * v.x + this.y * v.y + this.z * v.z; } // TODO lengthSquared? lengthSq() { return this.x * this.x + this.y * this.y + this.z * this.z; } length() { return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z ); } manhattanLength() { return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ); } normalize() { return this.divideScalar( this.length() || 1 ); } setLength( length ) { return this.normalize().multiplyScalar( length ); } lerp( v, alpha ) { this.x += ( v.x - this.x ) * alpha; this.y += ( v.y - this.y ) * alpha; this.z += ( v.z - this.z ) * alpha; return this; } lerpVectors( v1, v2, alpha ) { this.x = v1.x + ( v2.x - v1.x ) * alpha; this.y = v1.y + ( v2.y - v1.y ) * alpha; this.z = v1.z + ( v2.z - v1.z ) * alpha; return this; } cross( v ) { return this.crossVectors( this, v ); } crossVectors( a, b ) { const ax = a.x, ay = a.y, az = a.z; const bx = b.x, by = b.y, bz = b.z; this.x = ay * bz - az * by; this.y = az * bx - ax * bz; this.z = ax * by - ay * bx; return this; } projectOnVector( v ) { const denominator = v.lengthSq(); if ( denominator === 0 ) return this.set( 0, 0, 0 ); const scalar = v.dot( this ) / denominator; return this.copy( v ).multiplyScalar( scalar ); } projectOnPlane( planeNormal ) { _vector$c.copy( this ).projectOnVector( planeNormal ); return this.sub( _vector$c ); } reflect( normal ) { // reflect incident vector off plane orthogonal to normal // normal is assumed to have unit length return this.sub( _vector$c.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) ); } angleTo( v ) { const denominator = Math.sqrt( this.lengthSq() * v.lengthSq() ); if ( denominator === 0 ) return Math.PI / 2; const theta = this.dot( v ) / denominator; // clamp, to handle numerical problems return Math.acos( clamp$1( theta, -1, 1 ) ); } distanceTo( v ) { return Math.sqrt( this.distanceToSquared( v ) ); } distanceToSquared( v ) { const dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z; return dx * dx + dy * dy + dz * dz; } manhattanDistanceTo( v ) { return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z ); } setFromSpherical( s ) { return this.setFromSphericalCoords( s.radius, s.phi, s.theta ); } setFromSphericalCoords( radius, phi, theta ) { const sinPhiRadius = Math.sin( phi ) * radius; this.x = sinPhiRadius * Math.sin( theta ); this.y = Math.cos( phi ) * radius; this.z = sinPhiRadius * Math.cos( theta ); return this; } setFromCylindrical( c ) { return this.setFromCylindricalCoords( c.radius, c.theta, c.y ); } setFromCylindricalCoords( radius, theta, y ) { this.x = radius * Math.sin( theta ); this.y = y; this.z = radius * Math.cos( theta ); return this; } setFromMatrixPosition( m ) { const e = m.elements; this.x = e[ 12 ]; this.y = e[ 13 ]; this.z = e[ 14 ]; return this; } setFromMatrixScale( m ) { const sx = this.setFromMatrixColumn( m, 0 ).length(); const sy = this.setFromMatrixColumn( m, 1 ).length(); const sz = this.setFromMatrixColumn( m, 2 ).length(); this.x = sx; this.y = sy; this.z = sz; return this; } setFromMatrixColumn( m, index ) { return this.fromArray( m.elements, index * 4 ); } setFromMatrix3Column( m, index ) { return this.fromArray( m.elements, index * 3 ); } setFromEuler( e ) { this.x = e._x; this.y = e._y; this.z = e._z; return this; } setFromColor( c ) { this.x = c.r; this.y = c.g; this.z = c.b; return this; } equals( v ) { return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) ); } fromArray( array, offset = 0 ) { this.x = array[ offset ]; this.y = array[ offset + 1 ]; this.z = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.x; array[ offset + 1 ] = this.y; array[ offset + 2 ] = this.z; return array; } fromBufferAttribute( attribute, index ) { this.x = attribute.getX( index ); this.y = attribute.getY( index ); this.z = attribute.getZ( index ); return this; } random() { this.x = Math.random(); this.y = Math.random(); this.z = Math.random(); return this; } randomDirection() { // https://mathworld.wolfram.com/SpherePointPicking.html const theta = Math.random() * Math.PI * 2; const u = Math.random() * 2 - 1; const c = Math.sqrt( 1 - u * u ); this.x = c * Math.cos( theta ); this.y = u; this.z = c * Math.sin( theta ); return this; } *[ Symbol.iterator ]() { yield this.x; yield this.y; yield this.z; } } const _vector$c = /*@__PURE__*/ new Vector3(); const _quaternion$4 = /*@__PURE__*/ new Quaternion(); class Box3 { constructor( min = new Vector3( + Infinity, + Infinity, + Infinity ), max = new Vector3( - Infinity, - Infinity, - Infinity ) ) { this.isBox3 = true; this.min = min; this.max = max; } set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } setFromArray( array ) { this.makeEmpty(); for ( let i = 0, il = array.length; i < il; i += 3 ) { this.expandByPoint( _vector$b.fromArray( array, i ) ); } return this; } setFromBufferAttribute( attribute ) { this.makeEmpty(); for ( let i = 0, il = attribute.count; i < il; i ++ ) { this.expandByPoint( _vector$b.fromBufferAttribute( attribute, i ) ); } return this; } setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } setFromCenterAndSize( center, size ) { const halfSize = _vector$b.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } setFromObject( object, precise = false ) { this.makeEmpty(); return this.expandByObject( object, precise ); } clone() { return new this.constructor().copy( this ); } copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } makeEmpty() { this.min.x = this.min.y = this.min.z = + Infinity; this.max.x = this.max.y = this.max.z = - Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z ); } getCenter( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } getSize( target ) { return this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min ); } expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } expandByObject( object, precise = false ) { // Computes the world-axis-aligned bounding box of an object (including its children), // accounting for both the object's, and children's, world transforms object.updateWorldMatrix( false, false ); const geometry = object.geometry; if ( geometry !== undefined ) { const positionAttribute = geometry.getAttribute( 'position' ); // precise AABB computation based on vertex data requires at least a position attribute. // instancing isn't supported so far and uses the normal (conservative) code path. if ( precise === true && positionAttribute !== undefined && object.isInstancedMesh !== true ) { for ( let i = 0, l = positionAttribute.count; i < l; i ++ ) { if ( object.isMesh === true ) { object.getVertexPosition( i, _vector$b ); } else { _vector$b.fromBufferAttribute( positionAttribute, i ); } _vector$b.applyMatrix4( object.matrixWorld ); this.expandByPoint( _vector$b ); } } else { if ( object.boundingBox !== undefined ) { // object-level bounding box if ( object.boundingBox === null ) { object.computeBoundingBox(); } _box$4.copy( object.boundingBox ); } else { // geometry-level bounding box if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } _box$4.copy( geometry.boundingBox ); } _box$4.applyMatrix4( object.matrixWorld ); this.union( _box$4 ); } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { this.expandByObject( children[ i ], precise ); } return this; } containsPoint( point ) { return point.x >= this.min.x && point.x <= this.max.x && point.y >= this.min.y && point.y <= this.max.y && point.z >= this.min.z && point.z <= this.max.z; } containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y && this.min.z <= box.min.z && box.max.z <= this.max.z; } getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ), ( point.z - this.min.z ) / ( this.max.z - this.min.z ) ); } intersectsBox( box ) { // using 6 splitting planes to rule out intersections. return box.max.x >= this.min.x && box.min.x <= this.max.x && box.max.y >= this.min.y && box.min.y <= this.max.y && box.max.z >= this.min.z && box.min.z <= this.max.z; } intersectsSphere( sphere ) { // Find the point on the AABB closest to the sphere center. this.clampPoint( sphere.center, _vector$b ); // If that point is inside the sphere, the AABB and sphere intersect. return _vector$b.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius ); } intersectsPlane( plane ) { // We compute the minimum and maximum dot product values. If those values // are on the same side (back or front) of the plane, then there is no intersection. let min, max; if ( plane.normal.x > 0 ) { min = plane.normal.x * this.min.x; max = plane.normal.x * this.max.x; } else { min = plane.normal.x * this.max.x; max = plane.normal.x * this.min.x; } if ( plane.normal.y > 0 ) { min += plane.normal.y * this.min.y; max += plane.normal.y * this.max.y; } else { min += plane.normal.y * this.max.y; max += plane.normal.y * this.min.y; } if ( plane.normal.z > 0 ) { min += plane.normal.z * this.min.z; max += plane.normal.z * this.max.z; } else { min += plane.normal.z * this.max.z; max += plane.normal.z * this.min.z; } return ( min <= - plane.constant && max >= - plane.constant ); } intersectsTriangle( triangle ) { if ( this.isEmpty() ) { return false; } // compute box center and extents this.getCenter( _center ); _extents.subVectors( this.max, _center ); // translate triangle to aabb origin _v0$3.subVectors( triangle.a, _center ); _v1$7.subVectors( triangle.b, _center ); _v2$4.subVectors( triangle.c, _center ); // compute edge vectors for triangle _f0.subVectors( _v1$7, _v0$3 ); _f1.subVectors( _v2$4, _v1$7 ); _f2.subVectors( _v0$3, _v2$4 ); // test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb // make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation // axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned) let axes = [ 0, - _f0.z, _f0.y, 0, - _f1.z, _f1.y, 0, - _f2.z, _f2.y, _f0.z, 0, - _f0.x, _f1.z, 0, - _f1.x, _f2.z, 0, - _f2.x, - _f0.y, _f0.x, 0, - _f1.y, _f1.x, 0, - _f2.y, _f2.x, 0 ]; if ( ! satForAxes( axes, _v0$3, _v1$7, _v2$4, _extents ) ) { return false; } // test 3 face normals from the aabb axes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]; if ( ! satForAxes( axes, _v0$3, _v1$7, _v2$4, _extents ) ) { return false; } // finally testing the face normal of the triangle // use already existing triangle edge vectors here _triangleNormal.crossVectors( _f0, _f1 ); axes = [ _triangleNormal.x, _triangleNormal.y, _triangleNormal.z ]; return satForAxes( axes, _v0$3, _v1$7, _v2$4, _extents ); } clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } distanceToPoint( point ) { return this.clampPoint( point, _vector$b ).distanceTo( point ); } getBoundingSphere( target ) { if ( this.isEmpty() ) { target.makeEmpty(); } else { this.getCenter( target.center ); target.radius = this.getSize( _vector$b ).length() * 0.5; } return target; } intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); // ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values. if ( this.isEmpty() ) this.makeEmpty(); return this; } union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } applyMatrix4( matrix ) { // transform of empty box is an empty box. if ( this.isEmpty() ) return this; // NOTE: I am using a binary pattern to specify all 2^3 combinations below _points[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000 _points[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001 _points[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010 _points[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011 _points[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100 _points[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101 _points[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110 _points[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111 this.setFromPoints( _points ); return this; } translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } const _points = [ /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3(), /*@__PURE__*/ new Vector3() ]; const _vector$b = /*@__PURE__*/ new Vector3(); const _box$4 = /*@__PURE__*/ new Box3(); // triangle centered vertices const _v0$3 = /*@__PURE__*/ new Vector3(); const _v1$7 = /*@__PURE__*/ new Vector3(); const _v2$4 = /*@__PURE__*/ new Vector3(); // triangle edge vectors const _f0 = /*@__PURE__*/ new Vector3(); const _f1 = /*@__PURE__*/ new Vector3(); const _f2 = /*@__PURE__*/ new Vector3(); const _center = /*@__PURE__*/ new Vector3(); const _extents = /*@__PURE__*/ new Vector3(); const _triangleNormal = /*@__PURE__*/ new Vector3(); const _testAxis = /*@__PURE__*/ new Vector3(); function satForAxes( axes, v0, v1, v2, extents ) { for ( let i = 0, j = axes.length - 3; i <= j; i += 3 ) { _testAxis.fromArray( axes, i ); // project the aabb onto the separating axis const r = extents.x * Math.abs( _testAxis.x ) + extents.y * Math.abs( _testAxis.y ) + extents.z * Math.abs( _testAxis.z ); // project all 3 vertices of the triangle onto the separating axis const p0 = v0.dot( _testAxis ); const p1 = v1.dot( _testAxis ); const p2 = v2.dot( _testAxis ); // actual test, basically see if either of the most extreme of the triangle points intersects r if ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) { // points of the projected triangle are outside the projected half-length of the aabb // the axis is separating and we can exit return false; } } return true; } const _box$3 = /*@__PURE__*/ new Box3(); const _v1$6 = /*@__PURE__*/ new Vector3(); const _v2$3 = /*@__PURE__*/ new Vector3(); class Sphere { constructor( center = new Vector3(), radius = -1 ) { this.isSphere = true; this.center = center; this.radius = radius; } set( center, radius ) { this.center.copy( center ); this.radius = radius; return this; } setFromPoints( points, optionalCenter ) { const center = this.center; if ( optionalCenter !== undefined ) { center.copy( optionalCenter ); } else { _box$3.setFromPoints( points ).getCenter( center ); } let maxRadiusSq = 0; for ( let i = 0, il = points.length; i < il; i ++ ) { maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) ); } this.radius = Math.sqrt( maxRadiusSq ); return this; } copy( sphere ) { this.center.copy( sphere.center ); this.radius = sphere.radius; return this; } isEmpty() { return ( this.radius < 0 ); } makeEmpty() { this.center.set( 0, 0, 0 ); this.radius = -1; return this; } containsPoint( point ) { return ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) ); } distanceToPoint( point ) { return ( point.distanceTo( this.center ) - this.radius ); } intersectsSphere( sphere ) { const radiusSum = this.radius + sphere.radius; return sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum ); } intersectsBox( box ) { return box.intersectsSphere( this ); } intersectsPlane( plane ) { return Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius; } clampPoint( point, target ) { const deltaLengthSq = this.center.distanceToSquared( point ); target.copy( point ); if ( deltaLengthSq > ( this.radius * this.radius ) ) { target.sub( this.center ).normalize(); target.multiplyScalar( this.radius ).add( this.center ); } return target; } getBoundingBox( target ) { if ( this.isEmpty() ) { // Empty sphere produces empty bounding box target.makeEmpty(); return target; } target.set( this.center, this.center ); target.expandByScalar( this.radius ); return target; } applyMatrix4( matrix ) { this.center.applyMatrix4( matrix ); this.radius = this.radius * matrix.getMaxScaleOnAxis(); return this; } translate( offset ) { this.center.add( offset ); return this; } expandByPoint( point ) { if ( this.isEmpty() ) { this.center.copy( point ); this.radius = 0; return this; } _v1$6.subVectors( point, this.center ); const lengthSq = _v1$6.lengthSq(); if ( lengthSq > ( this.radius * this.radius ) ) { // calculate the minimal sphere const length = Math.sqrt( lengthSq ); const delta = ( length - this.radius ) * 0.5; this.center.addScaledVector( _v1$6, delta / length ); this.radius += delta; } return this; } union( sphere ) { if ( sphere.isEmpty() ) { return this; } if ( this.isEmpty() ) { this.copy( sphere ); return this; } if ( this.center.equals( sphere.center ) === true ) { this.radius = Math.max( this.radius, sphere.radius ); } else { _v2$3.subVectors( sphere.center, this.center ).setLength( sphere.radius ); this.expandByPoint( _v1$6.copy( sphere.center ).add( _v2$3 ) ); this.expandByPoint( _v1$6.copy( sphere.center ).sub( _v2$3 ) ); } return this; } equals( sphere ) { return sphere.center.equals( this.center ) && ( sphere.radius === this.radius ); } clone() { return new this.constructor().copy( this ); } } const _vector$a = /*@__PURE__*/ new Vector3(); const _segCenter = /*@__PURE__*/ new Vector3(); const _segDir = /*@__PURE__*/ new Vector3(); const _diff = /*@__PURE__*/ new Vector3(); const _edge1 = /*@__PURE__*/ new Vector3(); const _edge2 = /*@__PURE__*/ new Vector3(); const _normal$2 = /*@__PURE__*/ new Vector3(); class Ray { constructor( origin = new Vector3(), direction = new Vector3( 0, 0, -1 ) ) { this.origin = origin; this.direction = direction; } set( origin, direction ) { this.origin.copy( origin ); this.direction.copy( direction ); return this; } copy( ray ) { this.origin.copy( ray.origin ); this.direction.copy( ray.direction ); return this; } at( t, target ) { return target.copy( this.origin ).addScaledVector( this.direction, t ); } lookAt( v ) { this.direction.copy( v ).sub( this.origin ).normalize(); return this; } recast( t ) { this.origin.copy( this.at( t, _vector$a ) ); return this; } closestPointToPoint( point, target ) { target.subVectors( point, this.origin ); const directionDistance = target.dot( this.direction ); if ( directionDistance < 0 ) { return target.copy( this.origin ); } return target.copy( this.origin ).addScaledVector( this.direction, directionDistance ); } distanceToPoint( point ) { return Math.sqrt( this.distanceSqToPoint( point ) ); } distanceSqToPoint( point ) { const directionDistance = _vector$a.subVectors( point, this.origin ).dot( this.direction ); // point behind the ray if ( directionDistance < 0 ) { return this.origin.distanceToSquared( point ); } _vector$a.copy( this.origin ).addScaledVector( this.direction, directionDistance ); return _vector$a.distanceToSquared( point ); } distanceSqToSegment( v0, v1, optionalPointOnRay, optionalPointOnSegment ) { // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteDistRaySegment.h // It returns the min distance between the ray and the segment // defined by v0 and v1 // It can also set two optional targets : // - The closest point on the ray // - The closest point on the segment _segCenter.copy( v0 ).add( v1 ).multiplyScalar( 0.5 ); _segDir.copy( v1 ).sub( v0 ).normalize(); _diff.copy( this.origin ).sub( _segCenter ); const segExtent = v0.distanceTo( v1 ) * 0.5; const a01 = - this.direction.dot( _segDir ); const b0 = _diff.dot( this.direction ); const b1 = - _diff.dot( _segDir ); const c = _diff.lengthSq(); const det = Math.abs( 1 - a01 * a01 ); let s0, s1, sqrDist, extDet; if ( det > 0 ) { // The ray and segment are not parallel. s0 = a01 * b1 - b0; s1 = a01 * b0 - b1; extDet = segExtent * det; if ( s0 >= 0 ) { if ( s1 >= - extDet ) { if ( s1 <= extDet ) { // region 0 // Minimum at interior points of ray and segment. const invDet = 1 / det; s0 *= invDet; s1 *= invDet; sqrDist = s0 * ( s0 + a01 * s1 + 2 * b0 ) + s1 * ( a01 * s0 + s1 + 2 * b1 ) + c; } else { // region 1 s1 = segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { // region 5 s1 = - segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } else { if ( s1 <= - extDet ) { // region 4 s0 = Math.max( 0, - ( - a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? - segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } else if ( s1 <= extDet ) { // region 3 s0 = 0; s1 = Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = s1 * ( s1 + 2 * b1 ) + c; } else { // region 2 s0 = Math.max( 0, - ( a01 * segExtent + b0 ) ); s1 = ( s0 > 0 ) ? segExtent : Math.min( Math.max( - segExtent, - b1 ), segExtent ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } } } else { // Ray and segment are parallel. s1 = ( a01 > 0 ) ? - segExtent : segExtent; s0 = Math.max( 0, - ( a01 * s1 + b0 ) ); sqrDist = - s0 * s0 + s1 * ( s1 + 2 * b1 ) + c; } if ( optionalPointOnRay ) { optionalPointOnRay.copy( this.origin ).addScaledVector( this.direction, s0 ); } if ( optionalPointOnSegment ) { optionalPointOnSegment.copy( _segCenter ).addScaledVector( _segDir, s1 ); } return sqrDist; } intersectSphere( sphere, target ) { _vector$a.subVectors( sphere.center, this.origin ); const tca = _vector$a.dot( this.direction ); const d2 = _vector$a.dot( _vector$a ) - tca * tca; const radius2 = sphere.radius * sphere.radius; if ( d2 > radius2 ) return null; const thc = Math.sqrt( radius2 - d2 ); // t0 = first intersect point - entrance on front of sphere const t0 = tca - thc; // t1 = second intersect point - exit point on back of sphere const t1 = tca + thc; // test to see if t1 is behind the ray - if so, return null if ( t1 < 0 ) return null; // test to see if t0 is behind the ray: // if it is, the ray is inside the sphere, so return the second exit point scaled by t1, // in order to always return an intersect point that is in front of the ray. if ( t0 < 0 ) return this.at( t1, target ); // else t0 is in front of the ray, so return the first collision point scaled by t0 return this.at( t0, target ); } intersectsSphere( sphere ) { return this.distanceSqToPoint( sphere.center ) <= ( sphere.radius * sphere.radius ); } distanceToPlane( plane ) { const denominator = plane.normal.dot( this.direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( plane.distanceToPoint( this.origin ) === 0 ) { return 0; } // Null is preferable to undefined since undefined means.... it is undefined return null; } const t = - ( this.origin.dot( plane.normal ) + plane.constant ) / denominator; // Return if the ray never intersects the plane return t >= 0 ? t : null; } intersectPlane( plane, target ) { const t = this.distanceToPlane( plane ); if ( t === null ) { return null; } return this.at( t, target ); } intersectsPlane( plane ) { // check if the ray lies on the plane first const distToPoint = plane.distanceToPoint( this.origin ); if ( distToPoint === 0 ) { return true; } const denominator = plane.normal.dot( this.direction ); if ( denominator * distToPoint < 0 ) { return true; } // ray origin is behind the plane (and is pointing behind it) return false; } intersectBox( box, target ) { let tmin, tmax, tymin, tymax, tzmin, tzmax; const invdirx = 1 / this.direction.x, invdiry = 1 / this.direction.y, invdirz = 1 / this.direction.z; const origin = this.origin; if ( invdirx >= 0 ) { tmin = ( box.min.x - origin.x ) * invdirx; tmax = ( box.max.x - origin.x ) * invdirx; } else { tmin = ( box.max.x - origin.x ) * invdirx; tmax = ( box.min.x - origin.x ) * invdirx; } if ( invdiry >= 0 ) { tymin = ( box.min.y - origin.y ) * invdiry; tymax = ( box.max.y - origin.y ) * invdiry; } else { tymin = ( box.max.y - origin.y ) * invdiry; tymax = ( box.min.y - origin.y ) * invdiry; } if ( ( tmin > tymax ) || ( tymin > tmax ) ) return null; if ( tymin > tmin || isNaN( tmin ) ) tmin = tymin; if ( tymax < tmax || isNaN( tmax ) ) tmax = tymax; if ( invdirz >= 0 ) { tzmin = ( box.min.z - origin.z ) * invdirz; tzmax = ( box.max.z - origin.z ) * invdirz; } else { tzmin = ( box.max.z - origin.z ) * invdirz; tzmax = ( box.min.z - origin.z ) * invdirz; } if ( ( tmin > tzmax ) || ( tzmin > tmax ) ) return null; if ( tzmin > tmin || tmin !== tmin ) tmin = tzmin; if ( tzmax < tmax || tmax !== tmax ) tmax = tzmax; //return point closest to the ray (positive side) if ( tmax < 0 ) return null; return this.at( tmin >= 0 ? tmin : tmax, target ); } intersectsBox( box ) { return this.intersectBox( box, _vector$a ) !== null; } intersectTriangle( a, b, c, backfaceCulling, target ) { // Compute the offset origin, edges, and normal. // from https://github.com/pmjoniak/GeometricTools/blob/master/GTEngine/Include/Mathematics/GteIntrRay3Triangle3.h _edge1.subVectors( b, a ); _edge2.subVectors( c, a ); _normal$2.crossVectors( _edge1, _edge2 ); // Solve Q + t*D = b1*E1 + b2*E2 (Q = kDiff, D = ray direction, // E1 = kEdge1, E2 = kEdge2, N = Cross(E1,E2)) by // |Dot(D,N)|*b1 = sign(Dot(D,N))*Dot(D,Cross(Q,E2)) // |Dot(D,N)|*b2 = sign(Dot(D,N))*Dot(D,Cross(E1,Q)) // |Dot(D,N)|*t = -sign(Dot(D,N))*Dot(Q,N) let DdN = this.direction.dot( _normal$2 ); let sign; if ( DdN > 0 ) { if ( backfaceCulling ) return null; sign = 1; } else if ( DdN < 0 ) { sign = -1; DdN = - DdN; } else { return null; } _diff.subVectors( this.origin, a ); const DdQxE2 = sign * this.direction.dot( _edge2.crossVectors( _diff, _edge2 ) ); // b1 < 0, no intersection if ( DdQxE2 < 0 ) { return null; } const DdE1xQ = sign * this.direction.dot( _edge1.cross( _diff ) ); // b2 < 0, no intersection if ( DdE1xQ < 0 ) { return null; } // b1+b2 > 1, no intersection if ( DdQxE2 + DdE1xQ > DdN ) { return null; } // Line intersects triangle, check if ray does. const QdN = - sign * _diff.dot( _normal$2 ); // t < 0, no intersection if ( QdN < 0 ) { return null; } // Ray intersects triangle. return this.at( QdN / DdN, target ); } applyMatrix4( matrix4 ) { this.origin.applyMatrix4( matrix4 ); this.direction.transformDirection( matrix4 ); return this; } equals( ray ) { return ray.origin.equals( this.origin ) && ray.direction.equals( this.direction ); } clone() { return new this.constructor().copy( this ); } } class Matrix4 { constructor( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { Matrix4.prototype.isMatrix4 = true; this.elements = [ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ]; if ( n11 !== undefined ) { this.set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ); } } set( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) { const te = this.elements; te[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14; te[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24; te[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34; te[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44; return this; } identity() { this.set( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } clone() { return new Matrix4().fromArray( this.elements ); } copy( m ) { const te = this.elements; const me = m.elements; te[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ]; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ]; return this; } copyPosition( m ) { const te = this.elements, me = m.elements; te[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; return this; } setFromMatrix3( m ) { const me = m.elements; this.set( me[ 0 ], me[ 3 ], me[ 6 ], 0, me[ 1 ], me[ 4 ], me[ 7 ], 0, me[ 2 ], me[ 5 ], me[ 8 ], 0, 0, 0, 0, 1 ); return this; } extractBasis( xAxis, yAxis, zAxis ) { xAxis.setFromMatrixColumn( this, 0 ); yAxis.setFromMatrixColumn( this, 1 ); zAxis.setFromMatrixColumn( this, 2 ); return this; } makeBasis( xAxis, yAxis, zAxis ) { this.set( xAxis.x, yAxis.x, zAxis.x, 0, xAxis.y, yAxis.y, zAxis.y, 0, xAxis.z, yAxis.z, zAxis.z, 0, 0, 0, 0, 1 ); return this; } extractRotation( m ) { // this method does not support reflection matrices const te = this.elements; const me = m.elements; const scaleX = 1 / _v1$5.setFromMatrixColumn( m, 0 ).length(); const scaleY = 1 / _v1$5.setFromMatrixColumn( m, 1 ).length(); const scaleZ = 1 / _v1$5.setFromMatrixColumn( m, 2 ).length(); te[ 0 ] = me[ 0 ] * scaleX; te[ 1 ] = me[ 1 ] * scaleX; te[ 2 ] = me[ 2 ] * scaleX; te[ 3 ] = 0; te[ 4 ] = me[ 4 ] * scaleY; te[ 5 ] = me[ 5 ] * scaleY; te[ 6 ] = me[ 6 ] * scaleY; te[ 7 ] = 0; te[ 8 ] = me[ 8 ] * scaleZ; te[ 9 ] = me[ 9 ] * scaleZ; te[ 10 ] = me[ 10 ] * scaleZ; te[ 11 ] = 0; te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromEuler( euler ) { const te = this.elements; const x = euler.x, y = euler.y, z = euler.z; const a = Math.cos( x ), b = Math.sin( x ); const c = Math.cos( y ), d = Math.sin( y ); const e = Math.cos( z ), f = Math.sin( z ); if ( euler.order === 'XYZ' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = - c * f; te[ 8 ] = d; te[ 1 ] = af + be * d; te[ 5 ] = ae - bf * d; te[ 9 ] = - b * c; te[ 2 ] = bf - ae * d; te[ 6 ] = be + af * d; te[ 10 ] = a * c; } else if ( euler.order === 'YXZ' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce + df * b; te[ 4 ] = de * b - cf; te[ 8 ] = a * d; te[ 1 ] = a * f; te[ 5 ] = a * e; te[ 9 ] = - b; te[ 2 ] = cf * b - de; te[ 6 ] = df + ce * b; te[ 10 ] = a * c; } else if ( euler.order === 'ZXY' ) { const ce = c * e, cf = c * f, de = d * e, df = d * f; te[ 0 ] = ce - df * b; te[ 4 ] = - a * f; te[ 8 ] = de + cf * b; te[ 1 ] = cf + de * b; te[ 5 ] = a * e; te[ 9 ] = df - ce * b; te[ 2 ] = - a * d; te[ 6 ] = b; te[ 10 ] = a * c; } else if ( euler.order === 'ZYX' ) { const ae = a * e, af = a * f, be = b * e, bf = b * f; te[ 0 ] = c * e; te[ 4 ] = be * d - af; te[ 8 ] = ae * d + bf; te[ 1 ] = c * f; te[ 5 ] = bf * d + ae; te[ 9 ] = af * d - be; te[ 2 ] = - d; te[ 6 ] = b * c; te[ 10 ] = a * c; } else if ( euler.order === 'YZX' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = bd - ac * f; te[ 8 ] = bc * f + ad; te[ 1 ] = f; te[ 5 ] = a * e; te[ 9 ] = - b * e; te[ 2 ] = - d * e; te[ 6 ] = ad * f + bc; te[ 10 ] = ac - bd * f; } else if ( euler.order === 'XZY' ) { const ac = a * c, ad = a * d, bc = b * c, bd = b * d; te[ 0 ] = c * e; te[ 4 ] = - f; te[ 8 ] = d * e; te[ 1 ] = ac * f + bd; te[ 5 ] = a * e; te[ 9 ] = ad * f - bc; te[ 2 ] = bc * f - ad; te[ 6 ] = b * e; te[ 10 ] = bd * f + ac; } // bottom row te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; // last column te[ 12 ] = 0; te[ 13 ] = 0; te[ 14 ] = 0; te[ 15 ] = 1; return this; } makeRotationFromQuaternion( q ) { return this.compose( _zero, q, _one ); } lookAt( eye, target, up ) { const te = this.elements; _z.subVectors( eye, target ); if ( _z.lengthSq() === 0 ) { // eye and target are in the same position _z.z = 1; } _z.normalize(); _x.crossVectors( up, _z ); if ( _x.lengthSq() === 0 ) { // up and z are parallel if ( Math.abs( up.z ) === 1 ) { _z.x += 0.0001; } else { _z.z += 0.0001; } _z.normalize(); _x.crossVectors( up, _z ); } _x.normalize(); _y.crossVectors( _z, _x ); te[ 0 ] = _x.x; te[ 4 ] = _y.x; te[ 8 ] = _z.x; te[ 1 ] = _x.y; te[ 5 ] = _y.y; te[ 9 ] = _z.y; te[ 2 ] = _x.z; te[ 6 ] = _y.z; te[ 10 ] = _z.z; return this; } multiply( m ) { return this.multiplyMatrices( this, m ); } premultiply( m ) { return this.multiplyMatrices( m, this ); } multiplyMatrices( a, b ) { const ae = a.elements; const be = b.elements; const te = this.elements; const a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ]; const a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ]; const a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ]; const a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ]; const b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ]; const b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ]; const b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ]; const b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ]; te[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41; te[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42; te[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43; te[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44; te[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41; te[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42; te[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43; te[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44; te[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41; te[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42; te[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43; te[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44; te[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41; te[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42; te[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43; te[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44; return this; } multiplyScalar( s ) { const te = this.elements; te[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s; te[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s; te[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s; te[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s; return this; } determinant() { const te = this.elements; const n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ]; const n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ]; const n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ]; const n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ]; //TODO: make this more efficient //( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm ) return ( n41 * ( + n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34 ) + n42 * ( + n11 * n23 * n34 - n11 * n24 * n33 + n14 * n21 * n33 - n13 * n21 * n34 + n13 * n24 * n31 - n14 * n23 * n31 ) + n43 * ( + n11 * n24 * n32 - n11 * n22 * n34 - n14 * n21 * n32 + n12 * n21 * n34 + n14 * n22 * n31 - n12 * n24 * n31 ) + n44 * ( - n13 * n22 * n31 - n11 * n23 * n32 + n11 * n22 * n33 + n13 * n21 * n32 - n12 * n21 * n33 + n12 * n23 * n31 ) ); } transpose() { const te = this.elements; let tmp; tmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp; tmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp; tmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp; tmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp; tmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp; tmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp; return this; } setPosition( x, y, z ) { const te = this.elements; if ( x.isVector3 ) { te[ 12 ] = x.x; te[ 13 ] = x.y; te[ 14 ] = x.z; } else { te[ 12 ] = x; te[ 13 ] = y; te[ 14 ] = z; } return this; } invert() { // based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm const te = this.elements, n11 = te[ 0 ], n21 = te[ 1 ], n31 = te[ 2 ], n41 = te[ 3 ], n12 = te[ 4 ], n22 = te[ 5 ], n32 = te[ 6 ], n42 = te[ 7 ], n13 = te[ 8 ], n23 = te[ 9 ], n33 = te[ 10 ], n43 = te[ 11 ], n14 = te[ 12 ], n24 = te[ 13 ], n34 = te[ 14 ], n44 = te[ 15 ], t11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44, t12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44, t13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44, t14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34; const det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14; if ( det === 0 ) return this.set( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ); const detInv = 1 / det; te[ 0 ] = t11 * detInv; te[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv; te[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv; te[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv; te[ 4 ] = t12 * detInv; te[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv; te[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv; te[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv; te[ 8 ] = t13 * detInv; te[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv; te[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv; te[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv; te[ 12 ] = t14 * detInv; te[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv; te[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv; te[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv; return this; } scale( v ) { const te = this.elements; const x = v.x, y = v.y, z = v.z; te[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z; te[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z; te[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z; te[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z; return this; } getMaxScaleOnAxis() { const te = this.elements; const scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ]; const scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ]; const scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ]; return Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) ); } makeTranslation( x, y, z ) { if ( x.isVector3 ) { this.set( 1, 0, 0, x.x, 0, 1, 0, x.y, 0, 0, 1, x.z, 0, 0, 0, 1 ); } else { this.set( 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 ); } return this; } makeRotationX( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( 1, 0, 0, 0, 0, c, - s, 0, 0, s, c, 0, 0, 0, 0, 1 ); return this; } makeRotationY( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, 0, s, 0, 0, 1, 0, 0, - s, 0, c, 0, 0, 0, 0, 1 ); return this; } makeRotationZ( theta ) { const c = Math.cos( theta ), s = Math.sin( theta ); this.set( c, - s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); return this; } makeRotationAxis( axis, angle ) { // Based on http://www.gamedev.net/reference/articles/article1199.asp const c = Math.cos( angle ); const s = Math.sin( angle ); const t = 1 - c; const x = axis.x, y = axis.y, z = axis.z; const tx = t * x, ty = t * y; this.set( tx * x + c, tx * y - s * z, tx * z + s * y, 0, tx * y + s * z, ty * y + c, ty * z - s * x, 0, tx * z - s * y, ty * z + s * x, t * z * z + c, 0, 0, 0, 0, 1 ); return this; } makeScale( x, y, z ) { this.set( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); return this; } makeShear( xy, xz, yx, yz, zx, zy ) { this.set( 1, yx, zx, 0, xy, 1, zy, 0, xz, yz, 1, 0, 0, 0, 0, 1 ); return this; } compose( position, quaternion, scale ) { const te = this.elements; const x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w; const x2 = x + x, y2 = y + y, z2 = z + z; const xx = x * x2, xy = x * y2, xz = x * z2; const yy = y * y2, yz = y * z2, zz = z * z2; const wx = w * x2, wy = w * y2, wz = w * z2; const sx = scale.x, sy = scale.y, sz = scale.z; te[ 0 ] = ( 1 - ( yy + zz ) ) * sx; te[ 1 ] = ( xy + wz ) * sx; te[ 2 ] = ( xz - wy ) * sx; te[ 3 ] = 0; te[ 4 ] = ( xy - wz ) * sy; te[ 5 ] = ( 1 - ( xx + zz ) ) * sy; te[ 6 ] = ( yz + wx ) * sy; te[ 7 ] = 0; te[ 8 ] = ( xz + wy ) * sz; te[ 9 ] = ( yz - wx ) * sz; te[ 10 ] = ( 1 - ( xx + yy ) ) * sz; te[ 11 ] = 0; te[ 12 ] = position.x; te[ 13 ] = position.y; te[ 14 ] = position.z; te[ 15 ] = 1; return this; } decompose( position, quaternion, scale ) { const te = this.elements; let sx = _v1$5.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length(); const sy = _v1$5.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length(); const sz = _v1$5.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length(); // if determine is negative, we need to invert one scale const det = this.determinant(); if ( det < 0 ) sx = - sx; position.x = te[ 12 ]; position.y = te[ 13 ]; position.z = te[ 14 ]; // scale the rotation part _m1$4.copy( this ); const invSX = 1 / sx; const invSY = 1 / sy; const invSZ = 1 / sz; _m1$4.elements[ 0 ] *= invSX; _m1$4.elements[ 1 ] *= invSX; _m1$4.elements[ 2 ] *= invSX; _m1$4.elements[ 4 ] *= invSY; _m1$4.elements[ 5 ] *= invSY; _m1$4.elements[ 6 ] *= invSY; _m1$4.elements[ 8 ] *= invSZ; _m1$4.elements[ 9 ] *= invSZ; _m1$4.elements[ 10 ] *= invSZ; quaternion.setFromRotationMatrix( _m1$4 ); scale.x = sx; scale.y = sy; scale.z = sz; return this; } makePerspective( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { const te = this.elements; const x = 2 * near / ( right - left ); const y = 2 * near / ( top - bottom ); const a = ( right + left ) / ( right - left ); const b = ( top + bottom ) / ( top - bottom ); let c, d; if ( coordinateSystem === WebGLCoordinateSystem ) { c = - ( far + near ) / ( far - near ); d = ( -2 * far * near ) / ( far - near ); } else if ( coordinateSystem === WebGPUCoordinateSystem ) { c = - far / ( far - near ); d = ( - far * near ) / ( far - near ); } else { throw new Error( 'THREE.Matrix4.makePerspective(): Invalid coordinate system: ' + coordinateSystem ); } te[ 0 ] = x; te[ 4 ] = 0; te[ 8 ] = a; te[ 12 ] = 0; te[ 1 ] = 0; te[ 5 ] = y; te[ 9 ] = b; te[ 13 ] = 0; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = c; te[ 14 ] = d; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = -1; te[ 15 ] = 0; return this; } makeOrthographic( left, right, top, bottom, near, far, coordinateSystem = WebGLCoordinateSystem ) { const te = this.elements; const w = 1.0 / ( right - left ); const h = 1.0 / ( top - bottom ); const p = 1.0 / ( far - near ); const x = ( right + left ) * w; const y = ( top + bottom ) * h; let z, zInv; if ( coordinateSystem === WebGLCoordinateSystem ) { z = ( far + near ) * p; zInv = -2 * p; } else if ( coordinateSystem === WebGPUCoordinateSystem ) { z = near * p; zInv = -1 * p; } else { throw new Error( 'THREE.Matrix4.makeOrthographic(): Invalid coordinate system: ' + coordinateSystem ); } te[ 0 ] = 2 * w; te[ 4 ] = 0; te[ 8 ] = 0; te[ 12 ] = - x; te[ 1 ] = 0; te[ 5 ] = 2 * h; te[ 9 ] = 0; te[ 13 ] = - y; te[ 2 ] = 0; te[ 6 ] = 0; te[ 10 ] = zInv; te[ 14 ] = - z; te[ 3 ] = 0; te[ 7 ] = 0; te[ 11 ] = 0; te[ 15 ] = 1; return this; } equals( matrix ) { const te = this.elements; const me = matrix.elements; for ( let i = 0; i < 16; i ++ ) { if ( te[ i ] !== me[ i ] ) return false; } return true; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 16; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } toArray( array = [], offset = 0 ) { const te = this.elements; array[ offset ] = te[ 0 ]; array[ offset + 1 ] = te[ 1 ]; array[ offset + 2 ] = te[ 2 ]; array[ offset + 3 ] = te[ 3 ]; array[ offset + 4 ] = te[ 4 ]; array[ offset + 5 ] = te[ 5 ]; array[ offset + 6 ] = te[ 6 ]; array[ offset + 7 ] = te[ 7 ]; array[ offset + 8 ] = te[ 8 ]; array[ offset + 9 ] = te[ 9 ]; array[ offset + 10 ] = te[ 10 ]; array[ offset + 11 ] = te[ 11 ]; array[ offset + 12 ] = te[ 12 ]; array[ offset + 13 ] = te[ 13 ]; array[ offset + 14 ] = te[ 14 ]; array[ offset + 15 ] = te[ 15 ]; return array; } } const _v1$5 = /*@__PURE__*/ new Vector3(); const _m1$4 = /*@__PURE__*/ new Matrix4(); const _zero = /*@__PURE__*/ new Vector3( 0, 0, 0 ); const _one = /*@__PURE__*/ new Vector3( 1, 1, 1 ); const _x = /*@__PURE__*/ new Vector3(); const _y = /*@__PURE__*/ new Vector3(); const _z = /*@__PURE__*/ new Vector3(); const _matrix$2 = /*@__PURE__*/ new Matrix4(); const _quaternion$3 = /*@__PURE__*/ new Quaternion(); class Euler { constructor( x = 0, y = 0, z = 0, order = Euler.DEFAULT_ORDER ) { this.isEuler = true; this._x = x; this._y = y; this._z = z; this._order = order; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get order() { return this._order; } set order( value ) { this._order = value; this._onChangeCallback(); } set( x, y, z, order = this._order ) { this._x = x; this._y = y; this._z = z; this._order = order; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._order ); } copy( euler ) { this._x = euler._x; this._y = euler._y; this._z = euler._z; this._order = euler._order; this._onChangeCallback(); return this; } setFromRotationMatrix( m, order = this._order, update = true ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements; const m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ]; const m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ]; const m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ]; switch ( order ) { case 'XYZ': this._y = Math.asin( clamp$1( m13, -1, 1 ) ); if ( Math.abs( m13 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m33 ); this._z = Math.atan2( - m12, m11 ); } else { this._x = Math.atan2( m32, m22 ); this._z = 0; } break; case 'YXZ': this._x = Math.asin( - clamp$1( m23, -1, 1 ) ); if ( Math.abs( m23 ) < 0.9999999 ) { this._y = Math.atan2( m13, m33 ); this._z = Math.atan2( m21, m22 ); } else { this._y = Math.atan2( - m31, m11 ); this._z = 0; } break; case 'ZXY': this._x = Math.asin( clamp$1( m32, -1, 1 ) ); if ( Math.abs( m32 ) < 0.9999999 ) { this._y = Math.atan2( - m31, m33 ); this._z = Math.atan2( - m12, m22 ); } else { this._y = 0; this._z = Math.atan2( m21, m11 ); } break; case 'ZYX': this._y = Math.asin( - clamp$1( m31, -1, 1 ) ); if ( Math.abs( m31 ) < 0.9999999 ) { this._x = Math.atan2( m32, m33 ); this._z = Math.atan2( m21, m11 ); } else { this._x = 0; this._z = Math.atan2( - m12, m22 ); } break; case 'YZX': this._z = Math.asin( clamp$1( m21, -1, 1 ) ); if ( Math.abs( m21 ) < 0.9999999 ) { this._x = Math.atan2( - m23, m22 ); this._y = Math.atan2( - m31, m11 ); } else { this._x = 0; this._y = Math.atan2( m13, m33 ); } break; case 'XZY': this._z = Math.asin( - clamp$1( m12, -1, 1 ) ); if ( Math.abs( m12 ) < 0.9999999 ) { this._x = Math.atan2( m32, m22 ); this._y = Math.atan2( m13, m11 ); } else { this._x = Math.atan2( - m23, m33 ); this._y = 0; } break; default: console.warn( 'THREE.Euler: .setFromRotationMatrix() encountered an unknown order: ' + order ); } this._order = order; if ( update === true ) this._onChangeCallback(); return this; } setFromQuaternion( q, order, update ) { _matrix$2.makeRotationFromQuaternion( q ); return this.setFromRotationMatrix( _matrix$2, order, update ); } setFromVector3( v, order = this._order ) { return this.set( v.x, v.y, v.z, order ); } reorder( newOrder ) { // WARNING: this discards revolution information -bhouston _quaternion$3.setFromEuler( this ); return this.setFromQuaternion( _quaternion$3, newOrder ); } equals( euler ) { return ( euler._x === this._x ) && ( euler._y === this._y ) && ( euler._z === this._z ) && ( euler._order === this._order ); } fromArray( array ) { this._x = array[ 0 ]; this._y = array[ 1 ]; this._z = array[ 2 ]; if ( array[ 3 ] !== undefined ) this._order = array[ 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._order; return array; } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} *[ Symbol.iterator ]() { yield this._x; yield this._y; yield this._z; yield this._order; } } Euler.DEFAULT_ORDER = 'XYZ'; class Layers { constructor() { this.mask = 1 | 0; } set( channel ) { this.mask = ( 1 << channel | 0 ) >>> 0; } enable( channel ) { this.mask |= 1 << channel | 0; } enableAll() { this.mask = 0xffffffff | 0; } toggle( channel ) { this.mask ^= 1 << channel | 0; } disable( channel ) { this.mask &= ~ ( 1 << channel | 0 ); } disableAll() { this.mask = 0; } test( layers ) { return ( this.mask & layers.mask ) !== 0; } isEnabled( channel ) { return ( this.mask & ( 1 << channel | 0 ) ) !== 0; } } let _object3DId = 0; const _v1$4 = /*@__PURE__*/ new Vector3(); const _q1 = /*@__PURE__*/ new Quaternion(); const _m1$3 = /*@__PURE__*/ new Matrix4(); const _target$1 = /*@__PURE__*/ new Vector3(); const _position$3 = /*@__PURE__*/ new Vector3(); const _scale$2 = /*@__PURE__*/ new Vector3(); const _quaternion$2 = /*@__PURE__*/ new Quaternion(); const _xAxis = /*@__PURE__*/ new Vector3( 1, 0, 0 ); const _yAxis = /*@__PURE__*/ new Vector3( 0, 1, 0 ); const _zAxis = /*@__PURE__*/ new Vector3( 0, 0, 1 ); const _addedEvent = { type: 'added' }; const _removedEvent = { type: 'removed' }; const _childaddedEvent = { type: 'childadded', child: null }; const _childremovedEvent = { type: 'childremoved', child: null }; class Object3D extends EventDispatcher { constructor() { super(); this.isObject3D = true; Object.defineProperty( this, 'id', { value: _object3DId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Object3D'; this.parent = null; this.children = []; this.up = Object3D.DEFAULT_UP.clone(); const position = new Vector3(); const rotation = new Euler(); const quaternion = new Quaternion(); const scale = new Vector3( 1, 1, 1 ); function onRotationChange() { quaternion.setFromEuler( rotation, false ); } function onQuaternionChange() { rotation.setFromQuaternion( quaternion, undefined, false ); } rotation._onChange( onRotationChange ); quaternion._onChange( onQuaternionChange ); Object.defineProperties( this, { position: { configurable: true, enumerable: true, value: position }, rotation: { configurable: true, enumerable: true, value: rotation }, quaternion: { configurable: true, enumerable: true, value: quaternion }, scale: { configurable: true, enumerable: true, value: scale }, modelViewMatrix: { value: new Matrix4() }, normalMatrix: { value: new Matrix3() } } ); this.matrix = new Matrix4(); this.matrixWorld = new Matrix4(); this.matrixAutoUpdate = Object3D.DEFAULT_MATRIX_AUTO_UPDATE; this.matrixWorldAutoUpdate = Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE; // checked by the renderer this.matrixWorldNeedsUpdate = false; this.layers = new Layers(); this.visible = true; this.castShadow = false; this.receiveShadow = false; this.frustumCulled = true; this.renderOrder = 0; this.animations = []; this.userData = {}; } onBeforeShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} onAfterShadow( /* renderer, object, camera, shadowCamera, geometry, depthMaterial, group */ ) {} onBeforeRender( /* renderer, scene, camera, geometry, material, group */ ) {} onAfterRender( /* renderer, scene, camera, geometry, material, group */ ) {} applyMatrix4( matrix ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); this.matrix.premultiply( matrix ); this.matrix.decompose( this.position, this.quaternion, this.scale ); } applyQuaternion( q ) { this.quaternion.premultiply( q ); return this; } setRotationFromAxisAngle( axis, angle ) { // assumes axis is normalized this.quaternion.setFromAxisAngle( axis, angle ); } setRotationFromEuler( euler ) { this.quaternion.setFromEuler( euler, true ); } setRotationFromMatrix( m ) { // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) this.quaternion.setFromRotationMatrix( m ); } setRotationFromQuaternion( q ) { // assumes q is normalized this.quaternion.copy( q ); } rotateOnAxis( axis, angle ) { // rotate object on axis in object space // axis is assumed to be normalized _q1.setFromAxisAngle( axis, angle ); this.quaternion.multiply( _q1 ); return this; } rotateOnWorldAxis( axis, angle ) { // rotate object on axis in world space // axis is assumed to be normalized // method assumes no rotated parent _q1.setFromAxisAngle( axis, angle ); this.quaternion.premultiply( _q1 ); return this; } rotateX( angle ) { return this.rotateOnAxis( _xAxis, angle ); } rotateY( angle ) { return this.rotateOnAxis( _yAxis, angle ); } rotateZ( angle ) { return this.rotateOnAxis( _zAxis, angle ); } translateOnAxis( axis, distance ) { // translate object by distance along axis in object space // axis is assumed to be normalized _v1$4.copy( axis ).applyQuaternion( this.quaternion ); this.position.add( _v1$4.multiplyScalar( distance ) ); return this; } translateX( distance ) { return this.translateOnAxis( _xAxis, distance ); } translateY( distance ) { return this.translateOnAxis( _yAxis, distance ); } translateZ( distance ) { return this.translateOnAxis( _zAxis, distance ); } localToWorld( vector ) { this.updateWorldMatrix( true, false ); return vector.applyMatrix4( this.matrixWorld ); } worldToLocal( vector ) { this.updateWorldMatrix( true, false ); return vector.applyMatrix4( _m1$3.copy( this.matrixWorld ).invert() ); } lookAt( x, y, z ) { // This method does not support objects having non-uniformly-scaled parent(s) if ( x.isVector3 ) { _target$1.copy( x ); } else { _target$1.set( x, y, z ); } const parent = this.parent; this.updateWorldMatrix( true, false ); _position$3.setFromMatrixPosition( this.matrixWorld ); if ( this.isCamera || this.isLight ) { _m1$3.lookAt( _position$3, _target$1, this.up ); } else { _m1$3.lookAt( _target$1, _position$3, this.up ); } this.quaternion.setFromRotationMatrix( _m1$3 ); if ( parent ) { _m1$3.extractRotation( parent.matrixWorld ); _q1.setFromRotationMatrix( _m1$3 ); this.quaternion.premultiply( _q1.invert() ); } } add( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.add( arguments[ i ] ); } return this; } if ( object === this ) { console.error( 'THREE.Object3D.add: object can\'t be added as a child of itself.', object ); return this; } if ( object && object.isObject3D ) { object.removeFromParent(); object.parent = this; this.children.push( object ); object.dispatchEvent( _addedEvent ); _childaddedEvent.child = object; this.dispatchEvent( _childaddedEvent ); _childaddedEvent.child = null; } else { console.error( 'THREE.Object3D.add: object not an instance of THREE.Object3D.', object ); } return this; } remove( object ) { if ( arguments.length > 1 ) { for ( let i = 0; i < arguments.length; i ++ ) { this.remove( arguments[ i ] ); } return this; } const index = this.children.indexOf( object ); if ( index !== -1 ) { object.parent = null; this.children.splice( index, 1 ); object.dispatchEvent( _removedEvent ); _childremovedEvent.child = object; this.dispatchEvent( _childremovedEvent ); _childremovedEvent.child = null; } return this; } removeFromParent() { const parent = this.parent; if ( parent !== null ) { parent.remove( this ); } return this; } clear() { return this.remove( ... this.children ); } attach( object ) { // adds object as a child of this, while maintaining the object's world transform // Note: This method does not support scene graphs having non-uniformly-scaled nodes(s) this.updateWorldMatrix( true, false ); _m1$3.copy( this.matrixWorld ).invert(); if ( object.parent !== null ) { object.parent.updateWorldMatrix( true, false ); _m1$3.multiply( object.parent.matrixWorld ); } object.applyMatrix4( _m1$3 ); object.removeFromParent(); object.parent = this; this.children.push( object ); object.updateWorldMatrix( false, true ); object.dispatchEvent( _addedEvent ); _childaddedEvent.child = object; this.dispatchEvent( _childaddedEvent ); _childaddedEvent.child = null; return this; } getObjectById( id ) { return this.getObjectByProperty( 'id', id ); } getObjectByName( name ) { return this.getObjectByProperty( 'name', name ); } getObjectByProperty( name, value ) { if ( this[ name ] === value ) return this; for ( let i = 0, l = this.children.length; i < l; i ++ ) { const child = this.children[ i ]; const object = child.getObjectByProperty( name, value ); if ( object !== undefined ) { return object; } } return undefined; } getObjectsByProperty( name, value, result = [] ) { if ( this[ name ] === value ) result.push( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].getObjectsByProperty( name, value, result ); } return result; } getWorldPosition( target ) { this.updateWorldMatrix( true, false ); return target.setFromMatrixPosition( this.matrixWorld ); } getWorldQuaternion( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, target, _scale$2 ); return target; } getWorldScale( target ) { this.updateWorldMatrix( true, false ); this.matrixWorld.decompose( _position$3, _quaternion$2, target ); return target; } getWorldDirection( target ) { this.updateWorldMatrix( true, false ); const e = this.matrixWorld.elements; return target.set( e[ 8 ], e[ 9 ], e[ 10 ] ).normalize(); } raycast( /* raycaster, intersects */ ) {} traverse( callback ) { callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverse( callback ); } } traverseVisible( callback ) { if ( this.visible === false ) return; callback( this ); const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { children[ i ].traverseVisible( callback ); } } traverseAncestors( callback ) { const parent = this.parent; if ( parent !== null ) { callback( parent ); parent.traverseAncestors( callback ); } } updateMatrix() { this.matrix.compose( this.position, this.quaternion, this.scale ); this.matrixWorldNeedsUpdate = true; } updateMatrixWorld( force ) { if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.matrixWorldNeedsUpdate || force ) { if ( this.matrixWorldAutoUpdate === true ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } } this.matrixWorldNeedsUpdate = false; force = true; } // make sure descendants are updated if required const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { const child = children[ i ]; child.updateMatrixWorld( force ); } } updateWorldMatrix( updateParents, updateChildren ) { const parent = this.parent; if ( updateParents === true && parent !== null ) { parent.updateWorldMatrix( true, false ); } if ( this.matrixAutoUpdate ) this.updateMatrix(); if ( this.matrixWorldAutoUpdate === true ) { if ( this.parent === null ) { this.matrixWorld.copy( this.matrix ); } else { this.matrixWorld.multiplyMatrices( this.parent.matrixWorld, this.matrix ); } } // make sure descendants are updated if ( updateChildren === true ) { const children = this.children; for ( let i = 0, l = children.length; i < l; i ++ ) { const child = children[ i ]; child.updateWorldMatrix( false, true ); } } } toJSON( meta ) { // meta is a string when called from JSON.stringify const isRootObject = ( meta === undefined || typeof meta === 'string' ); const output = {}; // meta is a hash used to collect geometries, materials. // not providing it implies that this is the root object // being serialized. if ( isRootObject ) { // initialize meta obj meta = { geometries: {}, materials: {}, textures: {}, images: {}, shapes: {}, skeletons: {}, animations: {}, nodes: {} }; output.metadata = { version: 4.6, type: 'Object', generator: 'Object3D.toJSON' }; } // standard Object3D serialization const object = {}; object.uuid = this.uuid; object.type = this.type; if ( this.name !== '' ) object.name = this.name; if ( this.castShadow === true ) object.castShadow = true; if ( this.receiveShadow === true ) object.receiveShadow = true; if ( this.visible === false ) object.visible = false; if ( this.frustumCulled === false ) object.frustumCulled = false; if ( this.renderOrder !== 0 ) object.renderOrder = this.renderOrder; if ( Object.keys( this.userData ).length > 0 ) object.userData = this.userData; object.layers = this.layers.mask; object.matrix = this.matrix.toArray(); object.up = this.up.toArray(); if ( this.matrixAutoUpdate === false ) object.matrixAutoUpdate = false; // object specific properties if ( this.isInstancedMesh ) { object.type = 'InstancedMesh'; object.count = this.count; object.instanceMatrix = this.instanceMatrix.toJSON(); if ( this.instanceColor !== null ) object.instanceColor = this.instanceColor.toJSON(); } if ( this.isBatchedMesh ) { object.type = 'BatchedMesh'; object.perObjectFrustumCulled = this.perObjectFrustumCulled; object.sortObjects = this.sortObjects; object.drawRanges = this._drawRanges; object.reservedRanges = this._reservedRanges; object.visibility = this._visibility; object.active = this._active; object.bounds = this._bounds.map( bound => ( { boxInitialized: bound.boxInitialized, boxMin: bound.box.min.toArray(), boxMax: bound.box.max.toArray(), sphereInitialized: bound.sphereInitialized, sphereRadius: bound.sphere.radius, sphereCenter: bound.sphere.center.toArray() } ) ); object.maxInstanceCount = this._maxInstanceCount; object.maxVertexCount = this._maxVertexCount; object.maxIndexCount = this._maxIndexCount; object.geometryInitialized = this._geometryInitialized; object.geometryCount = this._geometryCount; object.matricesTexture = this._matricesTexture.toJSON( meta ); if ( this._colorsTexture !== null ) object.colorsTexture = this._colorsTexture.toJSON( meta ); if ( this.boundingSphere !== null ) { object.boundingSphere = { center: object.boundingSphere.center.toArray(), radius: object.boundingSphere.radius }; } if ( this.boundingBox !== null ) { object.boundingBox = { min: object.boundingBox.min.toArray(), max: object.boundingBox.max.toArray() }; } } // function serialize( library, element ) { if ( library[ element.uuid ] === undefined ) { library[ element.uuid ] = element.toJSON( meta ); } return element.uuid; } if ( this.isScene ) { if ( this.background ) { if ( this.background.isColor ) { object.background = this.background.toJSON(); } else if ( this.background.isTexture ) { object.background = this.background.toJSON( meta ).uuid; } } if ( this.environment && this.environment.isTexture && this.environment.isRenderTargetTexture !== true ) { object.environment = this.environment.toJSON( meta ).uuid; } } else if ( this.isMesh || this.isLine || this.isPoints ) { object.geometry = serialize( meta.geometries, this.geometry ); const parameters = this.geometry.parameters; if ( parameters !== undefined && parameters.shapes !== undefined ) { const shapes = parameters.shapes; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; serialize( meta.shapes, shape ); } } else { serialize( meta.shapes, shapes ); } } } if ( this.isSkinnedMesh ) { object.bindMode = this.bindMode; object.bindMatrix = this.bindMatrix.toArray(); if ( this.skeleton !== undefined ) { serialize( meta.skeletons, this.skeleton ); object.skeleton = this.skeleton.uuid; } } if ( this.material !== undefined ) { if ( Array.isArray( this.material ) ) { const uuids = []; for ( let i = 0, l = this.material.length; i < l; i ++ ) { uuids.push( serialize( meta.materials, this.material[ i ] ) ); } object.material = uuids; } else { object.material = serialize( meta.materials, this.material ); } } // if ( this.children.length > 0 ) { object.children = []; for ( let i = 0; i < this.children.length; i ++ ) { object.children.push( this.children[ i ].toJSON( meta ).object ); } } // if ( this.animations.length > 0 ) { object.animations = []; for ( let i = 0; i < this.animations.length; i ++ ) { const animation = this.animations[ i ]; object.animations.push( serialize( meta.animations, animation ) ); } } if ( isRootObject ) { const geometries = extractFromCache( meta.geometries ); const materials = extractFromCache( meta.materials ); const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); const shapes = extractFromCache( meta.shapes ); const skeletons = extractFromCache( meta.skeletons ); const animations = extractFromCache( meta.animations ); const nodes = extractFromCache( meta.nodes ); if ( geometries.length > 0 ) output.geometries = geometries; if ( materials.length > 0 ) output.materials = materials; if ( textures.length > 0 ) output.textures = textures; if ( images.length > 0 ) output.images = images; if ( shapes.length > 0 ) output.shapes = shapes; if ( skeletons.length > 0 ) output.skeletons = skeletons; if ( animations.length > 0 ) output.animations = animations; if ( nodes.length > 0 ) output.nodes = nodes; } output.object = object; return output; // extract data from the cache hash // remove metadata on each item // and return as array function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } } clone( recursive ) { return new this.constructor().copy( this, recursive ); } copy( source, recursive = true ) { this.name = source.name; this.up.copy( source.up ); this.position.copy( source.position ); this.rotation.order = source.rotation.order; this.quaternion.copy( source.quaternion ); this.scale.copy( source.scale ); this.matrix.copy( source.matrix ); this.matrixWorld.copy( source.matrixWorld ); this.matrixAutoUpdate = source.matrixAutoUpdate; this.matrixWorldAutoUpdate = source.matrixWorldAutoUpdate; this.matrixWorldNeedsUpdate = source.matrixWorldNeedsUpdate; this.layers.mask = source.layers.mask; this.visible = source.visible; this.castShadow = source.castShadow; this.receiveShadow = source.receiveShadow; this.frustumCulled = source.frustumCulled; this.renderOrder = source.renderOrder; this.animations = source.animations.slice(); this.userData = JSON.parse( JSON.stringify( source.userData ) ); if ( recursive === true ) { for ( let i = 0; i < source.children.length; i ++ ) { const child = source.children[ i ]; this.add( child.clone() ); } } return this; } } Object3D.DEFAULT_UP = /*@__PURE__*/ new Vector3( 0, 1, 0 ); Object3D.DEFAULT_MATRIX_AUTO_UPDATE = true; Object3D.DEFAULT_MATRIX_WORLD_AUTO_UPDATE = true; const _v0$2 = /*@__PURE__*/ new Vector3(); const _v1$3 = /*@__PURE__*/ new Vector3(); const _v2$2 = /*@__PURE__*/ new Vector3(); const _v3$2 = /*@__PURE__*/ new Vector3(); const _vab = /*@__PURE__*/ new Vector3(); const _vac = /*@__PURE__*/ new Vector3(); const _vbc = /*@__PURE__*/ new Vector3(); const _vap = /*@__PURE__*/ new Vector3(); const _vbp = /*@__PURE__*/ new Vector3(); const _vcp = /*@__PURE__*/ new Vector3(); const _v40 = /*@__PURE__*/ new Vector4(); const _v41 = /*@__PURE__*/ new Vector4(); const _v42 = /*@__PURE__*/ new Vector4(); class Triangle { constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) { this.a = a; this.b = b; this.c = c; } static getNormal( a, b, c, target ) { target.subVectors( c, b ); _v0$2.subVectors( a, b ); target.cross( _v0$2 ); const targetLengthSq = target.lengthSq(); if ( targetLengthSq > 0 ) { return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); } return target.set( 0, 0, 0 ); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord( point, a, b, c, target ) { _v0$2.subVectors( c, a ); _v1$3.subVectors( b, a ); _v2$2.subVectors( point, a ); const dot00 = _v0$2.dot( _v0$2 ); const dot01 = _v0$2.dot( _v1$3 ); const dot02 = _v0$2.dot( _v2$2 ); const dot11 = _v1$3.dot( _v1$3 ); const dot12 = _v1$3.dot( _v2$2 ); const denom = ( dot00 * dot11 - dot01 * dot01 ); // collinear or singular triangle if ( denom === 0 ) { target.set( 0, 0, 0 ); return null; } const invDenom = 1 / denom; const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return target.set( 1 - u - v, v, u ); } static containsPoint( point, a, b, c ) { // if the triangle is degenerate then we can't contain a point if ( this.getBarycoord( point, a, b, c, _v3$2 ) === null ) { return false; } return ( _v3$2.x >= 0 ) && ( _v3$2.y >= 0 ) && ( ( _v3$2.x + _v3$2.y ) <= 1 ); } static getInterpolation( point, p1, p2, p3, v1, v2, v3, target ) { if ( this.getBarycoord( point, p1, p2, p3, _v3$2 ) === null ) { target.x = 0; target.y = 0; if ( 'z' in target ) target.z = 0; if ( 'w' in target ) target.w = 0; return null; } target.setScalar( 0 ); target.addScaledVector( v1, _v3$2.x ); target.addScaledVector( v2, _v3$2.y ); target.addScaledVector( v3, _v3$2.z ); return target; } static getInterpolatedAttribute( attr, i1, i2, i3, barycoord, target ) { _v40.setScalar( 0 ); _v41.setScalar( 0 ); _v42.setScalar( 0 ); _v40.fromBufferAttribute( attr, i1 ); _v41.fromBufferAttribute( attr, i2 ); _v42.fromBufferAttribute( attr, i3 ); target.setScalar( 0 ); target.addScaledVector( _v40, barycoord.x ); target.addScaledVector( _v41, barycoord.y ); target.addScaledVector( _v42, barycoord.z ); return target; } static isFrontFacing( a, b, c, direction ) { _v0$2.subVectors( c, b ); _v1$3.subVectors( a, b ); // strictly front facing return ( _v0$2.cross( _v1$3 ).dot( direction ) < 0 ) ? true : false; } set( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; } setFromPointsAndIndices( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; } setFromAttributeAndIndices( attribute, i0, i1, i2 ) { this.a.fromBufferAttribute( attribute, i0 ); this.b.fromBufferAttribute( attribute, i1 ); this.c.fromBufferAttribute( attribute, i2 ); return this; } clone() { return new this.constructor().copy( this ); } copy( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; } getArea() { _v0$2.subVectors( this.c, this.b ); _v1$3.subVectors( this.a, this.b ); return _v0$2.cross( _v1$3 ).length() * 0.5; } getMidpoint( target ) { return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); } getNormal( target ) { return Triangle.getNormal( this.a, this.b, this.c, target ); } getPlane( target ) { return target.setFromCoplanarPoints( this.a, this.b, this.c ); } getBarycoord( point, target ) { return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); } getInterpolation( point, v1, v2, v3, target ) { return Triangle.getInterpolation( point, this.a, this.b, this.c, v1, v2, v3, target ); } containsPoint( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); } isFrontFacing( direction ) { return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); } intersectsBox( box ) { return box.intersectsTriangle( this ); } closestPointToPoint( p, target ) { const a = this.a, b = this.b, c = this.c; let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors( b, a ); _vac.subVectors( c, a ); _vap.subVectors( p, a ); const d1 = _vab.dot( _vap ); const d2 = _vac.dot( _vap ); if ( d1 <= 0 && d2 <= 0 ) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy( a ); } _vbp.subVectors( p, b ); const d3 = _vab.dot( _vbp ); const d4 = _vac.dot( _vbp ); if ( d3 >= 0 && d4 <= d3 ) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy( b ); } const vc = d1 * d4 - d3 * d2; if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { v = d1 / ( d1 - d3 ); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy( a ).addScaledVector( _vab, v ); } _vcp.subVectors( p, c ); const d5 = _vab.dot( _vcp ); const d6 = _vac.dot( _vcp ); if ( d6 >= 0 && d5 <= d6 ) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy( c ); } const vb = d5 * d2 - d1 * d6; if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { w = d2 / ( d2 - d6 ); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy( a ).addScaledVector( _vac, w ); } const va = d3 * d6 - d5 * d4; if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { _vbc.subVectors( c, b ); w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC } // face region const denom = 1 / ( va + vb + vc ); // u = va * denom v = vb * denom; w = vc * denom; return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); } equals( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } } const _colorKeywords = { 'aliceblue': 0xF0F8FF, 'antiquewhite': 0xFAEBD7, 'aqua': 0x00FFFF, 'aquamarine': 0x7FFFD4, 'azure': 0xF0FFFF, 'beige': 0xF5F5DC, 'bisque': 0xFFE4C4, 'black': 0x000000, 'blanchedalmond': 0xFFEBCD, 'blue': 0x0000FF, 'blueviolet': 0x8A2BE2, 'brown': 0xA52A2A, 'burlywood': 0xDEB887, 'cadetblue': 0x5F9EA0, 'chartreuse': 0x7FFF00, 'chocolate': 0xD2691E, 'coral': 0xFF7F50, 'cornflowerblue': 0x6495ED, 'cornsilk': 0xFFF8DC, 'crimson': 0xDC143C, 'cyan': 0x00FFFF, 'darkblue': 0x00008B, 'darkcyan': 0x008B8B, 'darkgoldenrod': 0xB8860B, 'darkgray': 0xA9A9A9, 'darkgreen': 0x006400, 'darkgrey': 0xA9A9A9, 'darkkhaki': 0xBDB76B, 'darkmagenta': 0x8B008B, 'darkolivegreen': 0x556B2F, 'darkorange': 0xFF8C00, 'darkorchid': 0x9932CC, 'darkred': 0x8B0000, 'darksalmon': 0xE9967A, 'darkseagreen': 0x8FBC8F, 'darkslateblue': 0x483D8B, 'darkslategray': 0x2F4F4F, 'darkslategrey': 0x2F4F4F, 'darkturquoise': 0x00CED1, 'darkviolet': 0x9400D3, 'deeppink': 0xFF1493, 'deepskyblue': 0x00BFFF, 'dimgray': 0x696969, 'dimgrey': 0x696969, 'dodgerblue': 0x1E90FF, 'firebrick': 0xB22222, 'floralwhite': 0xFFFAF0, 'forestgreen': 0x228B22, 'fuchsia': 0xFF00FF, 'gainsboro': 0xDCDCDC, 'ghostwhite': 0xF8F8FF, 'gold': 0xFFD700, 'goldenrod': 0xDAA520, 'gray': 0x808080, 'green': 0x008000, 'greenyellow': 0xADFF2F, 'grey': 0x808080, 'honeydew': 0xF0FFF0, 'hotpink': 0xFF69B4, 'indianred': 0xCD5C5C, 'indigo': 0x4B0082, 'ivory': 0xFFFFF0, 'khaki': 0xF0E68C, 'lavender': 0xE6E6FA, 'lavenderblush': 0xFFF0F5, 'lawngreen': 0x7CFC00, 'lemonchiffon': 0xFFFACD, 'lightblue': 0xADD8E6, 'lightcoral': 0xF08080, 'lightcyan': 0xE0FFFF, 'lightgoldenrodyellow': 0xFAFAD2, 'lightgray': 0xD3D3D3, 'lightgreen': 0x90EE90, 'lightgrey': 0xD3D3D3, 'lightpink': 0xFFB6C1, 'lightsalmon': 0xFFA07A, 'lightseagreen': 0x20B2AA, 'lightskyblue': 0x87CEFA, 'lightslategray': 0x778899, 'lightslategrey': 0x778899, 'lightsteelblue': 0xB0C4DE, 'lightyellow': 0xFFFFE0, 'lime': 0x00FF00, 'limegreen': 0x32CD32, 'linen': 0xFAF0E6, 'magenta': 0xFF00FF, 'maroon': 0x800000, 'mediumaquamarine': 0x66CDAA, 'mediumblue': 0x0000CD, 'mediumorchid': 0xBA55D3, 'mediumpurple': 0x9370DB, 'mediumseagreen': 0x3CB371, 'mediumslateblue': 0x7B68EE, 'mediumspringgreen': 0x00FA9A, 'mediumturquoise': 0x48D1CC, 'mediumvioletred': 0xC71585, 'midnightblue': 0x191970, 'mintcream': 0xF5FFFA, 'mistyrose': 0xFFE4E1, 'moccasin': 0xFFE4B5, 'navajowhite': 0xFFDEAD, 'navy': 0x000080, 'oldlace': 0xFDF5E6, 'olive': 0x808000, 'olivedrab': 0x6B8E23, 'orange': 0xFFA500, 'orangered': 0xFF4500, 'orchid': 0xDA70D6, 'palegoldenrod': 0xEEE8AA, 'palegreen': 0x98FB98, 'paleturquoise': 0xAFEEEE, 'palevioletred': 0xDB7093, 'papayawhip': 0xFFEFD5, 'peachpuff': 0xFFDAB9, 'peru': 0xCD853F, 'pink': 0xFFC0CB, 'plum': 0xDDA0DD, 'powderblue': 0xB0E0E6, 'purple': 0x800080, 'rebeccapurple': 0x663399, 'red': 0xFF0000, 'rosybrown': 0xBC8F8F, 'royalblue': 0x4169E1, 'saddlebrown': 0x8B4513, 'salmon': 0xFA8072, 'sandybrown': 0xF4A460, 'seagreen': 0x2E8B57, 'seashell': 0xFFF5EE, 'sienna': 0xA0522D, 'silver': 0xC0C0C0, 'skyblue': 0x87CEEB, 'slateblue': 0x6A5ACD, 'slategray': 0x708090, 'slategrey': 0x708090, 'snow': 0xFFFAFA, 'springgreen': 0x00FF7F, 'steelblue': 0x4682B4, 'tan': 0xD2B48C, 'teal': 0x008080, 'thistle': 0xD8BFD8, 'tomato': 0xFF6347, 'turquoise': 0x40E0D0, 'violet': 0xEE82EE, 'wheat': 0xF5DEB3, 'white': 0xFFFFFF, 'whitesmoke': 0xF5F5F5, 'yellow': 0xFFFF00, 'yellowgreen': 0x9ACD32 }; const _hslA = { h: 0, s: 0, l: 0 }; const _hslB = { h: 0, s: 0, l: 0 }; function hue2rgb( p, q, t ) { if ( t < 0 ) t += 1; if ( t > 1 ) t -= 1; if ( t < 1 / 6 ) return p + ( q - p ) * 6 * t; if ( t < 1 / 2 ) return q; if ( t < 2 / 3 ) return p + ( q - p ) * 6 * ( 2 / 3 - t ); return p; } class Color { constructor( r, g, b ) { this.isColor = true; this.r = 1; this.g = 1; this.b = 1; return this.set( r, g, b ); } set( r, g, b ) { if ( g === undefined && b === undefined ) { // r is THREE.Color, hex or string const value = r; if ( value && value.isColor ) { this.copy( value ); } else if ( typeof value === 'number' ) { this.setHex( value ); } else if ( typeof value === 'string' ) { this.setStyle( value ); } } else { this.setRGB( r, g, b ); } return this; } setScalar( scalar ) { this.r = scalar; this.g = scalar; this.b = scalar; return this; } setHex( hex, colorSpace = SRGBColorSpace ) { hex = Math.floor( hex ); this.r = ( hex >> 16 & 255 ) / 255; this.g = ( hex >> 8 & 255 ) / 255; this.b = ( hex & 255 ) / 255; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setRGB( r, g, b, colorSpace = ColorManagement.workingColorSpace ) { this.r = r; this.g = g; this.b = b; ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setHSL( h, s, l, colorSpace = ColorManagement.workingColorSpace ) { // h,s,l ranges are in 0.0 - 1.0 h = euclideanModulo( h, 1 ); s = clamp$1( s, 0, 1 ); l = clamp$1( l, 0, 1 ); if ( s === 0 ) { this.r = this.g = this.b = l; } else { const p = l <= 0.5 ? l * ( 1 + s ) : l + s - ( l * s ); const q = ( 2 * l ) - p; this.r = hue2rgb( q, p, h + 1 / 3 ); this.g = hue2rgb( q, p, h ); this.b = hue2rgb( q, p, h - 1 / 3 ); } ColorManagement.toWorkingColorSpace( this, colorSpace ); return this; } setStyle( style, colorSpace = SRGBColorSpace ) { function handleAlpha( string ) { if ( string === undefined ) return; if ( parseFloat( string ) < 1 ) { console.warn( 'THREE.Color: Alpha component of ' + style + ' will be ignored.' ); } } let m; if ( m = /^(\w+)\(([^\)]*)\)/.exec( style ) ) { // rgb / hsl let color; const name = m[ 1 ]; const components = m[ 2 ]; switch ( name ) { case 'rgb': case 'rgba': if ( color = /^\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(255,0,0) rgba(255,0,0,0.5) handleAlpha( color[ 4 ] ); return this.setRGB( Math.min( 255, parseInt( color[ 1 ], 10 ) ) / 255, Math.min( 255, parseInt( color[ 2 ], 10 ) ) / 255, Math.min( 255, parseInt( color[ 3 ], 10 ) ) / 255, colorSpace ); } if ( color = /^\s*(\d+)\%\s*,\s*(\d+)\%\s*,\s*(\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // rgb(100%,0%,0%) rgba(100%,0%,0%,0.5) handleAlpha( color[ 4 ] ); return this.setRGB( Math.min( 100, parseInt( color[ 1 ], 10 ) ) / 100, Math.min( 100, parseInt( color[ 2 ], 10 ) ) / 100, Math.min( 100, parseInt( color[ 3 ], 10 ) ) / 100, colorSpace ); } break; case 'hsl': case 'hsla': if ( color = /^\s*(\d*\.?\d+)\s*,\s*(\d*\.?\d+)\%\s*,\s*(\d*\.?\d+)\%\s*(?:,\s*(\d*\.?\d+)\s*)?$/.exec( components ) ) { // hsl(120,50%,50%) hsla(120,50%,50%,0.5) handleAlpha( color[ 4 ] ); return this.setHSL( parseFloat( color[ 1 ] ) / 360, parseFloat( color[ 2 ] ) / 100, parseFloat( color[ 3 ] ) / 100, colorSpace ); } break; default: console.warn( 'THREE.Color: Unknown color model ' + style ); } } else if ( m = /^\#([A-Fa-f\d]+)$/.exec( style ) ) { // hex color const hex = m[ 1 ]; const size = hex.length; if ( size === 3 ) { // #ff0 return this.setRGB( parseInt( hex.charAt( 0 ), 16 ) / 15, parseInt( hex.charAt( 1 ), 16 ) / 15, parseInt( hex.charAt( 2 ), 16 ) / 15, colorSpace ); } else if ( size === 6 ) { // #ff0000 return this.setHex( parseInt( hex, 16 ), colorSpace ); } else { console.warn( 'THREE.Color: Invalid hex color ' + style ); } } else if ( style && style.length > 0 ) { return this.setColorName( style, colorSpace ); } return this; } setColorName( style, colorSpace = SRGBColorSpace ) { // color keywords const hex = _colorKeywords[ style.toLowerCase() ]; if ( hex !== undefined ) { // red this.setHex( hex, colorSpace ); } else { // unknown color console.warn( 'THREE.Color: Unknown color ' + style ); } return this; } clone() { return new this.constructor( this.r, this.g, this.b ); } copy( color ) { this.r = color.r; this.g = color.g; this.b = color.b; return this; } copySRGBToLinear( color ) { this.r = SRGBToLinear( color.r ); this.g = SRGBToLinear( color.g ); this.b = SRGBToLinear( color.b ); return this; } copyLinearToSRGB( color ) { this.r = LinearToSRGB( color.r ); this.g = LinearToSRGB( color.g ); this.b = LinearToSRGB( color.b ); return this; } convertSRGBToLinear() { this.copySRGBToLinear( this ); return this; } convertLinearToSRGB() { this.copyLinearToSRGB( this ); return this; } getHex( colorSpace = SRGBColorSpace ) { ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); return Math.round( clamp$1( _color.r * 255, 0, 255 ) ) * 65536 + Math.round( clamp$1( _color.g * 255, 0, 255 ) ) * 256 + Math.round( clamp$1( _color.b * 255, 0, 255 ) ); } getHexString( colorSpace = SRGBColorSpace ) { return ( '000000' + this.getHex( colorSpace ).toString( 16 ) ).slice( -6 ); } getHSL( target, colorSpace = ColorManagement.workingColorSpace ) { // h,s,l ranges are in 0.0 - 1.0 ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); const r = _color.r, g = _color.g, b = _color.b; const max = Math.max( r, g, b ); const min = Math.min( r, g, b ); let hue, saturation; const lightness = ( min + max ) / 2.0; if ( min === max ) { hue = 0; saturation = 0; } else { const delta = max - min; saturation = lightness <= 0.5 ? delta / ( max + min ) : delta / ( 2 - max - min ); switch ( max ) { case r: hue = ( g - b ) / delta + ( g < b ? 6 : 0 ); break; case g: hue = ( b - r ) / delta + 2; break; case b: hue = ( r - g ) / delta + 4; break; } hue /= 6; } target.h = hue; target.s = saturation; target.l = lightness; return target; } getRGB( target, colorSpace = ColorManagement.workingColorSpace ) { ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); target.r = _color.r; target.g = _color.g; target.b = _color.b; return target; } getStyle( colorSpace = SRGBColorSpace ) { ColorManagement.fromWorkingColorSpace( _color.copy( this ), colorSpace ); const r = _color.r, g = _color.g, b = _color.b; if ( colorSpace !== SRGBColorSpace ) { // Requires CSS Color Module Level 4 (https://www.w3.org/TR/css-color-4/). return `color(${ colorSpace } ${ r.toFixed( 3 ) } ${ g.toFixed( 3 ) } ${ b.toFixed( 3 ) })`; } return `rgb(${ Math.round( r * 255 ) },${ Math.round( g * 255 ) },${ Math.round( b * 255 ) })`; } offsetHSL( h, s, l ) { this.getHSL( _hslA ); return this.setHSL( _hslA.h + h, _hslA.s + s, _hslA.l + l ); } add( color ) { this.r += color.r; this.g += color.g; this.b += color.b; return this; } addColors( color1, color2 ) { this.r = color1.r + color2.r; this.g = color1.g + color2.g; this.b = color1.b + color2.b; return this; } addScalar( s ) { this.r += s; this.g += s; this.b += s; return this; } sub( color ) { this.r = Math.max( 0, this.r - color.r ); this.g = Math.max( 0, this.g - color.g ); this.b = Math.max( 0, this.b - color.b ); return this; } multiply( color ) { this.r *= color.r; this.g *= color.g; this.b *= color.b; return this; } multiplyScalar( s ) { this.r *= s; this.g *= s; this.b *= s; return this; } lerp( color, alpha ) { this.r += ( color.r - this.r ) * alpha; this.g += ( color.g - this.g ) * alpha; this.b += ( color.b - this.b ) * alpha; return this; } lerpColors( color1, color2, alpha ) { this.r = color1.r + ( color2.r - color1.r ) * alpha; this.g = color1.g + ( color2.g - color1.g ) * alpha; this.b = color1.b + ( color2.b - color1.b ) * alpha; return this; } lerpHSL( color, alpha ) { this.getHSL( _hslA ); color.getHSL( _hslB ); const h = lerp( _hslA.h, _hslB.h, alpha ); const s = lerp( _hslA.s, _hslB.s, alpha ); const l = lerp( _hslA.l, _hslB.l, alpha ); this.setHSL( h, s, l ); return this; } setFromVector3( v ) { this.r = v.x; this.g = v.y; this.b = v.z; return this; } applyMatrix3( m ) { const r = this.r, g = this.g, b = this.b; const e = m.elements; this.r = e[ 0 ] * r + e[ 3 ] * g + e[ 6 ] * b; this.g = e[ 1 ] * r + e[ 4 ] * g + e[ 7 ] * b; this.b = e[ 2 ] * r + e[ 5 ] * g + e[ 8 ] * b; return this; } equals( c ) { return ( c.r === this.r ) && ( c.g === this.g ) && ( c.b === this.b ); } fromArray( array, offset = 0 ) { this.r = array[ offset ]; this.g = array[ offset + 1 ]; this.b = array[ offset + 2 ]; return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this.r; array[ offset + 1 ] = this.g; array[ offset + 2 ] = this.b; return array; } fromBufferAttribute( attribute, index ) { this.r = attribute.getX( index ); this.g = attribute.getY( index ); this.b = attribute.getZ( index ); return this; } toJSON() { return this.getHex(); } *[ Symbol.iterator ]() { yield this.r; yield this.g; yield this.b; } } const _color = /*@__PURE__*/ new Color(); Color.NAMES = _colorKeywords; let _materialId = 0; class Material extends EventDispatcher { constructor() { super(); this.isMaterial = true; Object.defineProperty( this, 'id', { value: _materialId ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'Material'; this.blending = NormalBlending; this.side = FrontSide; this.vertexColors = false; this.opacity = 1; this.transparent = false; this.alphaHash = false; this.blendSrc = SrcAlphaFactor; this.blendDst = OneMinusSrcAlphaFactor; this.blendEquation = AddEquation; this.blendSrcAlpha = null; this.blendDstAlpha = null; this.blendEquationAlpha = null; this.blendColor = new Color( 0, 0, 0 ); this.blendAlpha = 0; this.depthFunc = LessEqualDepth; this.depthTest = true; this.depthWrite = true; this.stencilWriteMask = 0xff; this.stencilFunc = AlwaysStencilFunc; this.stencilRef = 0; this.stencilFuncMask = 0xff; this.stencilFail = KeepStencilOp; this.stencilZFail = KeepStencilOp; this.stencilZPass = KeepStencilOp; this.stencilWrite = false; this.clippingPlanes = null; this.clipIntersection = false; this.clipShadows = false; this.shadowSide = null; this.colorWrite = true; this.precision = null; // override the renderer's default precision for this material this.polygonOffset = false; this.polygonOffsetFactor = 0; this.polygonOffsetUnits = 0; this.dithering = false; this.alphaToCoverage = false; this.premultipliedAlpha = false; this.forceSinglePass = false; this.visible = true; this.toneMapped = true; this.userData = {}; this.version = 0; this._alphaTest = 0; } get alphaTest() { return this._alphaTest; } set alphaTest( value ) { if ( this._alphaTest > 0 !== value > 0 ) { this.version ++; } this._alphaTest = value; } onBuild( /* shaderobject, renderer */ ) {} // onBeforeRender and onBeforeCompile only supported in WebGLRenderer onBeforeRender( /* renderer, scene, camera, geometry, object, group */ ) {} onBeforeCompile( /* shaderobject, renderer */ ) {} customProgramCacheKey() { return this.onBeforeCompile.toString(); } setValues( values ) { if ( values === undefined ) return; for ( const key in values ) { const newValue = values[ key ]; if ( newValue === undefined ) { console.warn( `THREE.Material: parameter '${ key }' has value of undefined.` ); continue; } const currentValue = this[ key ]; if ( currentValue === undefined ) { console.warn( `THREE.Material: '${ key }' is not a property of THREE.${ this.type }.` ); continue; } if ( currentValue && currentValue.isColor ) { currentValue.set( newValue ); } else if ( ( currentValue && currentValue.isVector3 ) && ( newValue && newValue.isVector3 ) ) { currentValue.copy( newValue ); } else { this[ key ] = newValue; } } } toJSON( meta ) { const isRootObject = ( meta === undefined || typeof meta === 'string' ); if ( isRootObject ) { meta = { textures: {}, images: {} }; } const data = { metadata: { version: 4.6, type: 'Material', generator: 'Material.toJSON' } }; // standard Material serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( this.color && this.color.isColor ) data.color = this.color.getHex(); if ( this.roughness !== undefined ) data.roughness = this.roughness; if ( this.metalness !== undefined ) data.metalness = this.metalness; if ( this.sheen !== undefined ) data.sheen = this.sheen; if ( this.sheenColor && this.sheenColor.isColor ) data.sheenColor = this.sheenColor.getHex(); if ( this.sheenRoughness !== undefined ) data.sheenRoughness = this.sheenRoughness; if ( this.emissive && this.emissive.isColor ) data.emissive = this.emissive.getHex(); if ( this.emissiveIntensity !== undefined && this.emissiveIntensity !== 1 ) data.emissiveIntensity = this.emissiveIntensity; if ( this.specular && this.specular.isColor ) data.specular = this.specular.getHex(); if ( this.specularIntensity !== undefined ) data.specularIntensity = this.specularIntensity; if ( this.specularColor && this.specularColor.isColor ) data.specularColor = this.specularColor.getHex(); if ( this.shininess !== undefined ) data.shininess = this.shininess; if ( this.clearcoat !== undefined ) data.clearcoat = this.clearcoat; if ( this.clearcoatRoughness !== undefined ) data.clearcoatRoughness = this.clearcoatRoughness; if ( this.clearcoatMap && this.clearcoatMap.isTexture ) { data.clearcoatMap = this.clearcoatMap.toJSON( meta ).uuid; } if ( this.clearcoatRoughnessMap && this.clearcoatRoughnessMap.isTexture ) { data.clearcoatRoughnessMap = this.clearcoatRoughnessMap.toJSON( meta ).uuid; } if ( this.clearcoatNormalMap && this.clearcoatNormalMap.isTexture ) { data.clearcoatNormalMap = this.clearcoatNormalMap.toJSON( meta ).uuid; data.clearcoatNormalScale = this.clearcoatNormalScale.toArray(); } if ( this.dispersion !== undefined ) data.dispersion = this.dispersion; if ( this.iridescence !== undefined ) data.iridescence = this.iridescence; if ( this.iridescenceIOR !== undefined ) data.iridescenceIOR = this.iridescenceIOR; if ( this.iridescenceThicknessRange !== undefined ) data.iridescenceThicknessRange = this.iridescenceThicknessRange; if ( this.iridescenceMap && this.iridescenceMap.isTexture ) { data.iridescenceMap = this.iridescenceMap.toJSON( meta ).uuid; } if ( this.iridescenceThicknessMap && this.iridescenceThicknessMap.isTexture ) { data.iridescenceThicknessMap = this.iridescenceThicknessMap.toJSON( meta ).uuid; } if ( this.anisotropy !== undefined ) data.anisotropy = this.anisotropy; if ( this.anisotropyRotation !== undefined ) data.anisotropyRotation = this.anisotropyRotation; if ( this.anisotropyMap && this.anisotropyMap.isTexture ) { data.anisotropyMap = this.anisotropyMap.toJSON( meta ).uuid; } if ( this.map && this.map.isTexture ) data.map = this.map.toJSON( meta ).uuid; if ( this.matcap && this.matcap.isTexture ) data.matcap = this.matcap.toJSON( meta ).uuid; if ( this.alphaMap && this.alphaMap.isTexture ) data.alphaMap = this.alphaMap.toJSON( meta ).uuid; if ( this.lightMap && this.lightMap.isTexture ) { data.lightMap = this.lightMap.toJSON( meta ).uuid; data.lightMapIntensity = this.lightMapIntensity; } if ( this.aoMap && this.aoMap.isTexture ) { data.aoMap = this.aoMap.toJSON( meta ).uuid; data.aoMapIntensity = this.aoMapIntensity; } if ( this.bumpMap && this.bumpMap.isTexture ) { data.bumpMap = this.bumpMap.toJSON( meta ).uuid; data.bumpScale = this.bumpScale; } if ( this.normalMap && this.normalMap.isTexture ) { data.normalMap = this.normalMap.toJSON( meta ).uuid; data.normalMapType = this.normalMapType; data.normalScale = this.normalScale.toArray(); } if ( this.displacementMap && this.displacementMap.isTexture ) { data.displacementMap = this.displacementMap.toJSON( meta ).uuid; data.displacementScale = this.displacementScale; data.displacementBias = this.displacementBias; } if ( this.roughnessMap && this.roughnessMap.isTexture ) data.roughnessMap = this.roughnessMap.toJSON( meta ).uuid; if ( this.metalnessMap && this.metalnessMap.isTexture ) data.metalnessMap = this.metalnessMap.toJSON( meta ).uuid; if ( this.emissiveMap && this.emissiveMap.isTexture ) data.emissiveMap = this.emissiveMap.toJSON( meta ).uuid; if ( this.specularMap && this.specularMap.isTexture ) data.specularMap = this.specularMap.toJSON( meta ).uuid; if ( this.specularIntensityMap && this.specularIntensityMap.isTexture ) data.specularIntensityMap = this.specularIntensityMap.toJSON( meta ).uuid; if ( this.specularColorMap && this.specularColorMap.isTexture ) data.specularColorMap = this.specularColorMap.toJSON( meta ).uuid; if ( this.envMap && this.envMap.isTexture ) { data.envMap = this.envMap.toJSON( meta ).uuid; if ( this.combine !== undefined ) data.combine = this.combine; } if ( this.envMapRotation !== undefined ) data.envMapRotation = this.envMapRotation.toArray(); if ( this.envMapIntensity !== undefined ) data.envMapIntensity = this.envMapIntensity; if ( this.reflectivity !== undefined ) data.reflectivity = this.reflectivity; if ( this.refractionRatio !== undefined ) data.refractionRatio = this.refractionRatio; if ( this.gradientMap && this.gradientMap.isTexture ) { data.gradientMap = this.gradientMap.toJSON( meta ).uuid; } if ( this.transmission !== undefined ) data.transmission = this.transmission; if ( this.transmissionMap && this.transmissionMap.isTexture ) data.transmissionMap = this.transmissionMap.toJSON( meta ).uuid; if ( this.thickness !== undefined ) data.thickness = this.thickness; if ( this.thicknessMap && this.thicknessMap.isTexture ) data.thicknessMap = this.thicknessMap.toJSON( meta ).uuid; if ( this.attenuationDistance !== undefined && this.attenuationDistance !== Infinity ) data.attenuationDistance = this.attenuationDistance; if ( this.attenuationColor !== undefined ) data.attenuationColor = this.attenuationColor.getHex(); if ( this.size !== undefined ) data.size = this.size; if ( this.shadowSide !== null ) data.shadowSide = this.shadowSide; if ( this.sizeAttenuation !== undefined ) data.sizeAttenuation = this.sizeAttenuation; if ( this.blending !== NormalBlending ) data.blending = this.blending; if ( this.side !== FrontSide ) data.side = this.side; if ( this.vertexColors === true ) data.vertexColors = true; if ( this.opacity < 1 ) data.opacity = this.opacity; if ( this.transparent === true ) data.transparent = true; if ( this.blendSrc !== SrcAlphaFactor ) data.blendSrc = this.blendSrc; if ( this.blendDst !== OneMinusSrcAlphaFactor ) data.blendDst = this.blendDst; if ( this.blendEquation !== AddEquation ) data.blendEquation = this.blendEquation; if ( this.blendSrcAlpha !== null ) data.blendSrcAlpha = this.blendSrcAlpha; if ( this.blendDstAlpha !== null ) data.blendDstAlpha = this.blendDstAlpha; if ( this.blendEquationAlpha !== null ) data.blendEquationAlpha = this.blendEquationAlpha; if ( this.blendColor && this.blendColor.isColor ) data.blendColor = this.blendColor.getHex(); if ( this.blendAlpha !== 0 ) data.blendAlpha = this.blendAlpha; if ( this.depthFunc !== LessEqualDepth ) data.depthFunc = this.depthFunc; if ( this.depthTest === false ) data.depthTest = this.depthTest; if ( this.depthWrite === false ) data.depthWrite = this.depthWrite; if ( this.colorWrite === false ) data.colorWrite = this.colorWrite; if ( this.stencilWriteMask !== 0xff ) data.stencilWriteMask = this.stencilWriteMask; if ( this.stencilFunc !== AlwaysStencilFunc ) data.stencilFunc = this.stencilFunc; if ( this.stencilRef !== 0 ) data.stencilRef = this.stencilRef; if ( this.stencilFuncMask !== 0xff ) data.stencilFuncMask = this.stencilFuncMask; if ( this.stencilFail !== KeepStencilOp ) data.stencilFail = this.stencilFail; if ( this.stencilZFail !== KeepStencilOp ) data.stencilZFail = this.stencilZFail; if ( this.stencilZPass !== KeepStencilOp ) data.stencilZPass = this.stencilZPass; if ( this.stencilWrite === true ) data.stencilWrite = this.stencilWrite; // rotation (SpriteMaterial) if ( this.rotation !== undefined && this.rotation !== 0 ) data.rotation = this.rotation; if ( this.polygonOffset === true ) data.polygonOffset = true; if ( this.polygonOffsetFactor !== 0 ) data.polygonOffsetFactor = this.polygonOffsetFactor; if ( this.polygonOffsetUnits !== 0 ) data.polygonOffsetUnits = this.polygonOffsetUnits; if ( this.linewidth !== undefined && this.linewidth !== 1 ) data.linewidth = this.linewidth; if ( this.dashSize !== undefined ) data.dashSize = this.dashSize; if ( this.gapSize !== undefined ) data.gapSize = this.gapSize; if ( this.scale !== undefined ) data.scale = this.scale; if ( this.dithering === true ) data.dithering = true; if ( this.alphaTest > 0 ) data.alphaTest = this.alphaTest; if ( this.alphaHash === true ) data.alphaHash = true; if ( this.alphaToCoverage === true ) data.alphaToCoverage = true; if ( this.premultipliedAlpha === true ) data.premultipliedAlpha = true; if ( this.forceSinglePass === true ) data.forceSinglePass = true; if ( this.wireframe === true ) data.wireframe = true; if ( this.wireframeLinewidth > 1 ) data.wireframeLinewidth = this.wireframeLinewidth; if ( this.wireframeLinecap !== 'round' ) data.wireframeLinecap = this.wireframeLinecap; if ( this.wireframeLinejoin !== 'round' ) data.wireframeLinejoin = this.wireframeLinejoin; if ( this.flatShading === true ) data.flatShading = true; if ( this.visible === false ) data.visible = false; if ( this.toneMapped === false ) data.toneMapped = false; if ( this.fog === false ) data.fog = false; if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRootObject ) { const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; } return data; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.name = source.name; this.blending = source.blending; this.side = source.side; this.vertexColors = source.vertexColors; this.opacity = source.opacity; this.transparent = source.transparent; this.blendSrc = source.blendSrc; this.blendDst = source.blendDst; this.blendEquation = source.blendEquation; this.blendSrcAlpha = source.blendSrcAlpha; this.blendDstAlpha = source.blendDstAlpha; this.blendEquationAlpha = source.blendEquationAlpha; this.blendColor.copy( source.blendColor ); this.blendAlpha = source.blendAlpha; this.depthFunc = source.depthFunc; this.depthTest = source.depthTest; this.depthWrite = source.depthWrite; this.stencilWriteMask = source.stencilWriteMask; this.stencilFunc = source.stencilFunc; this.stencilRef = source.stencilRef; this.stencilFuncMask = source.stencilFuncMask; this.stencilFail = source.stencilFail; this.stencilZFail = source.stencilZFail; this.stencilZPass = source.stencilZPass; this.stencilWrite = source.stencilWrite; const srcPlanes = source.clippingPlanes; let dstPlanes = null; if ( srcPlanes !== null ) { const n = srcPlanes.length; dstPlanes = new Array( n ); for ( let i = 0; i !== n; ++ i ) { dstPlanes[ i ] = srcPlanes[ i ].clone(); } } this.clippingPlanes = dstPlanes; this.clipIntersection = source.clipIntersection; this.clipShadows = source.clipShadows; this.shadowSide = source.shadowSide; this.colorWrite = source.colorWrite; this.precision = source.precision; this.polygonOffset = source.polygonOffset; this.polygonOffsetFactor = source.polygonOffsetFactor; this.polygonOffsetUnits = source.polygonOffsetUnits; this.dithering = source.dithering; this.alphaTest = source.alphaTest; this.alphaHash = source.alphaHash; this.alphaToCoverage = source.alphaToCoverage; this.premultipliedAlpha = source.premultipliedAlpha; this.forceSinglePass = source.forceSinglePass; this.visible = source.visible; this.toneMapped = source.toneMapped; this.userData = JSON.parse( JSON.stringify( source.userData ) ); return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } set needsUpdate( value ) { if ( value === true ) this.version ++; } } class MeshBasicMaterial extends Material { constructor( parameters ) { super(); this.isMeshBasicMaterial = true; this.type = 'MeshBasicMaterial'; this.color = new Color( 0xffffff ); // emissive this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy( source.envMapRotation ); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.fog = source.fog; return this; } } // Fast Half Float Conversions, http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf const _tables = /*@__PURE__*/ _generateTables(); function _generateTables() { // float32 to float16 helpers const buffer = new ArrayBuffer( 4 ); const floatView = new Float32Array( buffer ); const uint32View = new Uint32Array( buffer ); const baseTable = new Uint32Array( 512 ); const shiftTable = new Uint32Array( 512 ); for ( let i = 0; i < 256; ++ i ) { const e = i - 127; // very small number (0, -0) if ( e < -27 ) { baseTable[ i ] = 0x0000; baseTable[ i | 0x100 ] = 0x8000; shiftTable[ i ] = 24; shiftTable[ i | 0x100 ] = 24; // small number (denorm) } else if ( e < -14 ) { baseTable[ i ] = 0x0400 >> ( - e - 14 ); baseTable[ i | 0x100 ] = ( 0x0400 >> ( - e - 14 ) ) | 0x8000; shiftTable[ i ] = - e - 1; shiftTable[ i | 0x100 ] = - e - 1; // normal number } else if ( e <= 15 ) { baseTable[ i ] = ( e + 15 ) << 10; baseTable[ i | 0x100 ] = ( ( e + 15 ) << 10 ) | 0x8000; shiftTable[ i ] = 13; shiftTable[ i | 0x100 ] = 13; // large number (Infinity, -Infinity) } else if ( e < 128 ) { baseTable[ i ] = 0x7c00; baseTable[ i | 0x100 ] = 0xfc00; shiftTable[ i ] = 24; shiftTable[ i | 0x100 ] = 24; // stay (NaN, Infinity, -Infinity) } else { baseTable[ i ] = 0x7c00; baseTable[ i | 0x100 ] = 0xfc00; shiftTable[ i ] = 13; shiftTable[ i | 0x100 ] = 13; } } // float16 to float32 helpers const mantissaTable = new Uint32Array( 2048 ); const exponentTable = new Uint32Array( 64 ); const offsetTable = new Uint32Array( 64 ); for ( let i = 1; i < 1024; ++ i ) { let m = i << 13; // zero pad mantissa bits let e = 0; // zero exponent // normalized while ( ( m & 0x00800000 ) === 0 ) { m <<= 1; e -= 0x00800000; // decrement exponent } m &= -8388609; // clear leading 1 bit e += 0x38800000; // adjust bias mantissaTable[ i ] = m | e; } for ( let i = 1024; i < 2048; ++ i ) { mantissaTable[ i ] = 0x38000000 + ( ( i - 1024 ) << 13 ); } for ( let i = 1; i < 31; ++ i ) { exponentTable[ i ] = i << 23; } exponentTable[ 31 ] = 0x47800000; exponentTable[ 32 ] = 0x80000000; for ( let i = 33; i < 63; ++ i ) { exponentTable[ i ] = 0x80000000 + ( ( i - 32 ) << 23 ); } exponentTable[ 63 ] = 0xc7800000; for ( let i = 1; i < 64; ++ i ) { if ( i !== 32 ) { offsetTable[ i ] = 1024; } } return { floatView: floatView, uint32View: uint32View, baseTable: baseTable, shiftTable: shiftTable, mantissaTable: mantissaTable, exponentTable: exponentTable, offsetTable: offsetTable }; } // float32 to float16 function toHalfFloat( val ) { if ( Math.abs( val ) > 65504 ) console.warn( 'THREE.DataUtils.toHalfFloat(): Value out of range.' ); val = clamp$1( val, -65504, 65504 ); _tables.floatView[ 0 ] = val; const f = _tables.uint32View[ 0 ]; const e = ( f >> 23 ) & 0x1ff; return _tables.baseTable[ e ] + ( ( f & 0x007fffff ) >> _tables.shiftTable[ e ] ); } // float16 to float32 function fromHalfFloat( val ) { const m = val >> 10; _tables.uint32View[ 0 ] = _tables.mantissaTable[ _tables.offsetTable[ m ] + ( val & 0x3ff ) ] + _tables.exponentTable[ m ]; return _tables.floatView[ 0 ]; } const DataUtils = { toHalfFloat: toHalfFloat, fromHalfFloat: fromHalfFloat, }; const _vector$9 = /*@__PURE__*/ new Vector3(); const _vector2$1 = /*@__PURE__*/ new Vector2(); class BufferAttribute { constructor( array, itemSize, normalized = false ) { if ( Array.isArray( array ) ) { throw new TypeError( 'THREE.BufferAttribute: array should be a Typed Array.' ); } this.isBufferAttribute = true; this.name = ''; this.array = array; this.itemSize = itemSize; this.count = array !== undefined ? array.length / itemSize : 0; this.normalized = normalized; this.usage = StaticDrawUsage; this.updateRanges = []; this.gpuType = FloatType; this.version = 0; } onUploadCallback() {} set needsUpdate( value ) { if ( value === true ) this.version ++; } setUsage( value ) { this.usage = value; return this; } addUpdateRange( start, count ) { this.updateRanges.push( { start, count } ); } clearUpdateRanges() { this.updateRanges.length = 0; } copy( source ) { this.name = source.name; this.array = new source.array.constructor( source.array ); this.itemSize = source.itemSize; this.count = source.count; this.normalized = source.normalized; this.usage = source.usage; this.gpuType = source.gpuType; return this; } copyAt( index1, attribute, index2 ) { index1 *= this.itemSize; index2 *= attribute.itemSize; for ( let i = 0, l = this.itemSize; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; } copyArray( array ) { this.array.set( array ); return this; } applyMatrix3( m ) { if ( this.itemSize === 2 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector2$1.fromBufferAttribute( this, i ); _vector2$1.applyMatrix3( m ); this.setXY( i, _vector2$1.x, _vector2$1.y ); } } else if ( this.itemSize === 3 ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyMatrix3( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } } return this; } applyMatrix4( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyMatrix4( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } applyNormalMatrix( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.applyNormalMatrix( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } transformDirection( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$9.fromBufferAttribute( this, i ); _vector$9.transformDirection( m ); this.setXYZ( i, _vector$9.x, _vector$9.y, _vector$9.z ); } return this; } set( value, offset = 0 ) { // Matching BufferAttribute constructor, do not normalize the array. this.array.set( value, offset ); return this; } getComponent( index, component ) { let value = this.array[ index * this.itemSize + component ]; if ( this.normalized ) value = denormalize( value, this.array ); return value; } setComponent( index, component, value ) { if ( this.normalized ) value = normalize$1( value, this.array ); this.array[ index * this.itemSize + component ] = value; return this; } getX( index ) { let x = this.array[ index * this.itemSize ]; if ( this.normalized ) x = denormalize( x, this.array ); return x; } setX( index, x ) { if ( this.normalized ) x = normalize$1( x, this.array ); this.array[ index * this.itemSize ] = x; return this; } getY( index ) { let y = this.array[ index * this.itemSize + 1 ]; if ( this.normalized ) y = denormalize( y, this.array ); return y; } setY( index, y ) { if ( this.normalized ) y = normalize$1( y, this.array ); this.array[ index * this.itemSize + 1 ] = y; return this; } getZ( index ) { let z = this.array[ index * this.itemSize + 2 ]; if ( this.normalized ) z = denormalize( z, this.array ); return z; } setZ( index, z ) { if ( this.normalized ) z = normalize$1( z, this.array ); this.array[ index * this.itemSize + 2 ] = z; return this; } getW( index ) { let w = this.array[ index * this.itemSize + 3 ]; if ( this.normalized ) w = denormalize( w, this.array ); return w; } setW( index, w ) { if ( this.normalized ) w = normalize$1( w, this.array ); this.array[ index * this.itemSize + 3 ] = w; return this; } setXY( index, x, y ) { index *= this.itemSize; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); } this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; return this; } setXYZ( index, x, y, z ) { index *= this.itemSize; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); z = normalize$1( z, this.array ); } this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; return this; } setXYZW( index, x, y, z, w ) { index *= this.itemSize; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); z = normalize$1( z, this.array ); w = normalize$1( w, this.array ); } this.array[ index + 0 ] = x; this.array[ index + 1 ] = y; this.array[ index + 2 ] = z; this.array[ index + 3 ] = w; return this; } onUpload( callback ) { this.onUploadCallback = callback; return this; } clone() { return new this.constructor( this.array, this.itemSize ).copy( this ); } toJSON() { const data = { itemSize: this.itemSize, type: this.array.constructor.name, array: Array.from( this.array ), normalized: this.normalized }; if ( this.name !== '' ) data.name = this.name; if ( this.usage !== StaticDrawUsage ) data.usage = this.usage; return data; } } // class Int8BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Int8Array( array ), itemSize, normalized ); } } class Uint8BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint8Array( array ), itemSize, normalized ); } } class Uint8ClampedBufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint8ClampedArray( array ), itemSize, normalized ); } } class Int16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Int16Array( array ), itemSize, normalized ); } } class Uint16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint16Array( array ), itemSize, normalized ); } } class Int32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Int32Array( array ), itemSize, normalized ); } } class Uint32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint32Array( array ), itemSize, normalized ); } } class Float16BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Uint16Array( array ), itemSize, normalized ); this.isFloat16BufferAttribute = true; } getX( index ) { let x = fromHalfFloat( this.array[ index * this.itemSize ] ); if ( this.normalized ) x = denormalize( x, this.array ); return x; } setX( index, x ) { if ( this.normalized ) x = normalize$1( x, this.array ); this.array[ index * this.itemSize ] = toHalfFloat( x ); return this; } getY( index ) { let y = fromHalfFloat( this.array[ index * this.itemSize + 1 ] ); if ( this.normalized ) y = denormalize( y, this.array ); return y; } setY( index, y ) { if ( this.normalized ) y = normalize$1( y, this.array ); this.array[ index * this.itemSize + 1 ] = toHalfFloat( y ); return this; } getZ( index ) { let z = fromHalfFloat( this.array[ index * this.itemSize + 2 ] ); if ( this.normalized ) z = denormalize( z, this.array ); return z; } setZ( index, z ) { if ( this.normalized ) z = normalize$1( z, this.array ); this.array[ index * this.itemSize + 2 ] = toHalfFloat( z ); return this; } getW( index ) { let w = fromHalfFloat( this.array[ index * this.itemSize + 3 ] ); if ( this.normalized ) w = denormalize( w, this.array ); return w; } setW( index, w ) { if ( this.normalized ) w = normalize$1( w, this.array ); this.array[ index * this.itemSize + 3 ] = toHalfFloat( w ); return this; } setXY( index, x, y ) { index *= this.itemSize; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); } this.array[ index + 0 ] = toHalfFloat( x ); this.array[ index + 1 ] = toHalfFloat( y ); return this; } setXYZ( index, x, y, z ) { index *= this.itemSize; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); z = normalize$1( z, this.array ); } this.array[ index + 0 ] = toHalfFloat( x ); this.array[ index + 1 ] = toHalfFloat( y ); this.array[ index + 2 ] = toHalfFloat( z ); return this; } setXYZW( index, x, y, z, w ) { index *= this.itemSize; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); z = normalize$1( z, this.array ); w = normalize$1( w, this.array ); } this.array[ index + 0 ] = toHalfFloat( x ); this.array[ index + 1 ] = toHalfFloat( y ); this.array[ index + 2 ] = toHalfFloat( z ); this.array[ index + 3 ] = toHalfFloat( w ); return this; } } class Float32BufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized ) { super( new Float32Array( array ), itemSize, normalized ); } } let _id$3 = 0; const _m1$2 = /*@__PURE__*/ new Matrix4(); const _obj = /*@__PURE__*/ new Object3D(); const _offset = /*@__PURE__*/ new Vector3(); const _box$2 = /*@__PURE__*/ new Box3(); const _boxMorphTargets = /*@__PURE__*/ new Box3(); const _vector$8 = /*@__PURE__*/ new Vector3(); class BufferGeometry extends EventDispatcher { constructor() { super(); this.isBufferGeometry = true; Object.defineProperty( this, 'id', { value: _id$3 ++ } ); this.uuid = generateUUID(); this.name = ''; this.type = 'BufferGeometry'; this.index = null; this.attributes = {}; this.morphAttributes = {}; this.morphTargetsRelative = false; this.groups = []; this.boundingBox = null; this.boundingSphere = null; this.drawRange = { start: 0, count: Infinity }; this.userData = {}; } getIndex() { return this.index; } setIndex( index ) { if ( Array.isArray( index ) ) { this.index = new ( arrayNeedsUint32( index ) ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 ); } else { this.index = index; } return this; } getAttribute( name ) { return this.attributes[ name ]; } setAttribute( name, attribute ) { this.attributes[ name ] = attribute; return this; } deleteAttribute( name ) { delete this.attributes[ name ]; return this; } hasAttribute( name ) { return this.attributes[ name ] !== undefined; } addGroup( start, count, materialIndex = 0 ) { this.groups.push( { start: start, count: count, materialIndex: materialIndex } ); } clearGroups() { this.groups = []; } setDrawRange( start, count ) { this.drawRange.start = start; this.drawRange.count = count; } applyMatrix4( matrix ) { const position = this.attributes.position; if ( position !== undefined ) { position.applyMatrix4( matrix ); position.needsUpdate = true; } const normal = this.attributes.normal; if ( normal !== undefined ) { const normalMatrix = new Matrix3().getNormalMatrix( matrix ); normal.applyNormalMatrix( normalMatrix ); normal.needsUpdate = true; } const tangent = this.attributes.tangent; if ( tangent !== undefined ) { tangent.transformDirection( matrix ); tangent.needsUpdate = true; } if ( this.boundingBox !== null ) { this.computeBoundingBox(); } if ( this.boundingSphere !== null ) { this.computeBoundingSphere(); } return this; } applyQuaternion( q ) { _m1$2.makeRotationFromQuaternion( q ); this.applyMatrix4( _m1$2 ); return this; } rotateX( angle ) { // rotate geometry around world x-axis _m1$2.makeRotationX( angle ); this.applyMatrix4( _m1$2 ); return this; } rotateY( angle ) { // rotate geometry around world y-axis _m1$2.makeRotationY( angle ); this.applyMatrix4( _m1$2 ); return this; } rotateZ( angle ) { // rotate geometry around world z-axis _m1$2.makeRotationZ( angle ); this.applyMatrix4( _m1$2 ); return this; } translate( x, y, z ) { // translate geometry _m1$2.makeTranslation( x, y, z ); this.applyMatrix4( _m1$2 ); return this; } scale( x, y, z ) { // scale geometry _m1$2.makeScale( x, y, z ); this.applyMatrix4( _m1$2 ); return this; } lookAt( vector ) { _obj.lookAt( vector ); _obj.updateMatrix(); this.applyMatrix4( _obj.matrix ); return this; } center() { this.computeBoundingBox(); this.boundingBox.getCenter( _offset ).negate(); this.translate( _offset.x, _offset.y, _offset.z ); return this; } setFromPoints( points ) { const position = []; for ( let i = 0, l = points.length; i < l; i ++ ) { const point = points[ i ]; position.push( point.x, point.y, point.z || 0 ); } this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) ); return this; } computeBoundingBox() { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box.', this ); this.boundingBox.set( new Vector3( - Infinity, - Infinity, - Infinity ), new Vector3( + Infinity, + Infinity, + Infinity ) ); return; } if ( position !== undefined ) { this.boundingBox.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _box$2.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( this.boundingBox.min, _box$2.min ); this.boundingBox.expandByPoint( _vector$8 ); _vector$8.addVectors( this.boundingBox.max, _box$2.max ); this.boundingBox.expandByPoint( _vector$8 ); } else { this.boundingBox.expandByPoint( _box$2.min ); this.boundingBox.expandByPoint( _box$2.max ); } } } } else { this.boundingBox.makeEmpty(); } if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) { console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this ); } } computeBoundingSphere() { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } const position = this.attributes.position; const morphAttributesPosition = this.morphAttributes.position; if ( position && position.isGLBufferAttribute ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere.', this ); this.boundingSphere.set( new Vector3(), Infinity ); return; } if ( position ) { // first, find the center of the bounding sphere const center = this.boundingSphere.center; _box$2.setFromBufferAttribute( position ); // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; _boxMorphTargets.setFromBufferAttribute( morphAttribute ); if ( this.morphTargetsRelative ) { _vector$8.addVectors( _box$2.min, _boxMorphTargets.min ); _box$2.expandByPoint( _vector$8 ); _vector$8.addVectors( _box$2.max, _boxMorphTargets.max ); _box$2.expandByPoint( _vector$8 ); } else { _box$2.expandByPoint( _boxMorphTargets.min ); _box$2.expandByPoint( _boxMorphTargets.max ); } } } _box$2.getCenter( center ); // second, try to find a boundingSphere with a radius smaller than the // boundingSphere of the boundingBox: sqrt(3) smaller in the best case let maxRadiusSq = 0; for ( let i = 0, il = position.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( position, i ); maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } // process morph attributes if present if ( morphAttributesPosition ) { for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) { const morphAttribute = morphAttributesPosition[ i ]; const morphTargetsRelative = this.morphTargetsRelative; for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) { _vector$8.fromBufferAttribute( morphAttribute, j ); if ( morphTargetsRelative ) { _offset.fromBufferAttribute( position, j ); _vector$8.add( _offset ); } maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector$8 ) ); } } } this.boundingSphere.radius = Math.sqrt( maxRadiusSq ); if ( isNaN( this.boundingSphere.radius ) ) { console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this ); } } } computeTangents() { const index = this.index; const attributes = this.attributes; // based on http://www.terathon.com/code/tangent.html // (per vertex tangents) if ( index === null || attributes.position === undefined || attributes.normal === undefined || attributes.uv === undefined ) { console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' ); return; } const positionAttribute = attributes.position; const normalAttribute = attributes.normal; const uvAttribute = attributes.uv; if ( this.hasAttribute( 'tangent' ) === false ) { this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * positionAttribute.count ), 4 ) ); } const tangentAttribute = this.getAttribute( 'tangent' ); const tan1 = [], tan2 = []; for ( let i = 0; i < positionAttribute.count; i ++ ) { tan1[ i ] = new Vector3(); tan2[ i ] = new Vector3(); } const vA = new Vector3(), vB = new Vector3(), vC = new Vector3(), uvA = new Vector2(), uvB = new Vector2(), uvC = new Vector2(), sdir = new Vector3(), tdir = new Vector3(); function handleTriangle( a, b, c ) { vA.fromBufferAttribute( positionAttribute, a ); vB.fromBufferAttribute( positionAttribute, b ); vC.fromBufferAttribute( positionAttribute, c ); uvA.fromBufferAttribute( uvAttribute, a ); uvB.fromBufferAttribute( uvAttribute, b ); uvC.fromBufferAttribute( uvAttribute, c ); vB.sub( vA ); vC.sub( vA ); uvB.sub( uvA ); uvC.sub( uvA ); const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y ); // silently ignore degenerate uv triangles having coincident or colinear vertices if ( ! isFinite( r ) ) return; sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r ); tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r ); tan1[ a ].add( sdir ); tan1[ b ].add( sdir ); tan1[ c ].add( sdir ); tan2[ a ].add( tdir ); tan2[ b ].add( tdir ); tan2[ c ].add( tdir ); } let groups = this.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: index.count } ]; } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleTriangle( index.getX( j + 0 ), index.getX( j + 1 ), index.getX( j + 2 ) ); } } const tmp = new Vector3(), tmp2 = new Vector3(); const n = new Vector3(), n2 = new Vector3(); function handleVertex( v ) { n.fromBufferAttribute( normalAttribute, v ); n2.copy( n ); const t = tan1[ v ]; // Gram-Schmidt orthogonalize tmp.copy( t ); tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize(); // Calculate handedness tmp2.crossVectors( n2, t ); const test = tmp2.dot( tan2[ v ] ); const w = ( test < 0.0 ) ? -1 : 1.0; tangentAttribute.setXYZW( v, tmp.x, tmp.y, tmp.z, w ); } for ( let i = 0, il = groups.length; i < il; ++ i ) { const group = groups[ i ]; const start = group.start; const count = group.count; for ( let j = start, jl = start + count; j < jl; j += 3 ) { handleVertex( index.getX( j + 0 ) ); handleVertex( index.getX( j + 1 ) ); handleVertex( index.getX( j + 2 ) ); } } } computeVertexNormals() { const index = this.index; const positionAttribute = this.getAttribute( 'position' ); if ( positionAttribute !== undefined ) { let normalAttribute = this.getAttribute( 'normal' ); if ( normalAttribute === undefined ) { normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 ); this.setAttribute( 'normal', normalAttribute ); } else { // reset existing normals to zero for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) { normalAttribute.setXYZ( i, 0, 0, 0 ); } } const pA = new Vector3(), pB = new Vector3(), pC = new Vector3(); const nA = new Vector3(), nB = new Vector3(), nC = new Vector3(); const cb = new Vector3(), ab = new Vector3(); // indexed elements if ( index ) { for ( let i = 0, il = index.count; i < il; i += 3 ) { const vA = index.getX( i + 0 ); const vB = index.getX( i + 1 ); const vC = index.getX( i + 2 ); pA.fromBufferAttribute( positionAttribute, vA ); pB.fromBufferAttribute( positionAttribute, vB ); pC.fromBufferAttribute( positionAttribute, vC ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); nA.fromBufferAttribute( normalAttribute, vA ); nB.fromBufferAttribute( normalAttribute, vB ); nC.fromBufferAttribute( normalAttribute, vC ); nA.add( cb ); nB.add( cb ); nC.add( cb ); normalAttribute.setXYZ( vA, nA.x, nA.y, nA.z ); normalAttribute.setXYZ( vB, nB.x, nB.y, nB.z ); normalAttribute.setXYZ( vC, nC.x, nC.y, nC.z ); } } else { // non-indexed elements (unconnected triangle soup) for ( let i = 0, il = positionAttribute.count; i < il; i += 3 ) { pA.fromBufferAttribute( positionAttribute, i + 0 ); pB.fromBufferAttribute( positionAttribute, i + 1 ); pC.fromBufferAttribute( positionAttribute, i + 2 ); cb.subVectors( pC, pB ); ab.subVectors( pA, pB ); cb.cross( ab ); normalAttribute.setXYZ( i + 0, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 1, cb.x, cb.y, cb.z ); normalAttribute.setXYZ( i + 2, cb.x, cb.y, cb.z ); } } this.normalizeNormals(); normalAttribute.needsUpdate = true; } } normalizeNormals() { const normals = this.attributes.normal; for ( let i = 0, il = normals.count; i < il; i ++ ) { _vector$8.fromBufferAttribute( normals, i ); _vector$8.normalize(); normals.setXYZ( i, _vector$8.x, _vector$8.y, _vector$8.z ); } } toNonIndexed() { function convertBufferAttribute( attribute, indices ) { const array = attribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; const array2 = new array.constructor( indices.length * itemSize ); let index = 0, index2 = 0; for ( let i = 0, l = indices.length; i < l; i ++ ) { if ( attribute.isInterleavedBufferAttribute ) { index = indices[ i ] * attribute.data.stride + attribute.offset; } else { index = indices[ i ] * itemSize; } for ( let j = 0; j < itemSize; j ++ ) { array2[ index2 ++ ] = array[ index ++ ]; } } return new BufferAttribute( array2, itemSize, normalized ); } // if ( this.index === null ) { console.warn( 'THREE.BufferGeometry.toNonIndexed(): BufferGeometry is already non-indexed.' ); return this; } const geometry2 = new BufferGeometry(); const indices = this.index.array; const attributes = this.attributes; // attributes for ( const name in attributes ) { const attribute = attributes[ name ]; const newAttribute = convertBufferAttribute( attribute, indices ); geometry2.setAttribute( name, newAttribute ); } // morph attributes const morphAttributes = this.morphAttributes; for ( const name in morphAttributes ) { const morphArray = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, il = morphAttribute.length; i < il; i ++ ) { const attribute = morphAttribute[ i ]; const newAttribute = convertBufferAttribute( attribute, indices ); morphArray.push( newAttribute ); } geometry2.morphAttributes[ name ] = morphArray; } geometry2.morphTargetsRelative = this.morphTargetsRelative; // groups const groups = this.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; geometry2.addGroup( group.start, group.count, group.materialIndex ); } return geometry2; } toJSON() { const data = { metadata: { version: 4.6, type: 'BufferGeometry', generator: 'BufferGeometry.toJSON' } }; // standard BufferGeometry serialization data.uuid = this.uuid; data.type = this.type; if ( this.name !== '' ) data.name = this.name; if ( Object.keys( this.userData ).length > 0 ) data.userData = this.userData; if ( this.parameters !== undefined ) { const parameters = this.parameters; for ( const key in parameters ) { if ( parameters[ key ] !== undefined ) data[ key ] = parameters[ key ]; } return data; } // for simplicity the code assumes attributes are not shared across geometries, see #15811 data.data = { attributes: {} }; const index = this.index; if ( index !== null ) { data.data.index = { type: index.array.constructor.name, array: Array.prototype.slice.call( index.array ) }; } const attributes = this.attributes; for ( const key in attributes ) { const attribute = attributes[ key ]; data.data.attributes[ key ] = attribute.toJSON( data.data ); } const morphAttributes = {}; let hasMorphAttributes = false; for ( const key in this.morphAttributes ) { const attributeArray = this.morphAttributes[ key ]; const array = []; for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { const attribute = attributeArray[ i ]; array.push( attribute.toJSON( data.data ) ); } if ( array.length > 0 ) { morphAttributes[ key ] = array; hasMorphAttributes = true; } } if ( hasMorphAttributes ) { data.data.morphAttributes = morphAttributes; data.data.morphTargetsRelative = this.morphTargetsRelative; } const groups = this.groups; if ( groups.length > 0 ) { data.data.groups = JSON.parse( JSON.stringify( groups ) ); } const boundingSphere = this.boundingSphere; if ( boundingSphere !== null ) { data.data.boundingSphere = { center: boundingSphere.center.toArray(), radius: boundingSphere.radius }; } return data; } clone() { return new this.constructor().copy( this ); } copy( source ) { // reset this.index = null; this.attributes = {}; this.morphAttributes = {}; this.groups = []; this.boundingBox = null; this.boundingSphere = null; // used for storing cloned, shared data const data = {}; // name this.name = source.name; // index const index = source.index; if ( index !== null ) { this.setIndex( index.clone( data ) ); } // attributes const attributes = source.attributes; for ( const name in attributes ) { const attribute = attributes[ name ]; this.setAttribute( name, attribute.clone( data ) ); } // morph attributes const morphAttributes = source.morphAttributes; for ( const name in morphAttributes ) { const array = []; const morphAttribute = morphAttributes[ name ]; // morphAttribute: array of Float32BufferAttributes for ( let i = 0, l = morphAttribute.length; i < l; i ++ ) { array.push( morphAttribute[ i ].clone( data ) ); } this.morphAttributes[ name ] = array; } this.morphTargetsRelative = source.morphTargetsRelative; // groups const groups = source.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; this.addGroup( group.start, group.count, group.materialIndex ); } // bounding box const boundingBox = source.boundingBox; if ( boundingBox !== null ) { this.boundingBox = boundingBox.clone(); } // bounding sphere const boundingSphere = source.boundingSphere; if ( boundingSphere !== null ) { this.boundingSphere = boundingSphere.clone(); } // draw range this.drawRange.start = source.drawRange.start; this.drawRange.count = source.drawRange.count; // user data this.userData = source.userData; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); } } const _inverseMatrix$3 = /*@__PURE__*/ new Matrix4(); const _ray$3 = /*@__PURE__*/ new Ray(); const _sphere$6 = /*@__PURE__*/ new Sphere(); const _sphereHitAt = /*@__PURE__*/ new Vector3(); const _vA$1 = /*@__PURE__*/ new Vector3(); const _vB$1 = /*@__PURE__*/ new Vector3(); const _vC$1 = /*@__PURE__*/ new Vector3(); const _tempA = /*@__PURE__*/ new Vector3(); const _morphA = /*@__PURE__*/ new Vector3(); const _intersectionPoint = /*@__PURE__*/ new Vector3(); const _intersectionPointWorld = /*@__PURE__*/ new Vector3(); class Mesh extends Object3D { constructor( geometry = new BufferGeometry(), material = new MeshBasicMaterial() ) { super(); this.isMesh = true; this.type = 'Mesh'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); if ( source.morphTargetInfluences !== undefined ) { this.morphTargetInfluences = source.morphTargetInfluences.slice(); } if ( source.morphTargetDictionary !== undefined ) { this.morphTargetDictionary = Object.assign( {}, source.morphTargetDictionary ); } this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } getVertexPosition( index, target ) { const geometry = this.geometry; const position = geometry.attributes.position; const morphPosition = geometry.morphAttributes.position; const morphTargetsRelative = geometry.morphTargetsRelative; target.fromBufferAttribute( position, index ); const morphInfluences = this.morphTargetInfluences; if ( morphPosition && morphInfluences ) { _morphA.set( 0, 0, 0 ); for ( let i = 0, il = morphPosition.length; i < il; i ++ ) { const influence = morphInfluences[ i ]; const morphAttribute = morphPosition[ i ]; if ( influence === 0 ) continue; _tempA.fromBufferAttribute( morphAttribute, index ); if ( morphTargetsRelative ) { _morphA.addScaledVector( _tempA, influence ); } else { _morphA.addScaledVector( _tempA.sub( target ), influence ); } } target.add( _morphA ); } return target; } raycast( raycaster, intersects ) { const geometry = this.geometry; const material = this.material; const matrixWorld = this.matrixWorld; if ( material === undefined ) return; // test with bounding sphere in world space if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$6.copy( geometry.boundingSphere ); _sphere$6.applyMatrix4( matrixWorld ); // check distance from ray origin to bounding sphere _ray$3.copy( raycaster.ray ).recast( raycaster.near ); if ( _sphere$6.containsPoint( _ray$3.origin ) === false ) { if ( _ray$3.intersectSphere( _sphere$6, _sphereHitAt ) === null ) return; if ( _ray$3.origin.distanceToSquared( _sphereHitAt ) > ( raycaster.far - raycaster.near ) ** 2 ) return; } // convert ray to local space of mesh _inverseMatrix$3.copy( matrixWorld ).invert(); _ray$3.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$3 ); // test with bounding box in local space if ( geometry.boundingBox !== null ) { if ( _ray$3.intersectsBox( geometry.boundingBox ) === false ) return; } // test for intersections with geometry this._computeIntersections( raycaster, intersects, _ray$3 ); } _computeIntersections( raycaster, intersects, rayLocalSpace ) { let intersection; const geometry = this.geometry; const material = this.material; const index = geometry.index; const position = geometry.attributes.position; const uv = geometry.attributes.uv; const uv1 = geometry.attributes.uv1; const normal = geometry.attributes.normal; const groups = geometry.groups; const drawRange = geometry.drawRange; if ( index !== null ) { // indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( index.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = index.getX( j ); const b = index.getX( j + 1 ); const c = index.getX( j + 2 ); intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = index.getX( i ); const b = index.getX( i + 1 ); const c = index.getX( i + 2 ); intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in indexed buffer semantics intersects.push( intersection ); } } } } else if ( position !== undefined ) { // non-indexed buffer geometry if ( Array.isArray( material ) ) { for ( let i = 0, il = groups.length; i < il; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; const start = Math.max( group.start, drawRange.start ); const end = Math.min( position.count, Math.min( ( group.start + group.count ), ( drawRange.start + drawRange.count ) ) ); for ( let j = start, jl = end; j < jl; j += 3 ) { const a = j; const b = j + 1; const c = j + 2; intersection = checkGeometryIntersection( this, groupMaterial, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( j / 3 ); // triangle number in non-indexed buffer semantics intersection.face.materialIndex = group.materialIndex; intersects.push( intersection ); } } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( position.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i += 3 ) { const a = i; const b = i + 1; const c = i + 2; intersection = checkGeometryIntersection( this, material, raycaster, rayLocalSpace, uv, uv1, normal, a, b, c ); if ( intersection ) { intersection.faceIndex = Math.floor( i / 3 ); // triangle number in non-indexed buffer semantics intersects.push( intersection ); } } } } } } function checkIntersection$1( object, material, raycaster, ray, pA, pB, pC, point ) { let intersect; if ( material.side === BackSide ) { intersect = ray.intersectTriangle( pC, pB, pA, true, point ); } else { intersect = ray.intersectTriangle( pA, pB, pC, ( material.side === FrontSide ), point ); } if ( intersect === null ) return null; _intersectionPointWorld.copy( point ); _intersectionPointWorld.applyMatrix4( object.matrixWorld ); const distance = raycaster.ray.origin.distanceTo( _intersectionPointWorld ); if ( distance < raycaster.near || distance > raycaster.far ) return null; return { distance: distance, point: _intersectionPointWorld.clone(), object: object }; } function checkGeometryIntersection( object, material, raycaster, ray, uv, uv1, normal, a, b, c ) { object.getVertexPosition( a, _vA$1 ); object.getVertexPosition( b, _vB$1 ); object.getVertexPosition( c, _vC$1 ); const intersection = checkIntersection$1( object, material, raycaster, ray, _vA$1, _vB$1, _vC$1, _intersectionPoint ); if ( intersection ) { const barycoord = new Vector3(); Triangle.getBarycoord( _intersectionPoint, _vA$1, _vB$1, _vC$1, barycoord ); if ( uv ) { intersection.uv = Triangle.getInterpolatedAttribute( uv, a, b, c, barycoord, new Vector2() ); } if ( uv1 ) { intersection.uv1 = Triangle.getInterpolatedAttribute( uv1, a, b, c, barycoord, new Vector2() ); } if ( normal ) { intersection.normal = Triangle.getInterpolatedAttribute( normal, a, b, c, barycoord, new Vector3() ); if ( intersection.normal.dot( ray.direction ) > 0 ) { intersection.normal.multiplyScalar( -1 ); } } const face = { a: a, b: b, c: c, normal: new Vector3(), materialIndex: 0 }; Triangle.getNormal( _vA$1, _vB$1, _vC$1, face.normal ); intersection.face = face; intersection.barycoord = barycoord; } return intersection; } class BoxGeometry extends BufferGeometry { constructor( width = 1, height = 1, depth = 1, widthSegments = 1, heightSegments = 1, depthSegments = 1 ) { super(); this.type = 'BoxGeometry'; this.parameters = { width: width, height: height, depth: depth, widthSegments: widthSegments, heightSegments: heightSegments, depthSegments: depthSegments }; const scope = this; // segments widthSegments = Math.floor( widthSegments ); heightSegments = Math.floor( heightSegments ); depthSegments = Math.floor( depthSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let numberOfVertices = 0; let groupStart = 0; // build each side of the box geometry buildPlane( 'z', 'y', 'x', -1, -1, depth, height, width, depthSegments, heightSegments, 0 ); // px buildPlane( 'z', 'y', 'x', 1, -1, depth, height, - width, depthSegments, heightSegments, 1 ); // nx buildPlane( 'x', 'z', 'y', 1, 1, width, depth, height, widthSegments, depthSegments, 2 ); // py buildPlane( 'x', 'z', 'y', 1, -1, width, depth, - height, widthSegments, depthSegments, 3 ); // ny buildPlane( 'x', 'y', 'z', 1, -1, width, height, depth, widthSegments, heightSegments, 4 ); // pz buildPlane( 'x', 'y', 'z', -1, -1, width, height, - depth, widthSegments, heightSegments, 5 ); // nz // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function buildPlane( u, v, w, udir, vdir, width, height, depth, gridX, gridY, materialIndex ) { const segmentWidth = width / gridX; const segmentHeight = height / gridY; const widthHalf = width / 2; const heightHalf = height / 2; const depthHalf = depth / 2; const gridX1 = gridX + 1; const gridY1 = gridY + 1; let vertexCounter = 0; let groupCount = 0; const vector = new Vector3(); // generate vertices, normals and uvs for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segmentHeight - heightHalf; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segmentWidth - widthHalf; // set values to correct vector component vector[ u ] = x * udir; vector[ v ] = y * vdir; vector[ w ] = depthHalf; // now apply vector to vertex buffer vertices.push( vector.x, vector.y, vector.z ); // set values to correct vector component vector[ u ] = 0; vector[ v ] = 0; vector[ w ] = depth > 0 ? 1 : -1; // now apply vector to normal buffer normals.push( vector.x, vector.y, vector.z ); // uvs uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); // counters vertexCounter += 1; } } // indices // 1. you need three indices to draw a single face // 2. a single segment consists of two faces // 3. so we need to generate six (2*3) indices per segment for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = numberOfVertices + ix + gridX1 * iy; const b = numberOfVertices + ix + gridX1 * ( iy + 1 ); const c = numberOfVertices + ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = numberOfVertices + ( ix + 1 ) + gridX1 * iy; // faces indices.push( a, b, d ); indices.push( b, c, d ); // increase counter groupCount += 6; } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, materialIndex ); // calculate new start value for groups groupStart += groupCount; // update total number of vertices numberOfVertices += vertexCounter; } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new BoxGeometry( data.width, data.height, data.depth, data.widthSegments, data.heightSegments, data.depthSegments ); } } /** * Uniform Utilities */ function cloneUniforms( src ) { const dst = {}; for ( const u in src ) { dst[ u ] = {}; for ( const p in src[ u ] ) { const property = src[ u ][ p ]; if ( property && ( property.isColor || property.isMatrix3 || property.isMatrix4 || property.isVector2 || property.isVector3 || property.isVector4 || property.isTexture || property.isQuaternion ) ) { if ( property.isRenderTargetTexture ) { console.warn( 'UniformsUtils: Textures of render targets cannot be cloned via cloneUniforms() or mergeUniforms().' ); dst[ u ][ p ] = null; } else { dst[ u ][ p ] = property.clone(); } } else if ( Array.isArray( property ) ) { dst[ u ][ p ] = property.slice(); } else { dst[ u ][ p ] = property; } } } return dst; } function mergeUniforms( uniforms ) { const merged = {}; for ( let u = 0; u < uniforms.length; u ++ ) { const tmp = cloneUniforms( uniforms[ u ] ); for ( const p in tmp ) { merged[ p ] = tmp[ p ]; } } return merged; } function cloneUniformsGroups( src ) { const dst = []; for ( let u = 0; u < src.length; u ++ ) { dst.push( src[ u ].clone() ); } return dst; } function getUnlitUniformColorSpace( renderer ) { const currentRenderTarget = renderer.getRenderTarget(); if ( currentRenderTarget === null ) { // https://github.com/mrdoob/three.js/pull/23937#issuecomment-1111067398 return renderer.outputColorSpace; } // https://github.com/mrdoob/three.js/issues/27868 if ( currentRenderTarget.isXRRenderTarget === true ) { return currentRenderTarget.texture.colorSpace; } return ColorManagement.workingColorSpace; } // Legacy const UniformsUtils = { clone: cloneUniforms, merge: mergeUniforms }; var default_vertex = "void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}"; var default_fragment = "void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}"; class ShaderMaterial extends Material { constructor( parameters ) { super(); this.isShaderMaterial = true; this.type = 'ShaderMaterial'; this.defines = {}; this.uniforms = {}; this.uniformsGroups = []; this.vertexShader = default_vertex; this.fragmentShader = default_fragment; this.linewidth = 1; this.wireframe = false; this.wireframeLinewidth = 1; this.fog = false; // set to use scene fog this.lights = false; // set to use scene lights this.clipping = false; // set to use user-defined clipping planes this.forceSinglePass = true; this.extensions = { clipCullDistance: false, // set to use vertex shader clipping multiDraw: false // set to use vertex shader multi_draw / enable gl_DrawID }; // When rendered geometry doesn't include these attributes but the material does, // use these default values in WebGL. This avoids errors when buffer data is missing. this.defaultAttributeValues = { 'color': [ 1, 1, 1 ], 'uv': [ 0, 0 ], 'uv1': [ 0, 0 ] }; this.index0AttributeName = undefined; this.uniformsNeedUpdate = false; this.glslVersion = null; if ( parameters !== undefined ) { this.setValues( parameters ); } } copy( source ) { super.copy( source ); this.fragmentShader = source.fragmentShader; this.vertexShader = source.vertexShader; this.uniforms = cloneUniforms( source.uniforms ); this.uniformsGroups = cloneUniformsGroups( source.uniformsGroups ); this.defines = Object.assign( {}, source.defines ); this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.fog = source.fog; this.lights = source.lights; this.clipping = source.clipping; this.extensions = Object.assign( {}, source.extensions ); this.glslVersion = source.glslVersion; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.glslVersion = this.glslVersion; data.uniforms = {}; for ( const name in this.uniforms ) { const uniform = this.uniforms[ name ]; const value = uniform.value; if ( value && value.isTexture ) { data.uniforms[ name ] = { type: 't', value: value.toJSON( meta ).uuid }; } else if ( value && value.isColor ) { data.uniforms[ name ] = { type: 'c', value: value.getHex() }; } else if ( value && value.isVector2 ) { data.uniforms[ name ] = { type: 'v2', value: value.toArray() }; } else if ( value && value.isVector3 ) { data.uniforms[ name ] = { type: 'v3', value: value.toArray() }; } else if ( value && value.isVector4 ) { data.uniforms[ name ] = { type: 'v4', value: value.toArray() }; } else if ( value && value.isMatrix3 ) { data.uniforms[ name ] = { type: 'm3', value: value.toArray() }; } else if ( value && value.isMatrix4 ) { data.uniforms[ name ] = { type: 'm4', value: value.toArray() }; } else { data.uniforms[ name ] = { value: value }; // note: the array variants v2v, v3v, v4v, m4v and tv are not supported so far } } if ( Object.keys( this.defines ).length > 0 ) data.defines = this.defines; data.vertexShader = this.vertexShader; data.fragmentShader = this.fragmentShader; data.lights = this.lights; data.clipping = this.clipping; const extensions = {}; for ( const key in this.extensions ) { if ( this.extensions[ key ] === true ) extensions[ key ] = true; } if ( Object.keys( extensions ).length > 0 ) data.extensions = extensions; return data; } } class Camera extends Object3D { constructor() { super(); this.isCamera = true; this.type = 'Camera'; this.matrixWorldInverse = new Matrix4(); this.projectionMatrix = new Matrix4(); this.projectionMatrixInverse = new Matrix4(); this.coordinateSystem = WebGLCoordinateSystem; } copy( source, recursive ) { super.copy( source, recursive ); this.matrixWorldInverse.copy( source.matrixWorldInverse ); this.projectionMatrix.copy( source.projectionMatrix ); this.projectionMatrixInverse.copy( source.projectionMatrixInverse ); this.coordinateSystem = source.coordinateSystem; return this; } getWorldDirection( target ) { return super.getWorldDirection( target ).negate(); } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } updateWorldMatrix( updateParents, updateChildren ) { super.updateWorldMatrix( updateParents, updateChildren ); this.matrixWorldInverse.copy( this.matrixWorld ).invert(); } clone() { return new this.constructor().copy( this ); } } const _v3$1 = /*@__PURE__*/ new Vector3(); const _minTarget = /*@__PURE__*/ new Vector2(); const _maxTarget = /*@__PURE__*/ new Vector2(); class PerspectiveCamera extends Camera { constructor( fov = 50, aspect = 1, near = 0.1, far = 2000 ) { super(); this.isPerspectiveCamera = true; this.type = 'PerspectiveCamera'; this.fov = fov; this.zoom = 1; this.near = near; this.far = far; this.focus = 10; this.aspect = aspect; this.view = null; this.filmGauge = 35; // width of the film (default in millimeters) this.filmOffset = 0; // horizontal film offset (same unit as gauge) this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.fov = source.fov; this.zoom = source.zoom; this.near = source.near; this.far = source.far; this.focus = source.focus; this.aspect = source.aspect; this.view = source.view === null ? null : Object.assign( {}, source.view ); this.filmGauge = source.filmGauge; this.filmOffset = source.filmOffset; return this; } /** * Sets the FOV by focal length in respect to the current .filmGauge. * * The default film gauge is 35, so that the focal length can be specified for * a 35mm (full frame) camera. * * Values for focal length and film gauge must have the same unit. */ setFocalLength( focalLength ) { /** see {@link http://www.bobatkins.com/photography/technical/field_of_view.html} */ const vExtentSlope = 0.5 * this.getFilmHeight() / focalLength; this.fov = RAD2DEG * 2 * Math.atan( vExtentSlope ); this.updateProjectionMatrix(); } /** * Calculates the focal length from the current .fov and .filmGauge. */ getFocalLength() { const vExtentSlope = Math.tan( DEG2RAD * 0.5 * this.fov ); return 0.5 * this.getFilmHeight() / vExtentSlope; } getEffectiveFOV() { return RAD2DEG * 2 * Math.atan( Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom ); } getFilmWidth() { // film not completely covered in portrait format (aspect < 1) return this.filmGauge * Math.min( this.aspect, 1 ); } getFilmHeight() { // film not completely covered in landscape format (aspect > 1) return this.filmGauge / Math.max( this.aspect, 1 ); } /** * Computes the 2D bounds of the camera's viewable rectangle at a given distance along the viewing direction. * Sets minTarget and maxTarget to the coordinates of the lower-left and upper-right corners of the view rectangle. */ getViewBounds( distance, minTarget, maxTarget ) { _v3$1.set( -1, -1, 0.5 ).applyMatrix4( this.projectionMatrixInverse ); minTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z ); _v3$1.set( 1, 1, 0.5 ).applyMatrix4( this.projectionMatrixInverse ); maxTarget.set( _v3$1.x, _v3$1.y ).multiplyScalar( - distance / _v3$1.z ); } /** * Computes the width and height of the camera's viewable rectangle at a given distance along the viewing direction. * Copies the result into the target Vector2, where x is width and y is height. */ getViewSize( distance, target ) { this.getViewBounds( distance, _minTarget, _maxTarget ); return target.subVectors( _maxTarget, _minTarget ); } /** * Sets an offset in a larger frustum. This is useful for multi-window or * multi-monitor/multi-machine setups. * * For example, if you have 3x2 monitors and each monitor is 1920x1080 and * the monitors are in grid like this * * +---+---+---+ * | A | B | C | * +---+---+---+ * | D | E | F | * +---+---+---+ * * then for each monitor you would call it like this * * const w = 1920; * const h = 1080; * const fullWidth = w * 3; * const fullHeight = h * 2; * * --A-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 0, w, h ); * --B-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 0, w, h ); * --C-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 0, w, h ); * --D-- * camera.setViewOffset( fullWidth, fullHeight, w * 0, h * 1, w, h ); * --E-- * camera.setViewOffset( fullWidth, fullHeight, w * 1, h * 1, w, h ); * --F-- * camera.setViewOffset( fullWidth, fullHeight, w * 2, h * 1, w, h ); * * Note there is no reason monitors have to be the same size or in a grid. */ setViewOffset( fullWidth, fullHeight, x, y, width, height ) { this.aspect = fullWidth / fullHeight; if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const near = this.near; let top = near * Math.tan( DEG2RAD * 0.5 * this.fov ) / this.zoom; let height = 2 * top; let width = this.aspect * height; let left = -0.5 * width; const view = this.view; if ( this.view !== null && this.view.enabled ) { const fullWidth = view.fullWidth, fullHeight = view.fullHeight; left += view.offsetX * width / fullWidth; top -= view.offsetY * height / fullHeight; width *= view.width / fullWidth; height *= view.height / fullHeight; } const skew = this.filmOffset; if ( skew !== 0 ) left += near * skew / this.getFilmWidth(); this.projectionMatrix.makePerspective( left, left + width, top, top - height, near, this.far, this.coordinateSystem ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.fov = this.fov; data.object.zoom = this.zoom; data.object.near = this.near; data.object.far = this.far; data.object.focus = this.focus; data.object.aspect = this.aspect; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); data.object.filmGauge = this.filmGauge; data.object.filmOffset = this.filmOffset; return data; } } const fov = -90; // negative fov is not an error const aspect = 1; class CubeCamera extends Object3D { constructor( near, far, renderTarget ) { super(); this.type = 'CubeCamera'; this.renderTarget = renderTarget; this.coordinateSystem = null; this.activeMipmapLevel = 0; const cameraPX = new PerspectiveCamera( fov, aspect, near, far ); cameraPX.layers = this.layers; this.add( cameraPX ); const cameraNX = new PerspectiveCamera( fov, aspect, near, far ); cameraNX.layers = this.layers; this.add( cameraNX ); const cameraPY = new PerspectiveCamera( fov, aspect, near, far ); cameraPY.layers = this.layers; this.add( cameraPY ); const cameraNY = new PerspectiveCamera( fov, aspect, near, far ); cameraNY.layers = this.layers; this.add( cameraNY ); const cameraPZ = new PerspectiveCamera( fov, aspect, near, far ); cameraPZ.layers = this.layers; this.add( cameraPZ ); const cameraNZ = new PerspectiveCamera( fov, aspect, near, far ); cameraNZ.layers = this.layers; this.add( cameraNZ ); } updateCoordinateSystem() { const coordinateSystem = this.coordinateSystem; const cameras = this.children.concat(); const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = cameras; for ( const camera of cameras ) this.remove( camera ); if ( coordinateSystem === WebGLCoordinateSystem ) { cameraPX.up.set( 0, 1, 0 ); cameraPX.lookAt( 1, 0, 0 ); cameraNX.up.set( 0, 1, 0 ); cameraNX.lookAt( -1, 0, 0 ); cameraPY.up.set( 0, 0, -1 ); cameraPY.lookAt( 0, 1, 0 ); cameraNY.up.set( 0, 0, 1 ); cameraNY.lookAt( 0, -1, 0 ); cameraPZ.up.set( 0, 1, 0 ); cameraPZ.lookAt( 0, 0, 1 ); cameraNZ.up.set( 0, 1, 0 ); cameraNZ.lookAt( 0, 0, -1 ); } else if ( coordinateSystem === WebGPUCoordinateSystem ) { cameraPX.up.set( 0, -1, 0 ); cameraPX.lookAt( -1, 0, 0 ); cameraNX.up.set( 0, -1, 0 ); cameraNX.lookAt( 1, 0, 0 ); cameraPY.up.set( 0, 0, 1 ); cameraPY.lookAt( 0, 1, 0 ); cameraNY.up.set( 0, 0, -1 ); cameraNY.lookAt( 0, -1, 0 ); cameraPZ.up.set( 0, -1, 0 ); cameraPZ.lookAt( 0, 0, 1 ); cameraNZ.up.set( 0, -1, 0 ); cameraNZ.lookAt( 0, 0, -1 ); } else { throw new Error( 'THREE.CubeCamera.updateCoordinateSystem(): Invalid coordinate system: ' + coordinateSystem ); } for ( const camera of cameras ) { this.add( camera ); camera.updateMatrixWorld(); } } update( renderer, scene ) { if ( this.parent === null ) this.updateMatrixWorld(); const { renderTarget, activeMipmapLevel } = this; if ( this.coordinateSystem !== renderer.coordinateSystem ) { this.coordinateSystem = renderer.coordinateSystem; this.updateCoordinateSystem(); } const [ cameraPX, cameraNX, cameraPY, cameraNY, cameraPZ, cameraNZ ] = this.children; const currentRenderTarget = renderer.getRenderTarget(); const currentActiveCubeFace = renderer.getActiveCubeFace(); const currentActiveMipmapLevel = renderer.getActiveMipmapLevel(); const currentXrEnabled = renderer.xr.enabled; renderer.xr.enabled = false; const generateMipmaps = renderTarget.texture.generateMipmaps; renderTarget.texture.generateMipmaps = false; renderer.setRenderTarget( renderTarget, 0, activeMipmapLevel ); renderer.render( scene, cameraPX ); renderer.setRenderTarget( renderTarget, 1, activeMipmapLevel ); renderer.render( scene, cameraNX ); renderer.setRenderTarget( renderTarget, 2, activeMipmapLevel ); renderer.render( scene, cameraPY ); renderer.setRenderTarget( renderTarget, 3, activeMipmapLevel ); renderer.render( scene, cameraNY ); renderer.setRenderTarget( renderTarget, 4, activeMipmapLevel ); renderer.render( scene, cameraPZ ); // mipmaps are generated during the last call of render() // at this point, all sides of the cube render target are defined renderTarget.texture.generateMipmaps = generateMipmaps; renderer.setRenderTarget( renderTarget, 5, activeMipmapLevel ); renderer.render( scene, cameraNZ ); renderer.setRenderTarget( currentRenderTarget, currentActiveCubeFace, currentActiveMipmapLevel ); renderer.xr.enabled = currentXrEnabled; renderTarget.texture.needsPMREMUpdate = true; } } class CubeTexture extends Texture { constructor( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ) { images = images !== undefined ? images : []; mapping = mapping !== undefined ? mapping : CubeReflectionMapping; super( images, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); this.isCubeTexture = true; this.flipY = false; } get images() { return this.image; } set images( value ) { this.image = value; } } class WebGLCubeRenderTarget extends WebGLRenderTarget { constructor( size = 1, options = {} ) { super( size, size, options ); this.isWebGLCubeRenderTarget = true; const image = { width: size, height: size, depth: 1 }; const images = [ image, image, image, image, image, image ]; this.texture = new CubeTexture( images, options.mapping, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.colorSpace ); // By convention -- likely based on the RenderMan spec from the 1990's -- cube maps are specified by WebGL (and three.js) // in a coordinate system in which positive-x is to the right when looking up the positive-z axis -- in other words, // in a left-handed coordinate system. By continuing this convention, preexisting cube maps continued to render correctly. // three.js uses a right-handed coordinate system. So environment maps used in three.js appear to have px and nx swapped // and the flag isRenderTargetTexture controls this conversion. The flip is not required when using WebGLCubeRenderTarget.texture // as a cube texture (this is detected when isRenderTargetTexture is set to true for cube textures). this.texture.isRenderTargetTexture = true; this.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false; this.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter; } fromEquirectangularTexture( renderer, texture ) { this.texture.type = texture.type; this.texture.colorSpace = texture.colorSpace; this.texture.generateMipmaps = texture.generateMipmaps; this.texture.minFilter = texture.minFilter; this.texture.magFilter = texture.magFilter; const shader = { uniforms: { tEquirect: { value: null }, }, vertexShader: /* glsl */` varying vec3 vWorldDirection; vec3 transformDirection( in vec3 dir, in mat4 matrix ) { return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); } void main() { vWorldDirection = transformDirection( position, modelMatrix ); #include #include } `, fragmentShader: /* glsl */` uniform sampler2D tEquirect; varying vec3 vWorldDirection; #include void main() { vec3 direction = normalize( vWorldDirection ); vec2 sampleUV = equirectUv( direction ); gl_FragColor = texture2D( tEquirect, sampleUV ); } ` }; const geometry = new BoxGeometry( 5, 5, 5 ); const material = new ShaderMaterial( { name: 'CubemapFromEquirect', uniforms: cloneUniforms( shader.uniforms ), vertexShader: shader.vertexShader, fragmentShader: shader.fragmentShader, side: BackSide, blending: NoBlending } ); material.uniforms.tEquirect.value = texture; const mesh = new Mesh( geometry, material ); const currentMinFilter = texture.minFilter; // Avoid blurred poles if ( texture.minFilter === LinearMipmapLinearFilter ) texture.minFilter = LinearFilter; const camera = new CubeCamera( 1, 10, this ); camera.update( renderer, mesh ); texture.minFilter = currentMinFilter; mesh.geometry.dispose(); mesh.material.dispose(); return this; } clear( renderer, color, depth, stencil ) { const currentRenderTarget = renderer.getRenderTarget(); for ( let i = 0; i < 6; i ++ ) { renderer.setRenderTarget( this, i ); renderer.clear( color, depth, stencil ); } renderer.setRenderTarget( currentRenderTarget ); } } const _vector1 = /*@__PURE__*/ new Vector3(); const _vector2 = /*@__PURE__*/ new Vector3(); const _normalMatrix = /*@__PURE__*/ new Matrix3(); class Plane { constructor( normal = new Vector3( 1, 0, 0 ), constant = 0 ) { this.isPlane = true; // normal is assumed to be normalized this.normal = normal; this.constant = constant; } set( normal, constant ) { this.normal.copy( normal ); this.constant = constant; return this; } setComponents( x, y, z, w ) { this.normal.set( x, y, z ); this.constant = w; return this; } setFromNormalAndCoplanarPoint( normal, point ) { this.normal.copy( normal ); this.constant = - point.dot( this.normal ); return this; } setFromCoplanarPoints( a, b, c ) { const normal = _vector1.subVectors( c, b ).cross( _vector2.subVectors( a, b ) ).normalize(); // Q: should an error be thrown if normal is zero (e.g. degenerate plane)? this.setFromNormalAndCoplanarPoint( normal, a ); return this; } copy( plane ) { this.normal.copy( plane.normal ); this.constant = plane.constant; return this; } normalize() { // Note: will lead to a divide by zero if the plane is invalid. const inverseNormalLength = 1.0 / this.normal.length(); this.normal.multiplyScalar( inverseNormalLength ); this.constant *= inverseNormalLength; return this; } negate() { this.constant *= -1; this.normal.negate(); return this; } distanceToPoint( point ) { return this.normal.dot( point ) + this.constant; } distanceToSphere( sphere ) { return this.distanceToPoint( sphere.center ) - sphere.radius; } projectPoint( point, target ) { return target.copy( point ).addScaledVector( this.normal, - this.distanceToPoint( point ) ); } intersectLine( line, target ) { const direction = line.delta( _vector1 ); const denominator = this.normal.dot( direction ); if ( denominator === 0 ) { // line is coplanar, return origin if ( this.distanceToPoint( line.start ) === 0 ) { return target.copy( line.start ); } // Unsure if this is the correct method to handle this case. return null; } const t = - ( line.start.dot( this.normal ) + this.constant ) / denominator; if ( t < 0 || t > 1 ) { return null; } return target.copy( line.start ).addScaledVector( direction, t ); } intersectsLine( line ) { // Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it. const startSign = this.distanceToPoint( line.start ); const endSign = this.distanceToPoint( line.end ); return ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 ); } intersectsBox( box ) { return box.intersectsPlane( this ); } intersectsSphere( sphere ) { return sphere.intersectsPlane( this ); } coplanarPoint( target ) { return target.copy( this.normal ).multiplyScalar( - this.constant ); } applyMatrix4( matrix, optionalNormalMatrix ) { const normalMatrix = optionalNormalMatrix || _normalMatrix.getNormalMatrix( matrix ); const referencePoint = this.coplanarPoint( _vector1 ).applyMatrix4( matrix ); const normal = this.normal.applyMatrix3( normalMatrix ).normalize(); this.constant = - referencePoint.dot( normal ); return this; } translate( offset ) { this.constant -= offset.dot( this.normal ); return this; } equals( plane ) { return plane.normal.equals( this.normal ) && ( plane.constant === this.constant ); } clone() { return new this.constructor().copy( this ); } } const _sphere$5 = /*@__PURE__*/ new Sphere(); const _vector$7 = /*@__PURE__*/ new Vector3(); class Frustum { constructor( p0 = new Plane(), p1 = new Plane(), p2 = new Plane(), p3 = new Plane(), p4 = new Plane(), p5 = new Plane() ) { this.planes = [ p0, p1, p2, p3, p4, p5 ]; } set( p0, p1, p2, p3, p4, p5 ) { const planes = this.planes; planes[ 0 ].copy( p0 ); planes[ 1 ].copy( p1 ); planes[ 2 ].copy( p2 ); planes[ 3 ].copy( p3 ); planes[ 4 ].copy( p4 ); planes[ 5 ].copy( p5 ); return this; } copy( frustum ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { planes[ i ].copy( frustum.planes[ i ] ); } return this; } setFromProjectionMatrix( m, coordinateSystem = WebGLCoordinateSystem ) { const planes = this.planes; const me = m.elements; const me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ]; const me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ]; const me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ]; const me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ]; planes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize(); planes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize(); planes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize(); planes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize(); planes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize(); if ( coordinateSystem === WebGLCoordinateSystem ) { planes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize(); } else if ( coordinateSystem === WebGPUCoordinateSystem ) { planes[ 5 ].setComponents( me2, me6, me10, me14 ).normalize(); } else { throw new Error( 'THREE.Frustum.setFromProjectionMatrix(): Invalid coordinate system: ' + coordinateSystem ); } return this; } intersectsObject( object ) { if ( object.boundingSphere !== undefined ) { if ( object.boundingSphere === null ) object.computeBoundingSphere(); _sphere$5.copy( object.boundingSphere ).applyMatrix4( object.matrixWorld ); } else { const geometry = object.geometry; if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$5.copy( geometry.boundingSphere ).applyMatrix4( object.matrixWorld ); } return this.intersectsSphere( _sphere$5 ); } intersectsSprite( sprite ) { _sphere$5.center.set( 0, 0, 0 ); _sphere$5.radius = 0.7071067811865476; _sphere$5.applyMatrix4( sprite.matrixWorld ); return this.intersectsSphere( _sphere$5 ); } intersectsSphere( sphere ) { const planes = this.planes; const center = sphere.center; const negRadius = - sphere.radius; for ( let i = 0; i < 6; i ++ ) { const distance = planes[ i ].distanceToPoint( center ); if ( distance < negRadius ) { return false; } } return true; } intersectsBox( box ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { const plane = planes[ i ]; // corner at max distance _vector$7.x = plane.normal.x > 0 ? box.max.x : box.min.x; _vector$7.y = plane.normal.y > 0 ? box.max.y : box.min.y; _vector$7.z = plane.normal.z > 0 ? box.max.z : box.min.z; if ( plane.distanceToPoint( _vector$7 ) < 0 ) { return false; } } return true; } containsPoint( point ) { const planes = this.planes; for ( let i = 0; i < 6; i ++ ) { if ( planes[ i ].distanceToPoint( point ) < 0 ) { return false; } } return true; } clone() { return new this.constructor().copy( this ); } } function WebGLAnimation() { let context = null; let isAnimating = false; let animationLoop = null; let requestId = null; function onAnimationFrame( time, frame ) { animationLoop( time, frame ); requestId = context.requestAnimationFrame( onAnimationFrame ); } return { start: function () { if ( isAnimating === true ) return; if ( animationLoop === null ) return; requestId = context.requestAnimationFrame( onAnimationFrame ); isAnimating = true; }, stop: function () { context.cancelAnimationFrame( requestId ); isAnimating = false; }, setAnimationLoop: function ( callback ) { animationLoop = callback; }, setContext: function ( value ) { context = value; } }; } function WebGLAttributes( gl ) { const buffers = new WeakMap(); function createBuffer( attribute, bufferType ) { const array = attribute.array; const usage = attribute.usage; const size = array.byteLength; const buffer = gl.createBuffer(); gl.bindBuffer( bufferType, buffer ); gl.bufferData( bufferType, array, usage ); attribute.onUploadCallback(); let type; if ( array instanceof Float32Array ) { type = gl.FLOAT; } else if ( array instanceof Uint16Array ) { if ( attribute.isFloat16BufferAttribute ) { type = gl.HALF_FLOAT; } else { type = gl.UNSIGNED_SHORT; } } else if ( array instanceof Int16Array ) { type = gl.SHORT; } else if ( array instanceof Uint32Array ) { type = gl.UNSIGNED_INT; } else if ( array instanceof Int32Array ) { type = gl.INT; } else if ( array instanceof Int8Array ) { type = gl.BYTE; } else if ( array instanceof Uint8Array ) { type = gl.UNSIGNED_BYTE; } else if ( array instanceof Uint8ClampedArray ) { type = gl.UNSIGNED_BYTE; } else { throw new Error( 'THREE.WebGLAttributes: Unsupported buffer data format: ' + array ); } return { buffer: buffer, type: type, bytesPerElement: array.BYTES_PER_ELEMENT, version: attribute.version, size: size }; } function updateBuffer( buffer, attribute, bufferType ) { const array = attribute.array; const updateRanges = attribute.updateRanges; gl.bindBuffer( bufferType, buffer ); if ( updateRanges.length === 0 ) { // Not using update ranges gl.bufferSubData( bufferType, 0, array ); } else { // Before applying update ranges, we merge any adjacent / overlapping // ranges to reduce load on `gl.bufferSubData`. Empirically, this has led // to performance improvements for applications which make heavy use of // update ranges. Likely due to GPU command overhead. // // Note that to reduce garbage collection between frames, we merge the // update ranges in-place. This is safe because this method will clear the // update ranges once updated. updateRanges.sort( ( a, b ) => a.start - b.start ); // To merge the update ranges in-place, we work from left to right in the // existing updateRanges array, merging ranges. This may result in a final // array which is smaller than the original. This index tracks the last // index representing a merged range, any data after this index can be // trimmed once the merge algorithm is completed. let mergeIndex = 0; for ( let i = 1; i < updateRanges.length; i ++ ) { const previousRange = updateRanges[ mergeIndex ]; const range = updateRanges[ i ]; // We add one here to merge adjacent ranges. This is safe because ranges // operate over positive integers. if ( range.start <= previousRange.start + previousRange.count + 1 ) { previousRange.count = Math.max( previousRange.count, range.start + range.count - previousRange.start ); } else { ++ mergeIndex; updateRanges[ mergeIndex ] = range; } } // Trim the array to only contain the merged ranges. updateRanges.length = mergeIndex + 1; for ( let i = 0, l = updateRanges.length; i < l; i ++ ) { const range = updateRanges[ i ]; gl.bufferSubData( bufferType, range.start * array.BYTES_PER_ELEMENT, array, range.start, range.count ); } attribute.clearUpdateRanges(); } attribute.onUploadCallback(); } // function get( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; return buffers.get( attribute ); } function remove( attribute ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; const data = buffers.get( attribute ); if ( data ) { gl.deleteBuffer( data.buffer ); buffers.delete( attribute ); } } function update( attribute, bufferType ) { if ( attribute.isInterleavedBufferAttribute ) attribute = attribute.data; if ( attribute.isGLBufferAttribute ) { const cached = buffers.get( attribute ); if ( ! cached || cached.version < attribute.version ) { buffers.set( attribute, { buffer: attribute.buffer, type: attribute.type, bytesPerElement: attribute.elementSize, version: attribute.version } ); } return; } const data = buffers.get( attribute ); if ( data === undefined ) { buffers.set( attribute, createBuffer( attribute, bufferType ) ); } else if ( data.version < attribute.version ) { if ( data.size !== attribute.array.byteLength ) { throw new Error( 'THREE.WebGLAttributes: The size of the buffer attribute\'s array buffer does not match the original size. Resizing buffer attributes is not supported.' ); } updateBuffer( data.buffer, attribute, bufferType ); data.version = attribute.version; } } return { get: get, remove: remove, update: update }; } class PlaneGeometry extends BufferGeometry { constructor( width = 1, height = 1, widthSegments = 1, heightSegments = 1 ) { super(); this.type = 'PlaneGeometry'; this.parameters = { width: width, height: height, widthSegments: widthSegments, heightSegments: heightSegments }; const width_half = width / 2; const height_half = height / 2; const gridX = Math.floor( widthSegments ); const gridY = Math.floor( heightSegments ); const gridX1 = gridX + 1; const gridY1 = gridY + 1; const segment_width = width / gridX; const segment_height = height / gridY; // const indices = []; const vertices = []; const normals = []; const uvs = []; for ( let iy = 0; iy < gridY1; iy ++ ) { const y = iy * segment_height - height_half; for ( let ix = 0; ix < gridX1; ix ++ ) { const x = ix * segment_width - width_half; vertices.push( x, - y, 0 ); normals.push( 0, 0, 1 ); uvs.push( ix / gridX ); uvs.push( 1 - ( iy / gridY ) ); } } for ( let iy = 0; iy < gridY; iy ++ ) { for ( let ix = 0; ix < gridX; ix ++ ) { const a = ix + gridX1 * iy; const b = ix + gridX1 * ( iy + 1 ); const c = ( ix + 1 ) + gridX1 * ( iy + 1 ); const d = ( ix + 1 ) + gridX1 * iy; indices.push( a, b, d ); indices.push( b, c, d ); } } this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new PlaneGeometry( data.width, data.height, data.widthSegments, data.heightSegments ); } } var alphahash_fragment = "#ifdef USE_ALPHAHASH\n\tif ( diffuseColor.a < getAlphaHashThreshold( vPosition ) ) discard;\n#endif"; var alphahash_pars_fragment = "#ifdef USE_ALPHAHASH\n\tconst float ALPHA_HASH_SCALE = 0.05;\n\tfloat hash2D( vec2 value ) {\n\t\treturn fract( 1.0e4 * sin( 17.0 * value.x + 0.1 * value.y ) * ( 0.1 + abs( sin( 13.0 * value.y + value.x ) ) ) );\n\t}\n\tfloat hash3D( vec3 value ) {\n\t\treturn hash2D( vec2( hash2D( value.xy ), value.z ) );\n\t}\n\tfloat getAlphaHashThreshold( vec3 position ) {\n\t\tfloat maxDeriv = max(\n\t\t\tlength( dFdx( position.xyz ) ),\n\t\t\tlength( dFdy( position.xyz ) )\n\t\t);\n\t\tfloat pixScale = 1.0 / ( ALPHA_HASH_SCALE * maxDeriv );\n\t\tvec2 pixScales = vec2(\n\t\t\texp2( floor( log2( pixScale ) ) ),\n\t\t\texp2( ceil( log2( pixScale ) ) )\n\t\t);\n\t\tvec2 alpha = vec2(\n\t\t\thash3D( floor( pixScales.x * position.xyz ) ),\n\t\t\thash3D( floor( pixScales.y * position.xyz ) )\n\t\t);\n\t\tfloat lerpFactor = fract( log2( pixScale ) );\n\t\tfloat x = ( 1.0 - lerpFactor ) * alpha.x + lerpFactor * alpha.y;\n\t\tfloat a = min( lerpFactor, 1.0 - lerpFactor );\n\t\tvec3 cases = vec3(\n\t\t\tx * x / ( 2.0 * a * ( 1.0 - a ) ),\n\t\t\t( x - 0.5 * a ) / ( 1.0 - a ),\n\t\t\t1.0 - ( ( 1.0 - x ) * ( 1.0 - x ) / ( 2.0 * a * ( 1.0 - a ) ) )\n\t\t);\n\t\tfloat threshold = ( x < ( 1.0 - a ) )\n\t\t\t? ( ( x < a ) ? cases.x : cases.y )\n\t\t\t: cases.z;\n\t\treturn clamp( threshold , 1.0e-6, 1.0 );\n\t}\n#endif"; var alphamap_fragment = "#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, vAlphaMapUv ).g;\n#endif"; var alphamap_pars_fragment = "#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var alphatest_fragment = "#ifdef USE_ALPHATEST\n\t#ifdef ALPHA_TO_COVERAGE\n\tdiffuseColor.a = smoothstep( alphaTest, alphaTest + fwidth( diffuseColor.a ), diffuseColor.a );\n\tif ( diffuseColor.a == 0.0 ) discard;\n\t#else\n\tif ( diffuseColor.a < alphaTest ) discard;\n\t#endif\n#endif"; var alphatest_pars_fragment = "#ifdef USE_ALPHATEST\n\tuniform float alphaTest;\n#endif"; var aomap_fragment = "#ifdef USE_AOMAP\n\tfloat ambientOcclusion = ( texture2D( aoMap, vAoMapUv ).r - 1.0 ) * aoMapIntensity + 1.0;\n\treflectedLight.indirectDiffuse *= ambientOcclusion;\n\t#if defined( USE_CLEARCOAT ) \n\t\tclearcoatSpecularIndirect *= ambientOcclusion;\n\t#endif\n\t#if defined( USE_SHEEN ) \n\t\tsheenSpecularIndirect *= ambientOcclusion;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD )\n\t\tfloat dotNV = saturate( dot( geometryNormal, geometryViewDir ) );\n\t\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.roughness );\n\t#endif\n#endif"; var aomap_pars_fragment = "#ifdef USE_AOMAP\n\tuniform sampler2D aoMap;\n\tuniform float aoMapIntensity;\n#endif"; var batching_pars_vertex = "#ifdef USE_BATCHING\n\t#if ! defined( GL_ANGLE_multi_draw )\n\t#define gl_DrawID _gl_DrawID\n\tuniform int _gl_DrawID;\n\t#endif\n\tuniform highp sampler2D batchingTexture;\n\tuniform highp usampler2D batchingIdTexture;\n\tmat4 getBatchingMatrix( const in float i ) {\n\t\tint size = textureSize( batchingTexture, 0 ).x;\n\t\tint j = int( i ) * 4;\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\tvec4 v1 = texelFetch( batchingTexture, ivec2( x, y ), 0 );\n\t\tvec4 v2 = texelFetch( batchingTexture, ivec2( x + 1, y ), 0 );\n\t\tvec4 v3 = texelFetch( batchingTexture, ivec2( x + 2, y ), 0 );\n\t\tvec4 v4 = texelFetch( batchingTexture, ivec2( x + 3, y ), 0 );\n\t\treturn mat4( v1, v2, v3, v4 );\n\t}\n\tfloat getIndirectIndex( const in int i ) {\n\t\tint size = textureSize( batchingIdTexture, 0 ).x;\n\t\tint x = i % size;\n\t\tint y = i / size;\n\t\treturn float( texelFetch( batchingIdTexture, ivec2( x, y ), 0 ).r );\n\t}\n#endif\n#ifdef USE_BATCHING_COLOR\n\tuniform sampler2D batchingColorTexture;\n\tvec3 getBatchingColor( const in float i ) {\n\t\tint size = textureSize( batchingColorTexture, 0 ).x;\n\t\tint j = int( i );\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\treturn texelFetch( batchingColorTexture, ivec2( x, y ), 0 ).rgb;\n\t}\n#endif"; var batching_vertex = "#ifdef USE_BATCHING\n\tmat4 batchingMatrix = getBatchingMatrix( getIndirectIndex( gl_DrawID ) );\n#endif"; var begin_vertex = "vec3 transformed = vec3( position );\n#ifdef USE_ALPHAHASH\n\tvPosition = vec3( position );\n#endif"; var beginnormal_vertex = "vec3 objectNormal = vec3( normal );\n#ifdef USE_TANGENT\n\tvec3 objectTangent = vec3( tangent.xyz );\n#endif"; var bsdfs = "float G_BlinnPhong_Implicit( ) {\n\treturn 0.25;\n}\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\n\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\n}\nvec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( specularColor, 1.0, dotVH );\n\tfloat G = G_BlinnPhong_Implicit( );\n\tfloat D = D_BlinnPhong( shininess, dotNH );\n\treturn F * ( G * D );\n} // validated"; var iridescence_fragment = "#ifdef USE_IRIDESCENCE\n\tconst mat3 XYZ_TO_REC709 = mat3(\n\t\t 3.2404542, -0.9692660, 0.0556434,\n\t\t-1.5371385, 1.8760108, -0.2040259,\n\t\t-0.4985314, 0.0415560, 1.0572252\n\t);\n\tvec3 Fresnel0ToIor( vec3 fresnel0 ) {\n\t\tvec3 sqrtF0 = sqrt( fresnel0 );\n\t\treturn ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 );\n\t}\n\tvec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) );\n\t}\n\tfloat IorToFresnel0( float transmittedIor, float incidentIor ) {\n\t\treturn pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor ));\n\t}\n\tvec3 evalSensitivity( float OPD, vec3 shift ) {\n\t\tfloat phase = 2.0 * PI * OPD * 1.0e-9;\n\t\tvec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );\n\t\tvec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );\n\t\tvec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );\n\t\tvec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var );\n\t\txyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) );\n\t\txyz /= 1.0685e-7;\n\t\tvec3 rgb = XYZ_TO_REC709 * xyz;\n\t\treturn rgb;\n\t}\n\tvec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) {\n\t\tvec3 I;\n\t\tfloat iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );\n\t\tfloat sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) );\n\t\tfloat cosTheta2Sq = 1.0 - sinTheta2Sq;\n\t\tif ( cosTheta2Sq < 0.0 ) {\n\t\t\treturn vec3( 1.0 );\n\t\t}\n\t\tfloat cosTheta2 = sqrt( cosTheta2Sq );\n\t\tfloat R0 = IorToFresnel0( iridescenceIOR, outsideIOR );\n\t\tfloat R12 = F_Schlick( R0, 1.0, cosTheta1 );\n\t\tfloat T121 = 1.0 - R12;\n\t\tfloat phi12 = 0.0;\n\t\tif ( iridescenceIOR < outsideIOR ) phi12 = PI;\n\t\tfloat phi21 = PI - phi12;\n\t\tvec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) );\t\tvec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR );\n\t\tvec3 R23 = F_Schlick( R1, 1.0, cosTheta2 );\n\t\tvec3 phi23 = vec3( 0.0 );\n\t\tif ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI;\n\t\tif ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI;\n\t\tif ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI;\n\t\tfloat OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2;\n\t\tvec3 phi = vec3( phi21 ) + phi23;\n\t\tvec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 );\n\t\tvec3 r123 = sqrt( R123 );\n\t\tvec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 );\n\t\tvec3 C0 = R12 + Rs;\n\t\tI = C0;\n\t\tvec3 Cm = Rs - T121;\n\t\tfor ( int m = 1; m <= 2; ++ m ) {\n\t\t\tCm *= r123;\n\t\t\tvec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi );\n\t\t\tI += Cm * Sm;\n\t\t}\n\t\treturn max( I, vec3( 0.0 ) );\n\t}\n#endif"; var bumpmap_pars_fragment = "#ifdef USE_BUMPMAP\n\tuniform sampler2D bumpMap;\n\tuniform float bumpScale;\n\tvec2 dHdxy_fwd() {\n\t\tvec2 dSTdx = dFdx( vBumpMapUv );\n\t\tvec2 dSTdy = dFdy( vBumpMapUv );\n\t\tfloat Hll = bumpScale * texture2D( bumpMap, vBumpMapUv ).x;\n\t\tfloat dBx = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdx ).x - Hll;\n\t\tfloat dBy = bumpScale * texture2D( bumpMap, vBumpMapUv + dSTdy ).x - Hll;\n\t\treturn vec2( dBx, dBy );\n\t}\n\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) {\n\t\tvec3 vSigmaX = normalize( dFdx( surf_pos.xyz ) );\n\t\tvec3 vSigmaY = normalize( dFdy( surf_pos.xyz ) );\n\t\tvec3 vN = surf_norm;\n\t\tvec3 R1 = cross( vSigmaY, vN );\n\t\tvec3 R2 = cross( vN, vSigmaX );\n\t\tfloat fDet = dot( vSigmaX, R1 ) * faceDirection;\n\t\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\n\t\treturn normalize( abs( fDet ) * surf_norm - vGrad );\n\t}\n#endif"; var clipping_planes_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvec4 plane;\n\t#ifdef ALPHA_TO_COVERAGE\n\t\tfloat distanceToPlane, distanceGradient;\n\t\tfloat clipOpacity = 1.0;\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\tclipOpacity *= smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\tif ( clipOpacity == 0.0 ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tfloat unionClipOpacity = 1.0;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tdistanceToPlane = - dot( vClipPosition, plane.xyz ) + plane.w;\n\t\t\t\tdistanceGradient = fwidth( distanceToPlane ) / 2.0;\n\t\t\t\tunionClipOpacity *= 1.0 - smoothstep( - distanceGradient, distanceGradient, distanceToPlane );\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tclipOpacity *= 1.0 - unionClipOpacity;\n\t\t#endif\n\t\tdiffuseColor.a *= clipOpacity;\n\t\tif ( diffuseColor.a == 0.0 ) discard;\n\t#else\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\n\t\t\tplane = clippingPlanes[ i ];\n\t\t\tif ( dot( vClipPosition, plane.xyz ) > plane.w ) discard;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\n\t\t\tbool clipped = true;\n\t\t\t#pragma unroll_loop_start\n\t\t\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\n\t\t\t\tplane = clippingPlanes[ i ];\n\t\t\t\tclipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped;\n\t\t\t}\n\t\t\t#pragma unroll_loop_end\n\t\t\tif ( clipped ) discard;\n\t\t#endif\n\t#endif\n#endif"; var clipping_planes_pars_fragment = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\n#endif"; var clipping_planes_pars_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvarying vec3 vClipPosition;\n#endif"; var clipping_planes_vertex = "#if NUM_CLIPPING_PLANES > 0\n\tvClipPosition = - mvPosition.xyz;\n#endif"; var color_fragment = "#if defined( USE_COLOR_ALPHA )\n\tdiffuseColor *= vColor;\n#elif defined( USE_COLOR )\n\tdiffuseColor.rgb *= vColor;\n#endif"; var color_pars_fragment = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_pars_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvarying vec4 vColor;\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n\tvarying vec3 vColor;\n#endif"; var color_vertex = "#if defined( USE_COLOR_ALPHA )\n\tvColor = vec4( 1.0 );\n#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) || defined( USE_BATCHING_COLOR )\n\tvColor = vec3( 1.0 );\n#endif\n#ifdef USE_COLOR\n\tvColor *= color;\n#endif\n#ifdef USE_INSTANCING_COLOR\n\tvColor.xyz *= instanceColor.xyz;\n#endif\n#ifdef USE_BATCHING_COLOR\n\tvec3 batchingColor = getBatchingColor( getIndirectIndex( gl_DrawID ) );\n\tvColor.xyz *= batchingColor.xyz;\n#endif"; var common = "#define PI 3.141592653589793\n#define PI2 6.283185307179586\n#define PI_HALF 1.5707963267948966\n#define RECIPROCAL_PI 0.3183098861837907\n#define RECIPROCAL_PI2 0.15915494309189535\n#define EPSILON 1e-6\n#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\n#define whiteComplement( a ) ( 1.0 - saturate( a ) )\nfloat pow2( const in float x ) { return x*x; }\nvec3 pow2( const in vec3 x ) { return x*x; }\nfloat pow3( const in float x ) { return x*x*x; }\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\nfloat max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); }\nfloat average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); }\nhighp float rand( const in vec2 uv ) {\n\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\n\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\n\treturn fract( sin( sn ) * c );\n}\n#ifdef HIGH_PRECISION\n\tfloat precisionSafeLength( vec3 v ) { return length( v ); }\n#else\n\tfloat precisionSafeLength( vec3 v ) {\n\t\tfloat maxComponent = max3( abs( v ) );\n\t\treturn length( v / maxComponent ) * maxComponent;\n\t}\n#endif\nstruct IncidentLight {\n\tvec3 color;\n\tvec3 direction;\n\tbool visible;\n};\nstruct ReflectedLight {\n\tvec3 directDiffuse;\n\tvec3 directSpecular;\n\tvec3 indirectDiffuse;\n\tvec3 indirectSpecular;\n};\n#ifdef USE_ALPHAHASH\n\tvarying vec3 vPosition;\n#endif\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\n}\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\n\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\n}\nmat3 transposeMat3( const in mat3 m ) {\n\tmat3 tmp;\n\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\n\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\n\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\n\treturn tmp;\n}\nbool isPerspectiveMatrix( mat4 m ) {\n\treturn m[ 2 ][ 3 ] == - 1.0;\n}\nvec2 equirectUv( in vec3 dir ) {\n\tfloat u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5;\n\tfloat v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\n\treturn vec2( u, v );\n}\nvec3 BRDF_Lambert( const in vec3 diffuseColor ) {\n\treturn RECIPROCAL_PI * diffuseColor;\n}\nvec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n}\nfloat F_Schlick( const in float f0, const in float f90, const in float dotVH ) {\n\tfloat fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );\n\treturn f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );\n} // validated"; var cube_uv_reflection_fragment = "#ifdef ENVMAP_TYPE_CUBE_UV\n\t#define cubeUV_minMipLevel 4.0\n\t#define cubeUV_minTileSize 16.0\n\tfloat getFace( vec3 direction ) {\n\t\tvec3 absDirection = abs( direction );\n\t\tfloat face = - 1.0;\n\t\tif ( absDirection.x > absDirection.z ) {\n\t\t\tif ( absDirection.x > absDirection.y )\n\t\t\t\tface = direction.x > 0.0 ? 0.0 : 3.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t} else {\n\t\t\tif ( absDirection.z > absDirection.y )\n\t\t\t\tface = direction.z > 0.0 ? 2.0 : 5.0;\n\t\t\telse\n\t\t\t\tface = direction.y > 0.0 ? 1.0 : 4.0;\n\t\t}\n\t\treturn face;\n\t}\n\tvec2 getUV( vec3 direction, float face ) {\n\t\tvec2 uv;\n\t\tif ( face == 0.0 ) {\n\t\t\tuv = vec2( direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 1.0 ) {\n\t\t\tuv = vec2( - direction.x, - direction.z ) / abs( direction.y );\n\t\t} else if ( face == 2.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.y ) / abs( direction.z );\n\t\t} else if ( face == 3.0 ) {\n\t\t\tuv = vec2( - direction.z, direction.y ) / abs( direction.x );\n\t\t} else if ( face == 4.0 ) {\n\t\t\tuv = vec2( - direction.x, direction.z ) / abs( direction.y );\n\t\t} else {\n\t\t\tuv = vec2( direction.x, direction.y ) / abs( direction.z );\n\t\t}\n\t\treturn 0.5 * ( uv + 1.0 );\n\t}\n\tvec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) {\n\t\tfloat face = getFace( direction );\n\t\tfloat filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 );\n\t\tmipInt = max( mipInt, cubeUV_minMipLevel );\n\t\tfloat faceSize = exp2( mipInt );\n\t\thighp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0;\n\t\tif ( face > 2.0 ) {\n\t\t\tuv.y += faceSize;\n\t\t\tface -= 3.0;\n\t\t}\n\t\tuv.x += face * faceSize;\n\t\tuv.x += filterInt * 3.0 * cubeUV_minTileSize;\n\t\tuv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize );\n\t\tuv.x *= CUBEUV_TEXEL_WIDTH;\n\t\tuv.y *= CUBEUV_TEXEL_HEIGHT;\n\t\t#ifdef texture2DGradEXT\n\t\t\treturn texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb;\n\t\t#else\n\t\t\treturn texture2D( envMap, uv ).rgb;\n\t\t#endif\n\t}\n\t#define cubeUV_r0 1.0\n\t#define cubeUV_m0 - 2.0\n\t#define cubeUV_r1 0.8\n\t#define cubeUV_m1 - 1.0\n\t#define cubeUV_r4 0.4\n\t#define cubeUV_m4 2.0\n\t#define cubeUV_r5 0.305\n\t#define cubeUV_m5 3.0\n\t#define cubeUV_r6 0.21\n\t#define cubeUV_m6 4.0\n\tfloat roughnessToMip( float roughness ) {\n\t\tfloat mip = 0.0;\n\t\tif ( roughness >= cubeUV_r1 ) {\n\t\t\tmip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0;\n\t\t} else if ( roughness >= cubeUV_r4 ) {\n\t\t\tmip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1;\n\t\t} else if ( roughness >= cubeUV_r5 ) {\n\t\t\tmip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4;\n\t\t} else if ( roughness >= cubeUV_r6 ) {\n\t\t\tmip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5;\n\t\t} else {\n\t\t\tmip = - 2.0 * log2( 1.16 * roughness );\t\t}\n\t\treturn mip;\n\t}\n\tvec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) {\n\t\tfloat mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP );\n\t\tfloat mipF = fract( mip );\n\t\tfloat mipInt = floor( mip );\n\t\tvec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt );\n\t\tif ( mipF == 0.0 ) {\n\t\t\treturn vec4( color0, 1.0 );\n\t\t} else {\n\t\t\tvec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 );\n\t\t\treturn vec4( mix( color0, color1, mipF ), 1.0 );\n\t\t}\n\t}\n#endif"; var defaultnormal_vertex = "vec3 transformedNormal = objectNormal;\n#ifdef USE_TANGENT\n\tvec3 transformedTangent = objectTangent;\n#endif\n#ifdef USE_BATCHING\n\tmat3 bm = mat3( batchingMatrix );\n\ttransformedNormal /= vec3( dot( bm[ 0 ], bm[ 0 ] ), dot( bm[ 1 ], bm[ 1 ] ), dot( bm[ 2 ], bm[ 2 ] ) );\n\ttransformedNormal = bm * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = bm * transformedTangent;\n\t#endif\n#endif\n#ifdef USE_INSTANCING\n\tmat3 im = mat3( instanceMatrix );\n\ttransformedNormal /= vec3( dot( im[ 0 ], im[ 0 ] ), dot( im[ 1 ], im[ 1 ] ), dot( im[ 2 ], im[ 2 ] ) );\n\ttransformedNormal = im * transformedNormal;\n\t#ifdef USE_TANGENT\n\t\ttransformedTangent = im * transformedTangent;\n\t#endif\n#endif\ntransformedNormal = normalMatrix * transformedNormal;\n#ifdef FLIP_SIDED\n\ttransformedNormal = - transformedNormal;\n#endif\n#ifdef USE_TANGENT\n\ttransformedTangent = ( modelViewMatrix * vec4( transformedTangent, 0.0 ) ).xyz;\n\t#ifdef FLIP_SIDED\n\t\ttransformedTangent = - transformedTangent;\n\t#endif\n#endif"; var displacementmap_pars_vertex = "#ifdef USE_DISPLACEMENTMAP\n\tuniform sampler2D displacementMap;\n\tuniform float displacementScale;\n\tuniform float displacementBias;\n#endif"; var displacementmap_vertex = "#ifdef USE_DISPLACEMENTMAP\n\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, vDisplacementMapUv ).x * displacementScale + displacementBias );\n#endif"; var emissivemap_fragment = "#ifdef USE_EMISSIVEMAP\n\tvec4 emissiveColor = texture2D( emissiveMap, vEmissiveMapUv );\n\ttotalEmissiveRadiance *= emissiveColor.rgb;\n#endif"; var emissivemap_pars_fragment = "#ifdef USE_EMISSIVEMAP\n\tuniform sampler2D emissiveMap;\n#endif"; var colorspace_fragment = "gl_FragColor = linearToOutputTexel( gl_FragColor );"; var colorspace_pars_fragment = "\nconst mat3 LINEAR_SRGB_TO_LINEAR_DISPLAY_P3 = mat3(\n\tvec3( 0.8224621, 0.177538, 0.0 ),\n\tvec3( 0.0331941, 0.9668058, 0.0 ),\n\tvec3( 0.0170827, 0.0723974, 0.9105199 )\n);\nconst mat3 LINEAR_DISPLAY_P3_TO_LINEAR_SRGB = mat3(\n\tvec3( 1.2249401, - 0.2249404, 0.0 ),\n\tvec3( - 0.0420569, 1.0420571, 0.0 ),\n\tvec3( - 0.0196376, - 0.0786361, 1.0982735 )\n);\nvec4 LinearSRGBToLinearDisplayP3( in vec4 value ) {\n\treturn vec4( value.rgb * LINEAR_SRGB_TO_LINEAR_DISPLAY_P3, value.a );\n}\nvec4 LinearDisplayP3ToLinearSRGB( in vec4 value ) {\n\treturn vec4( value.rgb * LINEAR_DISPLAY_P3_TO_LINEAR_SRGB, value.a );\n}\nvec4 LinearTransferOETF( in vec4 value ) {\n\treturn value;\n}\nvec4 sRGBTransferOETF( in vec4 value ) {\n\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\n}"; var envmap_fragment = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvec3 cameraToFrag;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToFrag = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToFrag = normalize( vWorldPosition - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvec3 reflectVec = reflect( cameraToFrag, worldNormal );\n\t\t#else\n\t\t\tvec3 reflectVec = refract( cameraToFrag, worldNormal, refractionRatio );\n\t\t#endif\n\t#else\n\t\tvec3 reflectVec = vReflect;\n\t#endif\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 envColor = textureCube( envMap, envMapRotation * vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\n\t#else\n\t\tvec4 envColor = vec4( 0.0 );\n\t#endif\n\t#ifdef ENVMAP_BLENDING_MULTIPLY\n\t\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_MIX )\n\t\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\n\t#elif defined( ENVMAP_BLENDING_ADD )\n\t\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\n\t#endif\n#endif"; var envmap_common_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float envMapIntensity;\n\tuniform float flipEnvMap;\n\tuniform mat3 envMapRotation;\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tuniform samplerCube envMap;\n\t#else\n\t\tuniform sampler2D envMap;\n\t#endif\n\t\n#endif"; var envmap_pars_fragment = "#ifdef USE_ENVMAP\n\tuniform float reflectivity;\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\tvarying vec3 vWorldPosition;\n\t\tuniform float refractionRatio;\n\t#else\n\t\tvarying vec3 vReflect;\n\t#endif\n#endif"; var envmap_pars_vertex = "#ifdef USE_ENVMAP\n\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( LAMBERT )\n\t\t#define ENV_WORLDPOS\n\t#endif\n\t#ifdef ENV_WORLDPOS\n\t\t\n\t\tvarying vec3 vWorldPosition;\n\t#else\n\t\tvarying vec3 vReflect;\n\t\tuniform float refractionRatio;\n\t#endif\n#endif"; var envmap_vertex = "#ifdef USE_ENVMAP\n\t#ifdef ENV_WORLDPOS\n\t\tvWorldPosition = worldPosition.xyz;\n\t#else\n\t\tvec3 cameraToVertex;\n\t\tif ( isOrthographic ) {\n\t\t\tcameraToVertex = normalize( vec3( - viewMatrix[ 0 ][ 2 ], - viewMatrix[ 1 ][ 2 ], - viewMatrix[ 2 ][ 2 ] ) );\n\t\t} else {\n\t\t\tcameraToVertex = normalize( worldPosition.xyz - cameraPosition );\n\t\t}\n\t\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\t\t#ifdef ENVMAP_MODE_REFLECTION\n\t\t\tvReflect = reflect( cameraToVertex, worldNormal );\n\t\t#else\n\t\t\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\n\t\t#endif\n\t#endif\n#endif"; var fog_vertex = "#ifdef USE_FOG\n\tvFogDepth = - mvPosition.z;\n#endif"; var fog_pars_vertex = "#ifdef USE_FOG\n\tvarying float vFogDepth;\n#endif"; var fog_fragment = "#ifdef USE_FOG\n\t#ifdef FOG_EXP2\n\t\tfloat fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth );\n\t#else\n\t\tfloat fogFactor = smoothstep( fogNear, fogFar, vFogDepth );\n\t#endif\n\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\n#endif"; var fog_pars_fragment = "#ifdef USE_FOG\n\tuniform vec3 fogColor;\n\tvarying float vFogDepth;\n\t#ifdef FOG_EXP2\n\t\tuniform float fogDensity;\n\t#else\n\t\tuniform float fogNear;\n\t\tuniform float fogFar;\n\t#endif\n#endif"; var gradientmap_pars_fragment = "#ifdef USE_GRADIENTMAP\n\tuniform sampler2D gradientMap;\n#endif\nvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\n\tfloat dotNL = dot( normal, lightDirection );\n\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\n\t#ifdef USE_GRADIENTMAP\n\t\treturn vec3( texture2D( gradientMap, coord ).r );\n\t#else\n\t\tvec2 fw = fwidth( coord ) * 0.5;\n\t\treturn mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( 0.7 - fw.x, 0.7 + fw.x, coord.x ) );\n\t#endif\n}"; var lightmap_pars_fragment = "#ifdef USE_LIGHTMAP\n\tuniform sampler2D lightMap;\n\tuniform float lightMapIntensity;\n#endif"; var lights_lambert_fragment = "LambertMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularStrength = specularStrength;"; var lights_lambert_pars_fragment = "varying vec3 vViewPosition;\nstruct LambertMaterial {\n\tvec3 diffuseColor;\n\tfloat specularStrength;\n};\nvoid RE_Direct_Lambert( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Lambert( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in LambertMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Lambert\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Lambert"; var lights_pars_begin = "uniform bool receiveShadow;\nuniform vec3 ambientLightColor;\n#if defined( USE_LIGHT_PROBES )\n\tuniform vec3 lightProbe[ 9 ];\n#endif\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\n\tfloat x = normal.x, y = normal.y, z = normal.z;\n\tvec3 result = shCoefficients[ 0 ] * 0.886227;\n\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\n\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\n\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\n\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\n\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\n\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\n\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\n\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\n\treturn result;\n}\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) {\n\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\n\treturn irradiance;\n}\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\n\tvec3 irradiance = ambientLightColor;\n\treturn irradiance;\n}\nfloat getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\n\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\n\tif ( cutoffDistance > 0.0 ) {\n\t\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\n\t}\n\treturn distanceFalloff;\n}\nfloat getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) {\n\treturn smoothstep( coneCosine, penumbraCosine, angleCosine );\n}\n#if NUM_DIR_LIGHTS > 0\n\tstruct DirectionalLight {\n\t\tvec3 direction;\n\t\tvec3 color;\n\t};\n\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\n\tvoid getDirectionalLightInfo( const in DirectionalLight directionalLight, out IncidentLight light ) {\n\t\tlight.color = directionalLight.color;\n\t\tlight.direction = directionalLight.direction;\n\t\tlight.visible = true;\n\t}\n#endif\n#if NUM_POINT_LIGHTS > 0\n\tstruct PointLight {\n\t\tvec3 position;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t};\n\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\n\tvoid getPointLightInfo( const in PointLight pointLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = pointLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat lightDistance = length( lVector );\n\t\tlight.color = pointLight.color;\n\t\tlight.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay );\n\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t}\n#endif\n#if NUM_SPOT_LIGHTS > 0\n\tstruct SpotLight {\n\t\tvec3 position;\n\t\tvec3 direction;\n\t\tvec3 color;\n\t\tfloat distance;\n\t\tfloat decay;\n\t\tfloat coneCos;\n\t\tfloat penumbraCos;\n\t};\n\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\n\tvoid getSpotLightInfo( const in SpotLight spotLight, const in vec3 geometryPosition, out IncidentLight light ) {\n\t\tvec3 lVector = spotLight.position - geometryPosition;\n\t\tlight.direction = normalize( lVector );\n\t\tfloat angleCos = dot( light.direction, spotLight.direction );\n\t\tfloat spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos );\n\t\tif ( spotAttenuation > 0.0 ) {\n\t\t\tfloat lightDistance = length( lVector );\n\t\t\tlight.color = spotLight.color * spotAttenuation;\n\t\t\tlight.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay );\n\t\t\tlight.visible = ( light.color != vec3( 0.0 ) );\n\t\t} else {\n\t\t\tlight.color = vec3( 0.0 );\n\t\t\tlight.visible = false;\n\t\t}\n\t}\n#endif\n#if NUM_RECT_AREA_LIGHTS > 0\n\tstruct RectAreaLight {\n\t\tvec3 color;\n\t\tvec3 position;\n\t\tvec3 halfWidth;\n\t\tvec3 halfHeight;\n\t};\n\tuniform sampler2D ltc_1;\tuniform sampler2D ltc_2;\n\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\n#endif\n#if NUM_HEMI_LIGHTS > 0\n\tstruct HemisphereLight {\n\t\tvec3 direction;\n\t\tvec3 skyColor;\n\t\tvec3 groundColor;\n\t};\n\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\n\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) {\n\t\tfloat dotNL = dot( normal, hemiLight.direction );\n\t\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\n\t\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\n\t\treturn irradiance;\n\t}\n#endif"; var envmap_physical_pars_fragment = "#ifdef USE_ENVMAP\n\tvec3 getIBLIrradiance( const in vec3 normal ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * worldNormal, 1.0 );\n\t\t\treturn PI * envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\tvec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) {\n\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\tvec3 reflectVec = reflect( - viewDir, normal );\n\t\t\treflectVec = normalize( mix( reflectVec, normal, roughness * roughness) );\n\t\t\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\n\t\t\tvec4 envMapColor = textureCubeUV( envMap, envMapRotation * reflectVec, roughness );\n\t\t\treturn envMapColor.rgb * envMapIntensity;\n\t\t#else\n\t\t\treturn vec3( 0.0 );\n\t\t#endif\n\t}\n\t#ifdef USE_ANISOTROPY\n\t\tvec3 getIBLAnisotropyRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness, const in vec3 bitangent, const in float anisotropy ) {\n\t\t\t#ifdef ENVMAP_TYPE_CUBE_UV\n\t\t\t\tvec3 bentNormal = cross( bitangent, viewDir );\n\t\t\t\tbentNormal = normalize( cross( bentNormal, bitangent ) );\n\t\t\t\tbentNormal = normalize( mix( bentNormal, normal, pow2( pow2( 1.0 - anisotropy * ( 1.0 - roughness ) ) ) ) );\n\t\t\t\treturn getIBLRadiance( viewDir, bentNormal, roughness );\n\t\t\t#else\n\t\t\t\treturn vec3( 0.0 );\n\t\t\t#endif\n\t\t}\n\t#endif\n#endif"; var lights_toon_fragment = "ToonMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;"; var lights_toon_pars_fragment = "varying vec3 vViewPosition;\nstruct ToonMaterial {\n\tvec3 diffuseColor;\n};\nvoid RE_Direct_Toon( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\tvec3 irradiance = getGradientIrradiance( geometryNormal, directLight.direction ) * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Toon( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in ToonMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_Toon\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Toon"; var lights_phong_fragment = "BlinnPhongMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb;\nmaterial.specularColor = specular;\nmaterial.specularShininess = shininess;\nmaterial.specularStrength = specularStrength;"; var lights_phong_pars_fragment = "varying vec3 vViewPosition;\nstruct BlinnPhongMaterial {\n\tvec3 diffuseColor;\n\tvec3 specularColor;\n\tfloat specularShininess;\n\tfloat specularStrength;\n};\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n\treflectedLight.directSpecular += irradiance * BRDF_BlinnPhong( directLight.direction, geometryViewDir, geometryNormal, material.specularColor, material.specularShininess ) * material.specularStrength;\n}\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\n#define RE_Direct\t\t\t\tRE_Direct_BlinnPhong\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_BlinnPhong"; var lights_physical_fragment = "PhysicalMaterial material;\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\nvec3 dxy = max( abs( dFdx( nonPerturbedNormal ) ), abs( dFdy( nonPerturbedNormal ) ) );\nfloat geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );\nmaterial.roughness = max( roughnessFactor, 0.0525 );material.roughness += geometryRoughness;\nmaterial.roughness = min( material.roughness, 1.0 );\n#ifdef IOR\n\tmaterial.ior = ior;\n\t#ifdef USE_SPECULAR\n\t\tfloat specularIntensityFactor = specularIntensity;\n\t\tvec3 specularColorFactor = specularColor;\n\t\t#ifdef USE_SPECULAR_COLORMAP\n\t\t\tspecularColorFactor *= texture2D( specularColorMap, vSpecularColorMapUv ).rgb;\n\t\t#endif\n\t\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\t\tspecularIntensityFactor *= texture2D( specularIntensityMap, vSpecularIntensityMapUv ).a;\n\t\t#endif\n\t\tmaterial.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor );\n\t#else\n\t\tfloat specularIntensityFactor = 1.0;\n\t\tvec3 specularColorFactor = vec3( 1.0 );\n\t\tmaterial.specularF90 = 1.0;\n\t#endif\n\tmaterial.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor );\n#else\n\tmaterial.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor );\n\tmaterial.specularF90 = 1.0;\n#endif\n#ifdef USE_CLEARCOAT\n\tmaterial.clearcoat = clearcoat;\n\tmaterial.clearcoatRoughness = clearcoatRoughness;\n\tmaterial.clearcoatF0 = vec3( 0.04 );\n\tmaterial.clearcoatF90 = 1.0;\n\t#ifdef USE_CLEARCOATMAP\n\t\tmaterial.clearcoat *= texture2D( clearcoatMap, vClearcoatMapUv ).x;\n\t#endif\n\t#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\t\tmaterial.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vClearcoatRoughnessMapUv ).y;\n\t#endif\n\tmaterial.clearcoat = saturate( material.clearcoat );\tmaterial.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 );\n\tmaterial.clearcoatRoughness += geometryRoughness;\n\tmaterial.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 );\n#endif\n#ifdef USE_DISPERSION\n\tmaterial.dispersion = dispersion;\n#endif\n#ifdef USE_IRIDESCENCE\n\tmaterial.iridescence = iridescence;\n\tmaterial.iridescenceIOR = iridescenceIOR;\n\t#ifdef USE_IRIDESCENCEMAP\n\t\tmaterial.iridescence *= texture2D( iridescenceMap, vIridescenceMapUv ).r;\n\t#endif\n\t#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\t\tmaterial.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vIridescenceThicknessMapUv ).g + iridescenceThicknessMinimum;\n\t#else\n\t\tmaterial.iridescenceThickness = iridescenceThicknessMaximum;\n\t#endif\n#endif\n#ifdef USE_SHEEN\n\tmaterial.sheenColor = sheenColor;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tmaterial.sheenColor *= texture2D( sheenColorMap, vSheenColorMapUv ).rgb;\n\t#endif\n\tmaterial.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 );\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tmaterial.sheenRoughness *= texture2D( sheenRoughnessMap, vSheenRoughnessMapUv ).a;\n\t#endif\n#endif\n#ifdef USE_ANISOTROPY\n\t#ifdef USE_ANISOTROPYMAP\n\t\tmat2 anisotropyMat = mat2( anisotropyVector.x, anisotropyVector.y, - anisotropyVector.y, anisotropyVector.x );\n\t\tvec3 anisotropyPolar = texture2D( anisotropyMap, vAnisotropyMapUv ).rgb;\n\t\tvec2 anisotropyV = anisotropyMat * normalize( 2.0 * anisotropyPolar.rg - vec2( 1.0 ) ) * anisotropyPolar.b;\n\t#else\n\t\tvec2 anisotropyV = anisotropyVector;\n\t#endif\n\tmaterial.anisotropy = length( anisotropyV );\n\tif( material.anisotropy == 0.0 ) {\n\t\tanisotropyV = vec2( 1.0, 0.0 );\n\t} else {\n\t\tanisotropyV /= material.anisotropy;\n\t\tmaterial.anisotropy = saturate( material.anisotropy );\n\t}\n\tmaterial.alphaT = mix( pow2( material.roughness ), 1.0, pow2( material.anisotropy ) );\n\tmaterial.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;\n\tmaterial.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;\n#endif"; var lights_physical_pars_fragment = "struct PhysicalMaterial {\n\tvec3 diffuseColor;\n\tfloat roughness;\n\tvec3 specularColor;\n\tfloat specularF90;\n\tfloat dispersion;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat clearcoat;\n\t\tfloat clearcoatRoughness;\n\t\tvec3 clearcoatF0;\n\t\tfloat clearcoatF90;\n\t#endif\n\t#ifdef USE_IRIDESCENCE\n\t\tfloat iridescence;\n\t\tfloat iridescenceIOR;\n\t\tfloat iridescenceThickness;\n\t\tvec3 iridescenceFresnel;\n\t\tvec3 iridescenceF0;\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tvec3 sheenColor;\n\t\tfloat sheenRoughness;\n\t#endif\n\t#ifdef IOR\n\t\tfloat ior;\n\t#endif\n\t#ifdef USE_TRANSMISSION\n\t\tfloat transmission;\n\t\tfloat transmissionAlpha;\n\t\tfloat thickness;\n\t\tfloat attenuationDistance;\n\t\tvec3 attenuationColor;\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat anisotropy;\n\t\tfloat alphaT;\n\t\tvec3 anisotropyT;\n\t\tvec3 anisotropyB;\n\t#endif\n};\nvec3 clearcoatSpecularDirect = vec3( 0.0 );\nvec3 clearcoatSpecularIndirect = vec3( 0.0 );\nvec3 sheenSpecularDirect = vec3( 0.0 );\nvec3 sheenSpecularIndirect = vec3(0.0 );\nvec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {\n float x = clamp( 1.0 - dotVH, 0.0, 1.0 );\n float x2 = x * x;\n float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );\n return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );\n}\nfloat V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\n\tfloat a2 = pow2( alpha );\n\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\n\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\n\treturn 0.5 / max( gv + gl, EPSILON );\n}\nfloat D_GGX( const in float alpha, const in float dotNH ) {\n\tfloat a2 = pow2( alpha );\n\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\n\treturn RECIPROCAL_PI * a2 / pow2( denom );\n}\n#ifdef USE_ANISOTROPY\n\tfloat V_GGX_SmithCorrelated_Anisotropic( const in float alphaT, const in float alphaB, const in float dotTV, const in float dotBV, const in float dotTL, const in float dotBL, const in float dotNV, const in float dotNL ) {\n\t\tfloat gv = dotNL * length( vec3( alphaT * dotTV, alphaB * dotBV, dotNV ) );\n\t\tfloat gl = dotNV * length( vec3( alphaT * dotTL, alphaB * dotBL, dotNL ) );\n\t\tfloat v = 0.5 / ( gv + gl );\n\t\treturn saturate(v);\n\t}\n\tfloat D_GGX_Anisotropic( const in float alphaT, const in float alphaB, const in float dotNH, const in float dotTH, const in float dotBH ) {\n\t\tfloat a2 = alphaT * alphaB;\n\t\thighp vec3 v = vec3( alphaB * dotTH, alphaT * dotBH, a2 * dotNH );\n\t\thighp float v2 = dot( v, v );\n\t\tfloat w2 = a2 / v2;\n\t\treturn RECIPROCAL_PI * a2 * pow2 ( w2 );\n\t}\n#endif\n#ifdef USE_CLEARCOAT\n\tvec3 BRDF_GGX_Clearcoat( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material) {\n\t\tvec3 f0 = material.clearcoatF0;\n\t\tfloat f90 = material.clearcoatF90;\n\t\tfloat roughness = material.clearcoatRoughness;\n\t\tfloat alpha = pow2( roughness );\n\t\tvec3 halfDir = normalize( lightDir + viewDir );\n\t\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\t\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\t\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\t\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\t\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t\treturn F * ( V * D );\n\t}\n#endif\nvec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {\n\tvec3 f0 = material.specularColor;\n\tfloat f90 = material.specularF90;\n\tfloat roughness = material.roughness;\n\tfloat alpha = pow2( roughness );\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat dotVH = saturate( dot( viewDir, halfDir ) );\n\tvec3 F = F_Schlick( f0, f90, dotVH );\n\t#ifdef USE_IRIDESCENCE\n\t\tF = mix( F, material.iridescenceFresnel, material.iridescence );\n\t#endif\n\t#ifdef USE_ANISOTROPY\n\t\tfloat dotTL = dot( material.anisotropyT, lightDir );\n\t\tfloat dotTV = dot( material.anisotropyT, viewDir );\n\t\tfloat dotTH = dot( material.anisotropyT, halfDir );\n\t\tfloat dotBL = dot( material.anisotropyB, lightDir );\n\t\tfloat dotBV = dot( material.anisotropyB, viewDir );\n\t\tfloat dotBH = dot( material.anisotropyB, halfDir );\n\t\tfloat V = V_GGX_SmithCorrelated_Anisotropic( material.alphaT, alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL );\n\t\tfloat D = D_GGX_Anisotropic( material.alphaT, alpha, dotNH, dotTH, dotBH );\n\t#else\n\t\tfloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );\n\t\tfloat D = D_GGX( alpha, dotNH );\n\t#endif\n\treturn F * ( V * D );\n}\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\n\tconst float LUT_SIZE = 64.0;\n\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\n\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\n\tfloat dotNV = saturate( dot( N, V ) );\n\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\n\tuv = uv * LUT_SCALE + LUT_BIAS;\n\treturn uv;\n}\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\n\tfloat l = length( f );\n\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\n}\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\n\tfloat x = dot( v1, v2 );\n\tfloat y = abs( x );\n\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\n\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\n\tfloat v = a / b;\n\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\n\treturn cross( v1, v2 ) * theta_sintheta;\n}\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\n\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\n\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\n\tvec3 lightNormal = cross( v1, v2 );\n\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\n\tvec3 T1, T2;\n\tT1 = normalize( V - N * dot( V, N ) );\n\tT2 = - cross( N, T1 );\n\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\n\tvec3 coords[ 4 ];\n\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\n\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\n\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\n\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\n\tcoords[ 0 ] = normalize( coords[ 0 ] );\n\tcoords[ 1 ] = normalize( coords[ 1 ] );\n\tcoords[ 2 ] = normalize( coords[ 2 ] );\n\tcoords[ 3 ] = normalize( coords[ 3 ] );\n\tvec3 vectorFormFactor = vec3( 0.0 );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\n\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\n\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\n\treturn vec3( result );\n}\n#if defined( USE_SHEEN )\nfloat D_Charlie( float roughness, float dotNH ) {\n\tfloat alpha = pow2( roughness );\n\tfloat invAlpha = 1.0 / alpha;\n\tfloat cos2h = dotNH * dotNH;\n\tfloat sin2h = max( 1.0 - cos2h, 0.0078125 );\n\treturn ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );\n}\nfloat V_Neubelt( float dotNV, float dotNL ) {\n\treturn saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );\n}\nvec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {\n\tvec3 halfDir = normalize( lightDir + viewDir );\n\tfloat dotNL = saturate( dot( normal, lightDir ) );\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat dotNH = saturate( dot( normal, halfDir ) );\n\tfloat D = D_Charlie( sheenRoughness, dotNH );\n\tfloat V = V_Neubelt( dotNV, dotNL );\n\treturn sheenColor * ( D * V );\n}\n#endif\nfloat IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tfloat r2 = roughness * roughness;\n\tfloat a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95;\n\tfloat b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72;\n\tfloat DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) );\n\treturn saturate( DG * RECIPROCAL_PI );\n}\nvec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) {\n\tfloat dotNV = saturate( dot( normal, viewDir ) );\n\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\n\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\n\tvec4 r = roughness * c0 + c1;\n\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\n\tvec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw;\n\treturn fab;\n}\nvec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) {\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\treturn specularColor * fab.x + specularF90 * fab.y;\n}\n#ifdef USE_IRIDESCENCE\nvoid computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#else\nvoid computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\n#endif\n\tvec2 fab = DFGApprox( normal, viewDir, roughness );\n\t#ifdef USE_IRIDESCENCE\n\t\tvec3 Fr = mix( specularColor, iridescenceF0, iridescence );\n\t#else\n\t\tvec3 Fr = specularColor;\n\t#endif\n\tvec3 FssEss = Fr * fab.x + specularF90 * fab.y;\n\tfloat Ess = fab.x + fab.y;\n\tfloat Ems = 1.0 - Ess;\n\tvec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619;\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\n\tsingleScatter += FssEss;\n\tmultiScatter += Fms * Ems;\n}\n#if NUM_RECT_AREA_LIGHTS > 0\n\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\t\tvec3 normal = geometryNormal;\n\t\tvec3 viewDir = geometryViewDir;\n\t\tvec3 position = geometryPosition;\n\t\tvec3 lightPos = rectAreaLight.position;\n\t\tvec3 halfWidth = rectAreaLight.halfWidth;\n\t\tvec3 halfHeight = rectAreaLight.halfHeight;\n\t\tvec3 lightColor = rectAreaLight.color;\n\t\tfloat roughness = material.roughness;\n\t\tvec3 rectCoords[ 4 ];\n\t\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\t\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\n\t\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\n\t\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\n\t\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\n\t\tvec4 t1 = texture2D( ltc_1, uv );\n\t\tvec4 t2 = texture2D( ltc_2, uv );\n\t\tmat3 mInv = mat3(\n\t\t\tvec3( t1.x, 0, t1.y ),\n\t\t\tvec3( 0, 1, 0 ),\n\t\t\tvec3( t1.z, 0, t1.w )\n\t\t);\n\t\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\n\t\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\n\t\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\n\t}\n#endif\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\tfloat dotNL = saturate( dot( geometryNormal, directLight.direction ) );\n\tvec3 irradiance = dotNL * directLight.color;\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNLcc = saturate( dot( geometryClearcoatNormal, directLight.direction ) );\n\t\tvec3 ccIrradiance = dotNLcc * directLight.color;\n\t\tclearcoatSpecularDirect += ccIrradiance * BRDF_GGX_Clearcoat( directLight.direction, geometryViewDir, geometryClearcoatNormal, material );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularDirect += irradiance * BRDF_Sheen( directLight.direction, geometryViewDir, geometryNormal, material.sheenColor, material.sheenRoughness );\n\t#endif\n\treflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometryViewDir, geometryNormal, material );\n\treflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\n\treflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor );\n}\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatSpecularIndirect += clearcoatRadiance * EnvironmentBRDF( geometryClearcoatNormal, geometryViewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness );\n\t#endif\n\t#ifdef USE_SHEEN\n\t\tsheenSpecularIndirect += irradiance * material.sheenColor * IBLSheenBRDF( geometryNormal, geometryViewDir, material.sheenRoughness );\n\t#endif\n\tvec3 singleScattering = vec3( 0.0 );\n\tvec3 multiScattering = vec3( 0.0 );\n\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\n\t#ifdef USE_IRIDESCENCE\n\t\tcomputeMultiscatteringIridescence( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering );\n\t#else\n\t\tcomputeMultiscattering( geometryNormal, geometryViewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering );\n\t#endif\n\tvec3 totalScattering = singleScattering + multiScattering;\n\tvec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) );\n\treflectedLight.indirectSpecular += radiance * singleScattering;\n\treflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance;\n\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\n}\n#define RE_Direct\t\t\t\tRE_Direct_Physical\n#define RE_Direct_RectArea\t\tRE_Direct_RectArea_Physical\n#define RE_IndirectDiffuse\t\tRE_IndirectDiffuse_Physical\n#define RE_IndirectSpecular\t\tRE_IndirectSpecular_Physical\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\n\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\n}"; var lights_fragment_begin = "\nvec3 geometryPosition = - vViewPosition;\nvec3 geometryNormal = normal;\nvec3 geometryViewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition );\nvec3 geometryClearcoatNormal = vec3( 0.0 );\n#ifdef USE_CLEARCOAT\n\tgeometryClearcoatNormal = clearcoatNormal;\n#endif\n#ifdef USE_IRIDESCENCE\n\tfloat dotNVi = saturate( dot( normal, geometryViewDir ) );\n\tif ( material.iridescenceThickness == 0.0 ) {\n\t\tmaterial.iridescence = 0.0;\n\t} else {\n\t\tmaterial.iridescence = saturate( material.iridescence );\n\t}\n\tif ( material.iridescence > 0.0 ) {\n\t\tmaterial.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor );\n\t\tmaterial.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi );\n\t}\n#endif\nIncidentLight directLight;\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\n\tPointLight pointLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\n\t\tpointLight = pointLights[ i ];\n\t\tgetPointLightInfo( pointLight, geometryPosition, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )\n\t\tpointLightShadow = pointLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowIntensity, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\n\tSpotLight spotLight;\n\tvec4 spotColor;\n\tvec3 spotLightCoord;\n\tbool inSpotLightMap;\n\t#if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\n\t\tspotLight = spotLights[ i ];\n\t\tgetSpotLightInfo( spotLight, geometryPosition, directLight );\n\t\t#if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX\n\t\t#elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t#define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS\n\t\t#else\n\t\t#define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS )\n\t\t#endif\n\t\t#if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS )\n\t\t\tspotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w;\n\t\t\tinSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) );\n\t\t\tspotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy );\n\t\t\tdirectLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color;\n\t\t#endif\n\t\t#undef SPOT_LIGHT_MAP_INDEX\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\tspotLightShadow = spotLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowIntensity, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\n\tDirectionalLight directionalLight;\n\t#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLightShadow;\n\t#endif\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\n\t\tdirectionalLight = directionalLights[ i ];\n\t\tgetDirectionalLightInfo( directionalLight, directLight );\n\t\t#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )\n\t\tdirectionalLightShadow = directionalLightShadows[ i ];\n\t\tdirectLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowIntensity, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t\t#endif\n\t\tRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\n\tRectAreaLight rectAreaLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\n\t\trectAreaLight = rectAreaLights[ i ];\n\t\tRE_Direct_RectArea( rectAreaLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n\t}\n\t#pragma unroll_loop_end\n#endif\n#if defined( RE_IndirectDiffuse )\n\tvec3 iblIrradiance = vec3( 0.0 );\n\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\n\t#if defined( USE_LIGHT_PROBES )\n\t\tirradiance += getLightProbeIrradiance( lightProbe, geometryNormal );\n\t#endif\n\t#if ( NUM_HEMI_LIGHTS > 0 )\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\n\t\t\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometryNormal );\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if defined( RE_IndirectSpecular )\n\tvec3 radiance = vec3( 0.0 );\n\tvec3 clearcoatRadiance = vec3( 0.0 );\n#endif"; var lights_fragment_maps = "#if defined( RE_IndirectDiffuse )\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\tvec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity;\n\t\tirradiance += lightMapIrradiance;\n\t#endif\n\t#if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV )\n\t\tiblIrradiance += getIBLIrradiance( geometryNormal );\n\t#endif\n#endif\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\n\t#ifdef USE_ANISOTROPY\n\t\tradiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );\n\t#else\n\t\tradiance += getIBLRadiance( geometryViewDir, geometryNormal, material.roughness );\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tclearcoatRadiance += getIBLRadiance( geometryViewDir, geometryClearcoatNormal, material.clearcoatRoughness );\n\t#endif\n#endif"; var lights_fragment_end = "#if defined( RE_IndirectDiffuse )\n\tRE_IndirectDiffuse( irradiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif\n#if defined( RE_IndirectSpecular )\n\tRE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );\n#endif"; var logdepthbuf_fragment = "#if defined( USE_LOGDEPTHBUF )\n\tgl_FragDepth = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5;\n#endif"; var logdepthbuf_pars_fragment = "#if defined( USE_LOGDEPTHBUF )\n\tuniform float logDepthBufFC;\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; var logdepthbuf_pars_vertex = "#ifdef USE_LOGDEPTHBUF\n\tvarying float vFragDepth;\n\tvarying float vIsPerspective;\n#endif"; var logdepthbuf_vertex = "#ifdef USE_LOGDEPTHBUF\n\tvFragDepth = 1.0 + gl_Position.w;\n\tvIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) );\n#endif"; var map_fragment = "#ifdef USE_MAP\n#ifdef USE_MIPMAP_BIAS\n vec4 sampledDiffuseColor = texture2D( map, vMapUv, mipmapBias );\n#else\n\tvec4 sampledDiffuseColor = texture2D( map, vMapUv );\n#endif\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\tsampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w );\n\t\n\t#endif\n\tdiffuseColor *= sampledDiffuseColor;\n#endif"; var map_pars_fragment = "#ifdef USE_MAP\n\tuniform sampler2D map;\n \n#ifdef USE_MIPMAP_BIAS\n uniform float mipmapBias;\n#endif\n#endif"; var map_particle_fragment = "#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t#if defined( USE_POINTS_UV )\n\t\tvec2 uv = vUv;\n\t#else\n\t\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tdiffuseColor *= texture2D( map, uv );\n#endif\n#ifdef USE_ALPHAMAP\n\tdiffuseColor.a *= texture2D( alphaMap, uv ).g;\n#endif"; var map_particle_pars_fragment = "#if defined( USE_POINTS_UV )\n\tvarying vec2 vUv;\n#else\n\t#if defined( USE_MAP ) || defined( USE_ALPHAMAP )\n\t\tuniform mat3 uvTransform;\n\t#endif\n#endif\n#ifdef USE_MAP\n\tuniform sampler2D map;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform sampler2D alphaMap;\n#endif"; var metalnessmap_fragment = "float metalnessFactor = metalness;\n#ifdef USE_METALNESSMAP\n\tvec4 texelMetalness = texture2D( metalnessMap, vMetalnessMapUv );\n\tmetalnessFactor *= texelMetalness.b;\n#endif"; var metalnessmap_pars_fragment = "#ifdef USE_METALNESSMAP\n\tuniform sampler2D metalnessMap;\n#endif"; var morphinstance_vertex = "#ifdef USE_INSTANCING_MORPH\n\tfloat morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\tfloat morphTargetBaseInfluence = texelFetch( morphTexture, ivec2( 0, gl_InstanceID ), 0 ).r;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tmorphTargetInfluences[i] = texelFetch( morphTexture, ivec2( i + 1, gl_InstanceID ), 0 ).r;\n\t}\n#endif"; var morphcolor_vertex = "#if defined( USE_MORPHCOLORS )\n\tvColor *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\t#if defined( USE_COLOR_ALPHA )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ];\n\t\t#elif defined( USE_COLOR )\n\t\t\tif ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ];\n\t\t#endif\n\t}\n#endif"; var morphnormal_vertex = "#ifdef USE_MORPHNORMALS\n\tobjectNormal *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tif ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ];\n\t}\n#endif"; var morphtarget_pars_vertex = "#ifdef USE_MORPHTARGETS\n\t#ifndef USE_INSTANCING_MORPH\n\t\tuniform float morphTargetBaseInfluence;\n\t\tuniform float morphTargetInfluences[ MORPHTARGETS_COUNT ];\n\t#endif\n\tuniform sampler2DArray morphTargetsTexture;\n\tuniform ivec2 morphTargetsTextureSize;\n\tvec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) {\n\t\tint texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset;\n\t\tint y = texelIndex / morphTargetsTextureSize.x;\n\t\tint x = texelIndex - y * morphTargetsTextureSize.x;\n\t\tivec3 morphUV = ivec3( x, y, morphTargetIndex );\n\t\treturn texelFetch( morphTargetsTexture, morphUV, 0 );\n\t}\n#endif"; var morphtarget_vertex = "#ifdef USE_MORPHTARGETS\n\ttransformed *= morphTargetBaseInfluence;\n\tfor ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) {\n\t\tif ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ];\n\t}\n#endif"; var normal_fragment_begin = "float faceDirection = gl_FrontFacing ? 1.0 : - 1.0;\n#ifdef FLAT_SHADED\n\tvec3 fdx = dFdx( vViewPosition );\n\tvec3 fdy = dFdy( vViewPosition );\n\tvec3 normal = normalize( cross( fdx, fdy ) );\n#else\n\tvec3 normal = normalize( vNormal );\n\t#ifdef DOUBLE_SIDED\n\t\tnormal *= faceDirection;\n\t#endif\n#endif\n#if defined( USE_NORMALMAP_TANGENTSPACE ) || defined( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY )\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn = getTangentFrame( - vViewPosition, normal,\n\t\t#if defined( USE_NORMALMAP )\n\t\t\tvNormalMapUv\n\t\t#elif defined( USE_CLEARCOAT_NORMALMAP )\n\t\t\tvClearcoatNormalMapUv\n\t\t#else\n\t\t\tvUv\n\t\t#endif\n\t\t);\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn[0] *= faceDirection;\n\t\ttbn[1] *= faceDirection;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\t#ifdef USE_TANGENT\n\t\tmat3 tbn2 = mat3( normalize( vTangent ), normalize( vBitangent ), normal );\n\t#else\n\t\tmat3 tbn2 = getTangentFrame( - vViewPosition, normal, vClearcoatNormalMapUv );\n\t#endif\n\t#if defined( DOUBLE_SIDED ) && ! defined( FLAT_SHADED )\n\t\ttbn2[0] *= faceDirection;\n\t\ttbn2[1] *= faceDirection;\n\t#endif\n#endif\nvec3 nonPerturbedNormal = normal;"; var normal_fragment_maps = "#ifdef USE_NORMALMAP_OBJECTSPACE\n\tnormal = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\t#ifdef FLIP_SIDED\n\t\tnormal = - normal;\n\t#endif\n\t#ifdef DOUBLE_SIDED\n\t\tnormal = normal * faceDirection;\n\t#endif\n\tnormal = normalize( normalMatrix * normal );\n#elif defined( USE_NORMALMAP_TANGENTSPACE )\n\tvec3 mapN = texture2D( normalMap, vNormalMapUv ).xyz * 2.0 - 1.0;\n\tmapN.xy *= normalScale;\n\tnormal = normalize( tbn * mapN );\n#elif defined( USE_BUMPMAP )\n\tnormal = perturbNormalArb( - vViewPosition, normal, dHdxy_fwd(), faceDirection );\n#endif"; var normal_pars_fragment = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_pars_vertex = "#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n\t#ifdef USE_TANGENT\n\t\tvarying vec3 vTangent;\n\t\tvarying vec3 vBitangent;\n\t#endif\n#endif"; var normal_vertex = "#ifndef FLAT_SHADED\n\tvNormal = normalize( transformedNormal );\n\t#ifdef USE_TANGENT\n\t\tvTangent = normalize( transformedTangent );\n\t\tvBitangent = normalize( cross( vNormal, vTangent ) * tangent.w );\n\t#endif\n#endif"; var normalmap_pars_fragment = "#ifdef USE_NORMALMAP\n\tuniform sampler2D normalMap;\n\tuniform vec2 normalScale;\n#endif\n#ifdef USE_NORMALMAP_OBJECTSPACE\n\tuniform mat3 normalMatrix;\n#endif\n#if ! defined ( USE_TANGENT ) && ( defined ( USE_NORMALMAP_TANGENTSPACE ) || defined ( USE_CLEARCOAT_NORMALMAP ) || defined( USE_ANISOTROPY ) )\n\tmat3 getTangentFrame( vec3 eye_pos, vec3 surf_norm, vec2 uv ) {\n\t\tvec3 q0 = dFdx( eye_pos.xyz );\n\t\tvec3 q1 = dFdy( eye_pos.xyz );\n\t\tvec2 st0 = dFdx( uv.st );\n\t\tvec2 st1 = dFdy( uv.st );\n\t\tvec3 N = surf_norm;\n\t\tvec3 q1perp = cross( q1, N );\n\t\tvec3 q0perp = cross( N, q0 );\n\t\tvec3 T = q1perp * st0.x + q0perp * st1.x;\n\t\tvec3 B = q1perp * st0.y + q0perp * st1.y;\n\t\tfloat det = max( dot( T, T ), dot( B, B ) );\n\t\tfloat scale = ( det == 0.0 ) ? 0.0 : inversesqrt( det );\n\t\treturn mat3( T * scale, B * scale, N );\n\t}\n#endif"; var clearcoat_normal_fragment_begin = "#ifdef USE_CLEARCOAT\n\tvec3 clearcoatNormal = nonPerturbedNormal;\n#endif"; var clearcoat_normal_fragment_maps = "#ifdef USE_CLEARCOAT_NORMALMAP\n\tvec3 clearcoatMapN = texture2D( clearcoatNormalMap, vClearcoatNormalMapUv ).xyz * 2.0 - 1.0;\n\tclearcoatMapN.xy *= clearcoatNormalScale;\n\tclearcoatNormal = normalize( tbn2 * clearcoatMapN );\n#endif"; var clearcoat_pars_fragment = "#ifdef USE_CLEARCOATMAP\n\tuniform sampler2D clearcoatMap;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform sampler2D clearcoatNormalMap;\n\tuniform vec2 clearcoatNormalScale;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform sampler2D clearcoatRoughnessMap;\n#endif"; var iridescence_pars_fragment = "#ifdef USE_IRIDESCENCEMAP\n\tuniform sampler2D iridescenceMap;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform sampler2D iridescenceThicknessMap;\n#endif"; var opaque_fragment = "#ifdef OPAQUE\ndiffuseColor.a = 1.0;\n#endif\n#ifdef USE_TRANSMISSION\ndiffuseColor.a *= material.transmissionAlpha;\n#endif\ngl_FragColor = vec4( outgoingLight, diffuseColor.a );"; var packing = "vec3 packNormalToRGB( const in vec3 normal ) {\n\treturn normalize( normal ) * 0.5 + 0.5;\n}\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\n\treturn 2.0 * rgb.xyz - 1.0;\n}\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;const float ShiftRight8 = 1. / 256.;\nconst float Inv255 = 1. / 255.;\nconst vec4 PackFactors = vec4( 1.0, 256.0, 256.0 * 256.0, 256.0 * 256.0 * 256.0 );\nconst vec2 UnpackFactors2 = vec2( UnpackDownscale, 1.0 / PackFactors.g );\nconst vec3 UnpackFactors3 = vec3( UnpackDownscale / PackFactors.rg, 1.0 / PackFactors.b );\nconst vec4 UnpackFactors4 = vec4( UnpackDownscale / PackFactors.rgb, 1.0 / PackFactors.a );\nvec4 packDepthToRGBA( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec4( 0., 0., 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec4( 1., 1., 1., 1. );\n\tfloat vuf;\n\tfloat af = modf( v * PackFactors.a, vuf );\n\tfloat bf = modf( vuf * ShiftRight8, vuf );\n\tfloat gf = modf( vuf * ShiftRight8, vuf );\n\treturn vec4( vuf * Inv255, gf * PackUpscale, bf * PackUpscale, af );\n}\nvec3 packDepthToRGB( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec3( 0., 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec3( 1., 1., 1. );\n\tfloat vuf;\n\tfloat bf = modf( v * PackFactors.b, vuf );\n\tfloat gf = modf( vuf * ShiftRight8, vuf );\n\treturn vec3( vuf * Inv255, gf * PackUpscale, bf );\n}\nvec2 packDepthToRG( const in float v ) {\n\tif( v <= 0.0 )\n\t\treturn vec2( 0., 0. );\n\tif( v >= 1.0 )\n\t\treturn vec2( 1., 1. );\n\tfloat vuf;\n\tfloat gf = modf( v * 256., vuf );\n\treturn vec2( vuf * Inv255, gf );\n}\nfloat unpackRGBAToDepth( const in vec4 v ) {\n\treturn dot( v, UnpackFactors4 );\n}\nfloat unpackRGBToDepth( const in vec3 v ) {\n\treturn dot( v, UnpackFactors3 );\n}\nfloat unpackRGToDepth( const in vec2 v ) {\n\treturn v.r * UnpackFactors2.r + v.g * UnpackFactors2.g;\n}\nvec4 pack2HalfToRGBA( const in vec2 v ) {\n\tvec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) );\n\treturn vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w );\n}\nvec2 unpackRGBATo2Half( const in vec4 v ) {\n\treturn vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );\n}\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( viewZ + near ) / ( near - far );\n}\nfloat orthographicDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn depth * ( near - far ) - near;\n}\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\n\treturn ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ );\n}\nfloat perspectiveDepthToViewZ( const in float depth, const in float near, const in float far ) {\n\treturn ( near * far ) / ( ( far - near ) * depth - far );\n}"; var premultiplied_alpha_fragment = "#ifdef PREMULTIPLIED_ALPHA\n\tgl_FragColor.rgb *= gl_FragColor.a;\n#endif"; var project_vertex = "vec4 mvPosition = vec4( transformed, 1.0 );\n#ifdef USE_BATCHING\n\tmvPosition = batchingMatrix * mvPosition;\n#endif\n#ifdef USE_INSTANCING\n\tmvPosition = instanceMatrix * mvPosition;\n#endif\nmvPosition = modelViewMatrix * mvPosition;\ngl_Position = projectionMatrix * mvPosition;"; var dithering_fragment = "#ifdef DITHERING\n\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\n#endif"; var dithering_pars_fragment = "#ifdef DITHERING\n\tvec3 dithering( vec3 color ) {\n\t\tfloat grid_position = rand( gl_FragCoord.xy );\n\t\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\n\t\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\n\t\treturn color + dither_shift_RGB;\n\t}\n#endif"; var roughnessmap_fragment = "float roughnessFactor = roughness;\n#ifdef USE_ROUGHNESSMAP\n\tvec4 texelRoughness = texture2D( roughnessMap, vRoughnessMapUv );\n\troughnessFactor *= texelRoughness.g;\n#endif"; var roughnessmap_pars_fragment = "#ifdef USE_ROUGHNESSMAP\n\tuniform sampler2D roughnessMap;\n#endif"; var shadowmap_pars_fragment = "#if NUM_SPOT_LIGHT_COORDS > 0\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#if NUM_SPOT_LIGHT_MAPS > 0\n\tuniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ];\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\n\t\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\n\t}\n\tvec2 texture2DDistribution( sampler2D shadow, vec2 uv ) {\n\t\treturn unpackRGBATo2Half( texture2D( shadow, uv ) );\n\t}\n\tfloat VSMShadow (sampler2D shadow, vec2 uv, float compare ){\n\t\tfloat occlusion = 1.0;\n\t\tvec2 distribution = texture2DDistribution( shadow, uv );\n\t\tfloat hard_shadow = step( compare , distribution.x );\n\t\tif (hard_shadow != 1.0 ) {\n\t\t\tfloat distance = compare - distribution.x ;\n\t\t\tfloat variance = max( 0.00000, distribution.y * distribution.y );\n\t\t\tfloat softness_probability = variance / (variance + distance * distance );\t\t\tsoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 );\t\t\tocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );\n\t\t}\n\t\treturn occlusion;\n\t}\n\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\n\t\tfloat shadow = 1.0;\n\t\tshadowCoord.xyz /= shadowCoord.w;\n\t\tshadowCoord.z += shadowBias;\n\t\tbool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0;\n\t\tbool frustumTest = inFrustum && shadowCoord.z <= 1.0;\n\t\tif ( frustumTest ) {\n\t\t#if defined( SHADOWMAP_TYPE_PCF )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx0 = - texelSize.x * shadowRadius;\n\t\t\tfloat dy0 = - texelSize.y * shadowRadius;\n\t\t\tfloat dx1 = + texelSize.x * shadowRadius;\n\t\t\tfloat dy1 = + texelSize.y * shadowRadius;\n\t\t\tfloat dx2 = dx0 / 2.0;\n\t\t\tfloat dy2 = dy0 / 2.0;\n\t\t\tfloat dx3 = dx1 / 2.0;\n\t\t\tfloat dy3 = dy1 / 2.0;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\n\t\t\t) * ( 1.0 / 17.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\n\t\t\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\n\t\t\tfloat dx = texelSize.x;\n\t\t\tfloat dy = texelSize.y;\n\t\t\tvec2 uv = shadowCoord.xy;\n\t\t\tvec2 f = fract( uv * shadowMapSize + 0.5 );\n\t\t\tuv -= f * texelSize;\n\t\t\tshadow = (\n\t\t\t\ttexture2DCompare( shadowMap, uv, shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) +\n\t\t\t\ttexture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ),\n\t\t\t\t\t f.x ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t f.y ) +\n\t\t\t\tmix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ),\n\t\t\t\t\t\t f.x ),\n\t\t\t\t\t f.y )\n\t\t\t) * ( 1.0 / 9.0 );\n\t\t#elif defined( SHADOWMAP_TYPE_VSM )\n\t\t\tshadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#else\n\t\t\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\n\t\t#endif\n\t\t}\n\t\treturn mix( 1.0, shadow, shadowIntensity );\n\t}\n\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\n\t\tvec3 absV = abs( v );\n\t\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\n\t\tabsV *= scaleToCube;\n\t\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\n\t\tvec2 planar = v.xy;\n\t\tfloat almostATexel = 1.5 * texelSizeY;\n\t\tfloat almostOne = 1.0 - almostATexel;\n\t\tif ( absV.z >= almostOne ) {\n\t\t\tif ( v.z > 0.0 )\n\t\t\t\tplanar.x = 4.0 - v.x;\n\t\t} else if ( absV.x >= almostOne ) {\n\t\t\tfloat signX = sign( v.x );\n\t\t\tplanar.x = v.z * signX + 2.0 * signX;\n\t\t} else if ( absV.y >= almostOne ) {\n\t\t\tfloat signY = sign( v.y );\n\t\t\tplanar.x = v.x + 2.0 * signY + 2.0;\n\t\t\tplanar.y = v.z * signY - 2.0;\n\t\t}\n\t\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\n\t}\n\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowIntensity, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\n\t\tfloat shadow = 1.0;\n\t\tvec3 lightToPosition = shadowCoord.xyz;\n\t\t\n\t\tfloat lightToPositionLength = length( lightToPosition );\n\t\tif ( lightToPositionLength - shadowCameraFar <= 0.0 && lightToPositionLength - shadowCameraNear >= 0.0 ) {\n\t\t\tfloat dp = ( lightToPositionLength - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\t\t\tdp += shadowBias;\n\t\t\tvec3 bd3D = normalize( lightToPosition );\n\t\t\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\n\t\t\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM )\n\t\t\t\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\n\t\t\t\tshadow = (\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\n\t\t\t\t\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\n\t\t\t\t) * ( 1.0 / 9.0 );\n\t\t\t#else\n\t\t\t\tshadow = texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\n\t\t\t#endif\n\t\t}\n\t\treturn mix( 1.0, shadow, shadowIntensity );\n\t}\n#endif"; var shadowmap_pars_vertex = "#if NUM_SPOT_LIGHT_COORDS > 0\n\tuniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ];\n\tvarying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ];\n#endif\n#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];\n\t\tstruct DirectionalLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\t\tstruct SpotLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t};\n\t\tuniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ];\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ];\n\t\tstruct PointLightShadow {\n\t\t\tfloat shadowIntensity;\n\t\t\tfloat shadowBias;\n\t\t\tfloat shadowNormalBias;\n\t\t\tfloat shadowRadius;\n\t\t\tvec2 shadowMapSize;\n\t\t\tfloat shadowCameraNear;\n\t\t\tfloat shadowCameraFar;\n\t\t};\n\t\tuniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ];\n\t#endif\n#endif"; var shadowmap_vertex = "#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 )\n\tvec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\n\tvec4 shadowWorldPosition;\n#endif\n#if defined( USE_SHADOWMAP )\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\t\t#pragma unroll_loop_start\n\t\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\t\tshadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 );\n\t\t\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition;\n\t\t}\n\t\t#pragma unroll_loop_end\n\t#endif\n#endif\n#if NUM_SPOT_LIGHT_COORDS > 0\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) {\n\t\tshadowWorldPosition = worldPosition;\n\t\t#if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS )\n\t\t\tshadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias;\n\t\t#endif\n\t\tvSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition;\n\t}\n\t#pragma unroll_loop_end\n#endif"; var shadowmask_pars_fragment = "float getShadowMask() {\n\tfloat shadow = 1.0;\n\t#ifdef USE_SHADOWMAP\n\t#if NUM_DIR_LIGHT_SHADOWS > 0\n\tDirectionalLightShadow directionalLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {\n\t\tdirectionalLight = directionalLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowIntensity, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_SPOT_LIGHT_SHADOWS > 0\n\tSpotLightShadow spotLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_SPOT_LIGHT_SHADOWS; i ++ ) {\n\t\tspotLight = spotLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowIntensity, spotLight.shadowBias, spotLight.shadowRadius, vSpotLightCoord[ i ] ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#if NUM_POINT_LIGHT_SHADOWS > 0\n\tPointLightShadow pointLight;\n\t#pragma unroll_loop_start\n\tfor ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) {\n\t\tpointLight = pointLightShadows[ i ];\n\t\tshadow *= receiveShadow ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowIntensity, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\n\t}\n\t#pragma unroll_loop_end\n\t#endif\n\t#endif\n\treturn shadow;\n}"; var skinbase_vertex = "#ifdef USE_SKINNING\n\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\n\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\n\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\n\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\n#endif"; var skinning_pars_vertex = "#ifdef USE_SKINNING\n\tuniform mat4 bindMatrix;\n\tuniform mat4 bindMatrixInverse;\n\tuniform highp sampler2D boneTexture;\n\tmat4 getBoneMatrix( const in float i ) {\n\t\tint size = textureSize( boneTexture, 0 ).x;\n\t\tint j = int( i ) * 4;\n\t\tint x = j % size;\n\t\tint y = j / size;\n\t\tvec4 v1 = texelFetch( boneTexture, ivec2( x, y ), 0 );\n\t\tvec4 v2 = texelFetch( boneTexture, ivec2( x + 1, y ), 0 );\n\t\tvec4 v3 = texelFetch( boneTexture, ivec2( x + 2, y ), 0 );\n\t\tvec4 v4 = texelFetch( boneTexture, ivec2( x + 3, y ), 0 );\n\t\treturn mat4( v1, v2, v3, v4 );\n\t}\n#endif"; var skinning_vertex = "#ifdef USE_SKINNING\n\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\n\tvec4 skinned = vec4( 0.0 );\n\tskinned += boneMatX * skinVertex * skinWeight.x;\n\tskinned += boneMatY * skinVertex * skinWeight.y;\n\tskinned += boneMatZ * skinVertex * skinWeight.z;\n\tskinned += boneMatW * skinVertex * skinWeight.w;\n\ttransformed = ( bindMatrixInverse * skinned ).xyz;\n#endif"; var skinnormal_vertex = "#ifdef USE_SKINNING\n\tmat4 skinMatrix = mat4( 0.0 );\n\tskinMatrix += skinWeight.x * boneMatX;\n\tskinMatrix += skinWeight.y * boneMatY;\n\tskinMatrix += skinWeight.z * boneMatZ;\n\tskinMatrix += skinWeight.w * boneMatW;\n\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\n\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\n\t#ifdef USE_TANGENT\n\t\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\n\t#endif\n#endif"; var specularmap_fragment = "float specularStrength;\n#ifdef USE_SPECULARMAP\n\tvec4 texelSpecular = texture2D( specularMap, vSpecularMapUv );\n\tspecularStrength = texelSpecular.r;\n#else\n\tspecularStrength = 1.0;\n#endif"; var specularmap_pars_fragment = "#ifdef USE_SPECULARMAP\n\tuniform sampler2D specularMap;\n#endif"; var tonemapping_fragment = "#if defined( TONE_MAPPING )\n\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\n#endif"; var tonemapping_pars_fragment = "#ifndef saturate\n#define saturate( a ) clamp( a, 0.0, 1.0 )\n#endif\nuniform float toneMappingExposure;\nvec3 LinearToneMapping( vec3 color ) {\n\treturn saturate( toneMappingExposure * color );\n}\nvec3 ReinhardToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\treturn saturate( color / ( vec3( 1.0 ) + color ) );\n}\nvec3 CineonToneMapping( vec3 color ) {\n\tcolor *= toneMappingExposure;\n\tcolor = max( vec3( 0.0 ), color - 0.004 );\n\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\n}\nvec3 RRTAndODTFit( vec3 v ) {\n\tvec3 a = v * ( v + 0.0245786 ) - 0.000090537;\n\tvec3 b = v * ( 0.983729 * v + 0.4329510 ) + 0.238081;\n\treturn a / b;\n}\nvec3 ACESFilmicToneMapping( vec3 color ) {\n\tconst mat3 ACESInputMat = mat3(\n\t\tvec3( 0.59719, 0.07600, 0.02840 ),\t\tvec3( 0.35458, 0.90834, 0.13383 ),\n\t\tvec3( 0.04823, 0.01566, 0.83777 )\n\t);\n\tconst mat3 ACESOutputMat = mat3(\n\t\tvec3( 1.60475, -0.10208, -0.00327 ),\t\tvec3( -0.53108, 1.10813, -0.07276 ),\n\t\tvec3( -0.07367, -0.00605, 1.07602 )\n\t);\n\tcolor *= toneMappingExposure / 0.6;\n\tcolor = ACESInputMat * color;\n\tcolor = RRTAndODTFit( color );\n\tcolor = ACESOutputMat * color;\n\treturn saturate( color );\n}\nconst mat3 LINEAR_REC2020_TO_LINEAR_SRGB = mat3(\n\tvec3( 1.6605, - 0.1246, - 0.0182 ),\n\tvec3( - 0.5876, 1.1329, - 0.1006 ),\n\tvec3( - 0.0728, - 0.0083, 1.1187 )\n);\nconst mat3 LINEAR_SRGB_TO_LINEAR_REC2020 = mat3(\n\tvec3( 0.6274, 0.0691, 0.0164 ),\n\tvec3( 0.3293, 0.9195, 0.0880 ),\n\tvec3( 0.0433, 0.0113, 0.8956 )\n);\nvec3 agxDefaultContrastApprox( vec3 x ) {\n\tvec3 x2 = x * x;\n\tvec3 x4 = x2 * x2;\n\treturn + 15.5 * x4 * x2\n\t\t- 40.14 * x4 * x\n\t\t+ 31.96 * x4\n\t\t- 6.868 * x2 * x\n\t\t+ 0.4298 * x2\n\t\t+ 0.1191 * x\n\t\t- 0.00232;\n}\nvec3 AgXToneMapping( vec3 color ) {\n\tconst mat3 AgXInsetMatrix = mat3(\n\t\tvec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ),\n\t\tvec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ),\n\t\tvec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 )\n\t);\n\tconst mat3 AgXOutsetMatrix = mat3(\n\t\tvec3( 1.1271005818144368, - 0.1413297634984383, - 0.14132976349843826 ),\n\t\tvec3( - 0.11060664309660323, 1.157823702216272, - 0.11060664309660294 ),\n\t\tvec3( - 0.016493938717834573, - 0.016493938717834257, 1.2519364065950405 )\n\t);\n\tconst float AgxMinEv = - 12.47393;\tconst float AgxMaxEv = 4.026069;\n\tcolor *= toneMappingExposure;\n\tcolor = LINEAR_SRGB_TO_LINEAR_REC2020 * color;\n\tcolor = AgXInsetMatrix * color;\n\tcolor = max( color, 1e-10 );\tcolor = log2( color );\n\tcolor = ( color - AgxMinEv ) / ( AgxMaxEv - AgxMinEv );\n\tcolor = clamp( color, 0.0, 1.0 );\n\tcolor = agxDefaultContrastApprox( color );\n\tcolor = AgXOutsetMatrix * color;\n\tcolor = pow( max( vec3( 0.0 ), color ), vec3( 2.2 ) );\n\tcolor = LINEAR_REC2020_TO_LINEAR_SRGB * color;\n\tcolor = clamp( color, 0.0, 1.0 );\n\treturn color;\n}\nvec3 NeutralToneMapping( vec3 color ) {\n\tconst float StartCompression = 0.8 - 0.04;\n\tconst float Desaturation = 0.15;\n\tcolor *= toneMappingExposure;\n\tfloat x = min( color.r, min( color.g, color.b ) );\n\tfloat offset = x < 0.08 ? x - 6.25 * x * x : 0.04;\n\tcolor -= offset;\n\tfloat peak = max( color.r, max( color.g, color.b ) );\n\tif ( peak < StartCompression ) return color;\n\tfloat d = 1. - StartCompression;\n\tfloat newPeak = 1. - d * d / ( peak + d - StartCompression );\n\tcolor *= newPeak / peak;\n\tfloat g = 1. - 1. / ( Desaturation * ( peak - newPeak ) + 1. );\n\treturn mix( color, vec3( newPeak ), g );\n}\nvec3 CustomToneMapping( vec3 color ) { return color; }"; var transmission_fragment = "#ifdef USE_TRANSMISSION\n\tmaterial.transmission = transmission;\n\tmaterial.transmissionAlpha = 1.0;\n\tmaterial.thickness = thickness;\n\tmaterial.attenuationDistance = attenuationDistance;\n\tmaterial.attenuationColor = attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tmaterial.transmission *= texture2D( transmissionMap, vTransmissionMapUv ).r;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tmaterial.thickness *= texture2D( thicknessMap, vThicknessMapUv ).g;\n\t#endif\n\tvec3 pos = vWorldPosition;\n\tvec3 v = normalize( cameraPosition - pos );\n\tvec3 n = inverseTransformDirection( normal, viewMatrix );\n\tvec4 transmitted = getIBLVolumeRefraction(\n\t\tn, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90,\n\t\tpos, modelMatrix, viewMatrix, projectionMatrix, material.dispersion, material.ior, material.thickness,\n\t\tmaterial.attenuationColor, material.attenuationDistance );\n\tmaterial.transmissionAlpha = mix( material.transmissionAlpha, transmitted.a, material.transmission );\n\ttotalDiffuse = mix( totalDiffuse, transmitted.rgb, material.transmission );\n#endif"; var transmission_pars_fragment = "#ifdef USE_TRANSMISSION\n\tuniform float transmission;\n\tuniform float thickness;\n\tuniform float attenuationDistance;\n\tuniform vec3 attenuationColor;\n\t#ifdef USE_TRANSMISSIONMAP\n\t\tuniform sampler2D transmissionMap;\n\t#endif\n\t#ifdef USE_THICKNESSMAP\n\t\tuniform sampler2D thicknessMap;\n\t#endif\n\tuniform vec2 transmissionSamplerSize;\n\tuniform sampler2D transmissionSamplerMap;\n\tuniform mat4 modelMatrix;\n\tuniform mat4 projectionMatrix;\n\tvarying vec3 vWorldPosition;\n\tfloat w0( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - a + 3.0 ) - 3.0 ) + 1.0 );\n\t}\n\tfloat w1( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * ( 3.0 * a - 6.0 ) + 4.0 );\n\t}\n\tfloat w2( float a ){\n\t\treturn ( 1.0 / 6.0 ) * ( a * ( a * ( - 3.0 * a + 3.0 ) + 3.0 ) + 1.0 );\n\t}\n\tfloat w3( float a ) {\n\t\treturn ( 1.0 / 6.0 ) * ( a * a * a );\n\t}\n\tfloat g0( float a ) {\n\t\treturn w0( a ) + w1( a );\n\t}\n\tfloat g1( float a ) {\n\t\treturn w2( a ) + w3( a );\n\t}\n\tfloat h0( float a ) {\n\t\treturn - 1.0 + w1( a ) / ( w0( a ) + w1( a ) );\n\t}\n\tfloat h1( float a ) {\n\t\treturn 1.0 + w3( a ) / ( w2( a ) + w3( a ) );\n\t}\n\tvec4 bicubic( sampler2D tex, vec2 uv, vec4 texelSize, float lod ) {\n\t\tuv = uv * texelSize.zw + 0.5;\n\t\tvec2 iuv = floor( uv );\n\t\tvec2 fuv = fract( uv );\n\t\tfloat g0x = g0( fuv.x );\n\t\tfloat g1x = g1( fuv.x );\n\t\tfloat h0x = h0( fuv.x );\n\t\tfloat h1x = h1( fuv.x );\n\t\tfloat h0y = h0( fuv.y );\n\t\tfloat h1y = h1( fuv.y );\n\t\tvec2 p0 = ( vec2( iuv.x + h0x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p1 = ( vec2( iuv.x + h1x, iuv.y + h0y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p2 = ( vec2( iuv.x + h0x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\tvec2 p3 = ( vec2( iuv.x + h1x, iuv.y + h1y ) - 0.5 ) * texelSize.xy;\n\t\treturn g0( fuv.y ) * ( g0x * textureLod( tex, p0, lod ) + g1x * textureLod( tex, p1, lod ) ) +\n\t\t\tg1( fuv.y ) * ( g0x * textureLod( tex, p2, lod ) + g1x * textureLod( tex, p3, lod ) );\n\t}\n\tvec4 textureBicubic( sampler2D sampler, vec2 uv, float lod ) {\n\t\tvec2 fLodSize = vec2( textureSize( sampler, int( lod ) ) );\n\t\tvec2 cLodSize = vec2( textureSize( sampler, int( lod + 1.0 ) ) );\n\t\tvec2 fLodSizeInv = 1.0 / fLodSize;\n\t\tvec2 cLodSizeInv = 1.0 / cLodSize;\n\t\tvec4 fSample = bicubic( sampler, uv, vec4( fLodSizeInv, fLodSize ), floor( lod ) );\n\t\tvec4 cSample = bicubic( sampler, uv, vec4( cLodSizeInv, cLodSize ), ceil( lod ) );\n\t\treturn mix( fSample, cSample, fract( lod ) );\n\t}\n\tvec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) {\n\t\tvec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior );\n\t\tvec3 modelScale;\n\t\tmodelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) );\n\t\tmodelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) );\n\t\tmodelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) );\n\t\treturn normalize( refractionVector ) * thickness * modelScale;\n\t}\n\tfloat applyIorToRoughness( const in float roughness, const in float ior ) {\n\t\treturn roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 );\n\t}\n\tvec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) {\n\t\tfloat lod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior );\n\t\treturn textureBicubic( transmissionSamplerMap, fragCoord.xy, lod );\n\t}\n\tvec3 volumeAttenuation( const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tif ( isinf( attenuationDistance ) ) {\n\t\t\treturn vec3( 1.0 );\n\t\t} else {\n\t\t\tvec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance;\n\t\t\tvec3 transmittance = exp( - attenuationCoefficient * transmissionDistance );\t\t\treturn transmittance;\n\t\t}\n\t}\n\tvec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor,\n\t\tconst in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix,\n\t\tconst in mat4 viewMatrix, const in mat4 projMatrix, const in float dispersion, const in float ior, const in float thickness,\n\t\tconst in vec3 attenuationColor, const in float attenuationDistance ) {\n\t\tvec4 transmittedLight;\n\t\tvec3 transmittance;\n\t\t#ifdef USE_DISPERSION\n\t\t\tfloat halfSpread = ( ior - 1.0 ) * 0.025 * dispersion;\n\t\t\tvec3 iors = vec3( ior - halfSpread, ior, ior + halfSpread );\n\t\t\tfor ( int i = 0; i < 3; i ++ ) {\n\t\t\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, iors[ i ], modelMatrix );\n\t\t\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\t\n\t\t\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\t\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\t\t\trefractionCoords += 1.0;\n\t\t\t\trefractionCoords /= 2.0;\n\t\t\n\t\t\t\tvec4 transmissionSample = getTransmissionSample( refractionCoords, roughness, iors[ i ] );\n\t\t\t\ttransmittedLight[ i ] = transmissionSample[ i ];\n\t\t\t\ttransmittedLight.a += transmissionSample.a;\n\t\t\t\ttransmittance[ i ] = diffuseColor[ i ] * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance )[ i ];\n\t\t\t}\n\t\t\ttransmittedLight.a /= 3.0;\n\t\t\n\t\t#else\n\t\t\n\t\t\tvec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );\n\t\t\tvec3 refractedRayExit = position + transmissionRay;\n\t\t\tvec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 );\n\t\t\tvec2 refractionCoords = ndcPos.xy / ndcPos.w;\n\t\t\trefractionCoords += 1.0;\n\t\t\trefractionCoords /= 2.0;\n\t\t\ttransmittedLight = getTransmissionSample( refractionCoords, roughness, ior );\n\t\t\ttransmittance = diffuseColor * volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance );\n\t\t\n\t\t#endif\n\t\tvec3 attenuatedColor = transmittance * transmittedLight.rgb;\n\t\tvec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness );\n\t\tfloat transmittanceFactor = ( transmittance.r + transmittance.g + transmittance.b ) / 3.0;\n\t\treturn vec4( ( 1.0 - F ) * attenuatedColor, 1.0 - ( 1.0 - transmittedLight.a ) * transmittanceFactor );\n\t}\n#endif"; var uv_pars_fragment = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif"; var uv_pars_vertex = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvarying vec2 vUv;\n#endif\n#ifdef USE_MAP\n\tuniform mat3 mapTransform;\n\tvarying vec2 vMapUv;\n#endif\n#ifdef USE_ALPHAMAP\n\tuniform mat3 alphaMapTransform;\n\tvarying vec2 vAlphaMapUv;\n#endif\n#ifdef USE_LIGHTMAP\n\tuniform mat3 lightMapTransform;\n\tvarying vec2 vLightMapUv;\n#endif\n#ifdef USE_AOMAP\n\tuniform mat3 aoMapTransform;\n\tvarying vec2 vAoMapUv;\n#endif\n#ifdef USE_BUMPMAP\n\tuniform mat3 bumpMapTransform;\n\tvarying vec2 vBumpMapUv;\n#endif\n#ifdef USE_NORMALMAP\n\tuniform mat3 normalMapTransform;\n\tvarying vec2 vNormalMapUv;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tuniform mat3 displacementMapTransform;\n\tvarying vec2 vDisplacementMapUv;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tuniform mat3 emissiveMapTransform;\n\tvarying vec2 vEmissiveMapUv;\n#endif\n#ifdef USE_METALNESSMAP\n\tuniform mat3 metalnessMapTransform;\n\tvarying vec2 vMetalnessMapUv;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tuniform mat3 roughnessMapTransform;\n\tvarying vec2 vRoughnessMapUv;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tuniform mat3 anisotropyMapTransform;\n\tvarying vec2 vAnisotropyMapUv;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tuniform mat3 clearcoatMapTransform;\n\tvarying vec2 vClearcoatMapUv;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tuniform mat3 clearcoatNormalMapTransform;\n\tvarying vec2 vClearcoatNormalMapUv;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tuniform mat3 clearcoatRoughnessMapTransform;\n\tvarying vec2 vClearcoatRoughnessMapUv;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tuniform mat3 sheenColorMapTransform;\n\tvarying vec2 vSheenColorMapUv;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tuniform mat3 sheenRoughnessMapTransform;\n\tvarying vec2 vSheenRoughnessMapUv;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tuniform mat3 iridescenceMapTransform;\n\tvarying vec2 vIridescenceMapUv;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tuniform mat3 iridescenceThicknessMapTransform;\n\tvarying vec2 vIridescenceThicknessMapUv;\n#endif\n#ifdef USE_SPECULARMAP\n\tuniform mat3 specularMapTransform;\n\tvarying vec2 vSpecularMapUv;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tuniform mat3 specularColorMapTransform;\n\tvarying vec2 vSpecularColorMapUv;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tuniform mat3 specularIntensityMapTransform;\n\tvarying vec2 vSpecularIntensityMapUv;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tuniform mat3 transmissionMapTransform;\n\tvarying vec2 vTransmissionMapUv;\n#endif\n#ifdef USE_THICKNESSMAP\n\tuniform mat3 thicknessMapTransform;\n\tvarying vec2 vThicknessMapUv;\n#endif"; var uv_vertex = "#if defined( USE_UV ) || defined( USE_ANISOTROPY )\n\tvUv = vec3( uv, 1 ).xy;\n#endif\n#ifdef USE_MAP\n\tvMapUv = ( mapTransform * vec3( MAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ALPHAMAP\n\tvAlphaMapUv = ( alphaMapTransform * vec3( ALPHAMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_LIGHTMAP\n\tvLightMapUv = ( lightMapTransform * vec3( LIGHTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_AOMAP\n\tvAoMapUv = ( aoMapTransform * vec3( AOMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_BUMPMAP\n\tvBumpMapUv = ( bumpMapTransform * vec3( BUMPMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_NORMALMAP\n\tvNormalMapUv = ( normalMapTransform * vec3( NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_DISPLACEMENTMAP\n\tvDisplacementMapUv = ( displacementMapTransform * vec3( DISPLACEMENTMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_EMISSIVEMAP\n\tvEmissiveMapUv = ( emissiveMapTransform * vec3( EMISSIVEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_METALNESSMAP\n\tvMetalnessMapUv = ( metalnessMapTransform * vec3( METALNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ROUGHNESSMAP\n\tvRoughnessMapUv = ( roughnessMapTransform * vec3( ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_ANISOTROPYMAP\n\tvAnisotropyMapUv = ( anisotropyMapTransform * vec3( ANISOTROPYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOATMAP\n\tvClearcoatMapUv = ( clearcoatMapTransform * vec3( CLEARCOATMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_NORMALMAP\n\tvClearcoatNormalMapUv = ( clearcoatNormalMapTransform * vec3( CLEARCOAT_NORMALMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_CLEARCOAT_ROUGHNESSMAP\n\tvClearcoatRoughnessMapUv = ( clearcoatRoughnessMapTransform * vec3( CLEARCOAT_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCEMAP\n\tvIridescenceMapUv = ( iridescenceMapTransform * vec3( IRIDESCENCEMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_IRIDESCENCE_THICKNESSMAP\n\tvIridescenceThicknessMapUv = ( iridescenceThicknessMapTransform * vec3( IRIDESCENCE_THICKNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_COLORMAP\n\tvSheenColorMapUv = ( sheenColorMapTransform * vec3( SHEEN_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SHEEN_ROUGHNESSMAP\n\tvSheenRoughnessMapUv = ( sheenRoughnessMapTransform * vec3( SHEEN_ROUGHNESSMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULARMAP\n\tvSpecularMapUv = ( specularMapTransform * vec3( SPECULARMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_COLORMAP\n\tvSpecularColorMapUv = ( specularColorMapTransform * vec3( SPECULAR_COLORMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_SPECULAR_INTENSITYMAP\n\tvSpecularIntensityMapUv = ( specularIntensityMapTransform * vec3( SPECULAR_INTENSITYMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_TRANSMISSIONMAP\n\tvTransmissionMapUv = ( transmissionMapTransform * vec3( TRANSMISSIONMAP_UV, 1 ) ).xy;\n#endif\n#ifdef USE_THICKNESSMAP\n\tvThicknessMapUv = ( thicknessMapTransform * vec3( THICKNESSMAP_UV, 1 ) ).xy;\n#endif"; var worldpos_vertex = "#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0\n\tvec4 worldPosition = vec4( transformed, 1.0 );\n\t#ifdef USE_BATCHING\n\t\tworldPosition = batchingMatrix * worldPosition;\n\t#endif\n\t#ifdef USE_INSTANCING\n\t\tworldPosition = instanceMatrix * worldPosition;\n\t#endif\n\tworldPosition = modelMatrix * worldPosition;\n#endif"; const vertex$h = "varying vec2 vUv;\nuniform mat3 uvTransform;\nvoid main() {\n\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\tgl_Position = vec4( position.xy, 1.0, 1.0 );\n}"; const fragment$h = "uniform sampler2D t2D;\nuniform float backgroundIntensity;\nvarying vec2 vUv;\nvoid main() {\n\tvec4 texColor = texture2D( t2D, vUv );\n\t#ifdef DECODE_VIDEO_TEXTURE\n\t\ttexColor = vec4( mix( pow( texColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), texColor.rgb * 0.0773993808, vec3( lessThanEqual( texColor.rgb, vec3( 0.04045 ) ) ) ), texColor.w );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}"; const vertex$g = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; const fragment$g = "#ifdef ENVMAP_TYPE_CUBE\n\tuniform samplerCube envMap;\n#elif defined( ENVMAP_TYPE_CUBE_UV )\n\tuniform sampler2D envMap;\n#endif\nuniform float flipEnvMap;\nuniform float backgroundBlurriness;\nuniform float backgroundIntensity;\nuniform mat3 backgroundRotation;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\t#ifdef ENVMAP_TYPE_CUBE\n\t\tvec4 texColor = textureCube( envMap, backgroundRotation * vec3( flipEnvMap * vWorldDirection.x, vWorldDirection.yz ) );\n\t#elif defined( ENVMAP_TYPE_CUBE_UV )\n\t\tvec4 texColor = textureCubeUV( envMap, backgroundRotation * vWorldDirection, backgroundBlurriness );\n\t#else\n\t\tvec4 texColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n\t#endif\n\ttexColor.rgb *= backgroundIntensity;\n\tgl_FragColor = texColor;\n\t#include \n\t#include \n}"; const vertex$f = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n\tgl_Position.z = gl_Position.w;\n}"; const fragment$f = "uniform samplerCube tCube;\nuniform float tFlip;\nuniform float opacity;\nvarying vec3 vWorldDirection;\nvoid main() {\n\tvec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );\n\tgl_FragColor = texColor;\n\tgl_FragColor.a *= opacity;\n\t#include \n\t#include \n}"; const vertex$e = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvHighPrecisionZW = gl_Position.zw;\n}"; const fragment$e = "#if DEPTH_PACKING == 3200\n\tuniform float opacity;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#if DEPTH_PACKING == 3200\n\t\tdiffuseColor.a = opacity;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\t#if DEPTH_PACKING == 3200\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), opacity );\n\t#elif DEPTH_PACKING == 3201\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\t#elif DEPTH_PACKING == 3202\n\t\tgl_FragColor = vec4( packDepthToRGB( fragCoordZ ), 1.0 );\n\t#elif DEPTH_PACKING == 3203\n\t\tgl_FragColor = vec4( packDepthToRG( fragCoordZ ), 0.0, 1.0 );\n\t#endif\n}"; const vertex$d = "#define DISTANCE\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#ifdef USE_DISPLACEMENTMAP\n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvWorldPosition = worldPosition.xyz;\n}"; const fragment$d = "#define DISTANCE\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main () {\n\tvec4 diffuseColor = vec4( 1.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist );\n\tgl_FragColor = packDepthToRGBA( dist );\n}"; const vertex$c = "varying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvWorldDirection = transformDirection( position, modelMatrix );\n\t#include \n\t#include \n}"; const fragment$c = "uniform sampler2D tEquirect;\nvarying vec3 vWorldDirection;\n#include \nvoid main() {\n\tvec3 direction = normalize( vWorldDirection );\n\tvec2 sampleUV = equirectUv( direction );\n\tgl_FragColor = texture2D( tEquirect, sampleUV );\n\t#include \n\t#include \n}"; const vertex$b = "uniform float scale;\nattribute float lineDistance;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvLineDistance = scale * lineDistance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$b = "uniform vec3 diffuse;\nuniform float opacity;\nuniform float dashSize;\nuniform float totalSize;\nvarying float vLineDistance;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\n\t\tdiscard;\n\t}\n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$a = "#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#if defined ( USE_ENVMAP ) || defined ( USE_SKINNING )\n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t\t#include \n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$a = "uniform vec3 diffuse;\nuniform float opacity;\n#ifndef FLAT_SHADED\n\tvarying vec3 vNormal;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\t#ifdef USE_LIGHTMAP\n\t\tvec4 lightMapTexel = texture2D( lightMap, vLightMapUv );\n\t\treflectedLight.indirectDiffuse += lightMapTexel.rgb * lightMapIntensity * RECIPROCAL_PI;\n\t#else\n\t\treflectedLight.indirectDiffuse += vec3( 1.0 );\n\t#endif\n\t#include \n\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\n\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$9 = "#define LAMBERT\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$9 = "#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$8 = "#define MATCAP\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n}"; const fragment$8 = "#define MATCAP\nuniform vec3 diffuse;\nuniform float opacity;\nuniform sampler2D matcap;\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 viewDir = normalize( vViewPosition );\n\tvec3 x = normalize( vec3( viewDir.z, 0.0, - viewDir.x ) );\n\tvec3 y = cross( viewDir, x );\n\tvec2 uv = vec2( dot( x, normal ), dot( y, normal ) ) * 0.495 + 0.5;\n\t#ifdef USE_MATCAP\n\t\tvec4 matcapColor = texture2D( matcap, uv );\n\t#else\n\t\tvec4 matcapColor = vec4( vec3( mix( 0.2, 0.8, uv.y ) ), 1.0 );\n\t#endif\n\tvec3 outgoingLight = diffuseColor.rgb * matcapColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$7 = "#define NORMAL\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvViewPosition = - mvPosition.xyz;\n#endif\n}"; const fragment$7 = "#define NORMAL\nuniform float opacity;\n#if defined( FLAT_SHADED ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP_TANGENTSPACE )\n\tvarying vec3 vViewPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( 0.0, 0.0, 0.0, opacity );\n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_FragColor = vec4( packNormalToRGB( normal ), diffuseColor.a );\n\t#ifdef OPAQUE\n\t\tgl_FragColor.a = 1.0;\n\t#endif\n}"; const vertex$6 = "#define PHONG\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$6 = "#define PHONG\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform vec3 specular;\nuniform float shininess;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$5 = "#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}"; const fragment$5 = "#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef USE_SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULAR_COLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_DISPERSION\n\tuniform float dispersion;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\n#ifdef USE_ANISOTROPY\n\tuniform vec2 anisotropyVector;\n\t#ifdef USE_ANISOTROPYMAP\n\t\tuniform sampler2D anisotropyMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include \n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecularDirect + sheenSpecularIndirect;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometryClearcoatNormal, geometryViewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + ( clearcoatSpecularDirect + clearcoatSpecularIndirect ) * material.clearcoat;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$4 = "#define TOON\nvarying vec3 vViewPosition;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvViewPosition = - mvPosition.xyz;\n\t#include \n\t#include \n\t#include \n}"; const fragment$4 = "#define TOON\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$3 = "uniform float size;\nuniform float scale;\n#include \n#include \n#include \n#include \n#include \n#include \n#ifdef USE_POINTS_UV\n\tvarying vec2 vUv;\n\tuniform mat3 uvTransform;\n#endif\nvoid main() {\n\t#ifdef USE_POINTS_UV\n\t\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\tgl_PointSize = size;\n\t#ifdef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) gl_PointSize *= ( scale / - mvPosition.z );\n\t#endif\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$3 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const vertex$2 = "#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n}"; const fragment$2 = "uniform vec3 color;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tgl_FragColor = vec4( color, opacity * ( 1.0 - getShadowMask() ) );\n\t#include \n\t#include \n\t#include \n}"; const vertex$1 = "uniform float rotation;\nuniform vec2 center;\n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\t#include \n\tvec4 mvPosition = modelViewMatrix[ 3 ];\n\tvec2 scale = vec2( length( modelMatrix[ 0 ].xyz ), length( modelMatrix[ 1 ].xyz ) );\n\t#ifndef USE_SIZEATTENUATION\n\t\tbool isPerspective = isPerspectiveMatrix( projectionMatrix );\n\t\tif ( isPerspective ) scale *= - mvPosition.z;\n\t#endif\n\tvec2 alignedPosition = ( position.xy - ( center - vec2( 0.5 ) ) ) * scale;\n\tvec2 rotatedPosition;\n\trotatedPosition.x = cos( rotation ) * alignedPosition.x - sin( rotation ) * alignedPosition.y;\n\trotatedPosition.y = sin( rotation ) * alignedPosition.x + cos( rotation ) * alignedPosition.y;\n\tmvPosition.xy += rotatedPosition;\n\tgl_Position = projectionMatrix * mvPosition;\n\t#include \n\t#include \n\t#include \n}"; const fragment$1 = "uniform vec3 diffuse;\nuniform float opacity;\n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \n#include \nvoid main() {\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\t#include \n\tvec3 outgoingLight = vec3( 0.0 );\n\t#include \n\t#include \n\t#include \n\t#include \n\t#include \n\toutgoingLight = diffuseColor.rgb;\n\t#include \n\t#include \n\t#include \n\t#include \n}"; const ShaderChunk = { alphahash_fragment: alphahash_fragment, alphahash_pars_fragment: alphahash_pars_fragment, alphamap_fragment: alphamap_fragment, alphamap_pars_fragment: alphamap_pars_fragment, alphatest_fragment: alphatest_fragment, alphatest_pars_fragment: alphatest_pars_fragment, aomap_fragment: aomap_fragment, aomap_pars_fragment: aomap_pars_fragment, batching_pars_vertex: batching_pars_vertex, batching_vertex: batching_vertex, begin_vertex: begin_vertex, beginnormal_vertex: beginnormal_vertex, bsdfs: bsdfs, iridescence_fragment: iridescence_fragment, bumpmap_pars_fragment: bumpmap_pars_fragment, clipping_planes_fragment: clipping_planes_fragment, clipping_planes_pars_fragment: clipping_planes_pars_fragment, clipping_planes_pars_vertex: clipping_planes_pars_vertex, clipping_planes_vertex: clipping_planes_vertex, color_fragment: color_fragment, color_pars_fragment: color_pars_fragment, color_pars_vertex: color_pars_vertex, color_vertex: color_vertex, common: common, cube_uv_reflection_fragment: cube_uv_reflection_fragment, defaultnormal_vertex: defaultnormal_vertex, displacementmap_pars_vertex: displacementmap_pars_vertex, displacementmap_vertex: displacementmap_vertex, emissivemap_fragment: emissivemap_fragment, emissivemap_pars_fragment: emissivemap_pars_fragment, colorspace_fragment: colorspace_fragment, colorspace_pars_fragment: colorspace_pars_fragment, envmap_fragment: envmap_fragment, envmap_common_pars_fragment: envmap_common_pars_fragment, envmap_pars_fragment: envmap_pars_fragment, envmap_pars_vertex: envmap_pars_vertex, envmap_physical_pars_fragment: envmap_physical_pars_fragment, envmap_vertex: envmap_vertex, fog_vertex: fog_vertex, fog_pars_vertex: fog_pars_vertex, fog_fragment: fog_fragment, fog_pars_fragment: fog_pars_fragment, gradientmap_pars_fragment: gradientmap_pars_fragment, lightmap_pars_fragment: lightmap_pars_fragment, lights_lambert_fragment: lights_lambert_fragment, lights_lambert_pars_fragment: lights_lambert_pars_fragment, lights_pars_begin: lights_pars_begin, lights_toon_fragment: lights_toon_fragment, lights_toon_pars_fragment: lights_toon_pars_fragment, lights_phong_fragment: lights_phong_fragment, lights_phong_pars_fragment: lights_phong_pars_fragment, lights_physical_fragment: lights_physical_fragment, lights_physical_pars_fragment: lights_physical_pars_fragment, lights_fragment_begin: lights_fragment_begin, lights_fragment_maps: lights_fragment_maps, lights_fragment_end: lights_fragment_end, logdepthbuf_fragment: logdepthbuf_fragment, logdepthbuf_pars_fragment: logdepthbuf_pars_fragment, logdepthbuf_pars_vertex: logdepthbuf_pars_vertex, logdepthbuf_vertex: logdepthbuf_vertex, map_fragment: map_fragment, map_pars_fragment: map_pars_fragment, map_particle_fragment: map_particle_fragment, map_particle_pars_fragment: map_particle_pars_fragment, metalnessmap_fragment: metalnessmap_fragment, metalnessmap_pars_fragment: metalnessmap_pars_fragment, morphinstance_vertex: morphinstance_vertex, morphcolor_vertex: morphcolor_vertex, morphnormal_vertex: morphnormal_vertex, morphtarget_pars_vertex: morphtarget_pars_vertex, morphtarget_vertex: morphtarget_vertex, normal_fragment_begin: normal_fragment_begin, normal_fragment_maps: normal_fragment_maps, normal_pars_fragment: normal_pars_fragment, normal_pars_vertex: normal_pars_vertex, normal_vertex: normal_vertex, normalmap_pars_fragment: normalmap_pars_fragment, clearcoat_normal_fragment_begin: clearcoat_normal_fragment_begin, clearcoat_normal_fragment_maps: clearcoat_normal_fragment_maps, clearcoat_pars_fragment: clearcoat_pars_fragment, iridescence_pars_fragment: iridescence_pars_fragment, opaque_fragment: opaque_fragment, packing: packing, premultiplied_alpha_fragment: premultiplied_alpha_fragment, project_vertex: project_vertex, dithering_fragment: dithering_fragment, dithering_pars_fragment: dithering_pars_fragment, roughnessmap_fragment: roughnessmap_fragment, roughnessmap_pars_fragment: roughnessmap_pars_fragment, shadowmap_pars_fragment: shadowmap_pars_fragment, shadowmap_pars_vertex: shadowmap_pars_vertex, shadowmap_vertex: shadowmap_vertex, shadowmask_pars_fragment: shadowmask_pars_fragment, skinbase_vertex: skinbase_vertex, skinning_pars_vertex: skinning_pars_vertex, skinning_vertex: skinning_vertex, skinnormal_vertex: skinnormal_vertex, specularmap_fragment: specularmap_fragment, specularmap_pars_fragment: specularmap_pars_fragment, tonemapping_fragment: tonemapping_fragment, tonemapping_pars_fragment: tonemapping_pars_fragment, transmission_fragment: transmission_fragment, transmission_pars_fragment: transmission_pars_fragment, uv_pars_fragment: uv_pars_fragment, uv_pars_vertex: uv_pars_vertex, uv_vertex: uv_vertex, worldpos_vertex: worldpos_vertex, background_vert: vertex$h, background_frag: fragment$h, backgroundCube_vert: vertex$g, backgroundCube_frag: fragment$g, cube_vert: vertex$f, cube_frag: fragment$f, depth_vert: vertex$e, depth_frag: fragment$e, distanceRGBA_vert: vertex$d, distanceRGBA_frag: fragment$d, equirect_vert: vertex$c, equirect_frag: fragment$c, linedashed_vert: vertex$b, linedashed_frag: fragment$b, meshbasic_vert: vertex$a, meshbasic_frag: fragment$a, meshlambert_vert: vertex$9, meshlambert_frag: fragment$9, meshmatcap_vert: vertex$8, meshmatcap_frag: fragment$8, meshnormal_vert: vertex$7, meshnormal_frag: fragment$7, meshphong_vert: vertex$6, meshphong_frag: fragment$6, meshphysical_vert: vertex$5, meshphysical_frag: fragment$5, meshtoon_vert: vertex$4, meshtoon_frag: fragment$4, points_vert: vertex$3, points_frag: fragment$3, shadow_vert: vertex$2, shadow_frag: fragment$2, sprite_vert: vertex$1, sprite_frag: fragment$1 }; /** * Uniforms library for shared webgl shaders */ const UniformsLib = { common: { diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, opacity: { value: 1.0 }, map: { value: null }, mapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaMap: { value: null }, alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaTest: { value: 0 } }, specularmap: { specularMap: { value: null }, specularMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, envmap: { envMap: { value: null }, envMapRotation: { value: /*@__PURE__*/ new Matrix3() }, flipEnvMap: { value: -1 }, reflectivity: { value: 1.0 }, // basic, lambert, phong ior: { value: 1.5 }, // physical refractionRatio: { value: 0.98 }, // basic, lambert, phong }, aomap: { aoMap: { value: null }, aoMapIntensity: { value: 1 }, aoMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, lightmap: { lightMap: { value: null }, lightMapIntensity: { value: 1 }, lightMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, bumpmap: { bumpMap: { value: null }, bumpMapTransform: { value: /*@__PURE__*/ new Matrix3() }, bumpScale: { value: 1 } }, normalmap: { normalMap: { value: null }, normalMapTransform: { value: /*@__PURE__*/ new Matrix3() }, normalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) } }, displacementmap: { displacementMap: { value: null }, displacementMapTransform: { value: /*@__PURE__*/ new Matrix3() }, displacementScale: { value: 1 }, displacementBias: { value: 0 } }, emissivemap: { emissiveMap: { value: null }, emissiveMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, metalnessmap: { metalnessMap: { value: null }, metalnessMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, roughnessmap: { roughnessMap: { value: null }, roughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() } }, gradientmap: { gradientMap: { value: null } }, fog: { fogDensity: { value: 0.00025 }, fogNear: { value: 1 }, fogFar: { value: 2000 }, fogColor: { value: /*@__PURE__*/ new Color( 0xffffff ) } }, lights: { ambientLightColor: { value: [] }, lightProbe: { value: [] }, directionalLights: { value: [], properties: { direction: {}, color: {} } }, directionalLightShadows: { value: [], properties: { shadowIntensity: 1, shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, directionalShadowMap: { value: [] }, directionalShadowMatrix: { value: [] }, spotLights: { value: [], properties: { color: {}, position: {}, direction: {}, distance: {}, coneCos: {}, penumbraCos: {}, decay: {} } }, spotLightShadows: { value: [], properties: { shadowIntensity: 1, shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {} } }, spotLightMap: { value: [] }, spotShadowMap: { value: [] }, spotLightMatrix: { value: [] }, pointLights: { value: [], properties: { color: {}, position: {}, decay: {}, distance: {} } }, pointLightShadows: { value: [], properties: { shadowIntensity: 1, shadowBias: {}, shadowNormalBias: {}, shadowRadius: {}, shadowMapSize: {}, shadowCameraNear: {}, shadowCameraFar: {} } }, pointShadowMap: { value: [] }, pointShadowMatrix: { value: [] }, hemisphereLights: { value: [], properties: { direction: {}, skyColor: {}, groundColor: {} } }, // TODO (abelnation): RectAreaLight BRDF data needs to be moved from example to main src rectAreaLights: { value: [], properties: { color: {}, position: {}, width: {}, height: {} } }, ltc_1: { value: null }, ltc_2: { value: null } }, points: { diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, opacity: { value: 1.0 }, size: { value: 1.0 }, scale: { value: 1.0 }, map: { value: null }, alphaMap: { value: null }, alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaTest: { value: 0 }, uvTransform: { value: /*@__PURE__*/ new Matrix3() } }, sprite: { diffuse: { value: /*@__PURE__*/ new Color( 0xffffff ) }, opacity: { value: 1.0 }, center: { value: /*@__PURE__*/ new Vector2( 0.5, 0.5 ) }, rotation: { value: 0.0 }, map: { value: null }, mapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaMap: { value: null }, alphaMapTransform: { value: /*@__PURE__*/ new Matrix3() }, alphaTest: { value: 0 } } }; const ShaderLib = { basic: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.fog ] ), vertexShader: ShaderChunk.meshbasic_vert, fragmentShader: ShaderChunk.meshbasic_frag }, lambert: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshlambert_vert, fragmentShader: ShaderChunk.meshlambert_frag }, phong: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.specularmap, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) }, specular: { value: /*@__PURE__*/ new Color( 0x111111 ) }, shininess: { value: 30 } } ] ), vertexShader: ShaderChunk.meshphong_vert, fragmentShader: ShaderChunk.meshphong_frag }, standard: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.envmap, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.roughnessmap, UniformsLib.metalnessmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) }, roughness: { value: 1.0 }, metalness: { value: 0.0 }, envMapIntensity: { value: 1 } } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }, toon: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.aomap, UniformsLib.lightmap, UniformsLib.emissivemap, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.gradientmap, UniformsLib.fog, UniformsLib.lights, { emissive: { value: /*@__PURE__*/ new Color( 0x000000 ) } } ] ), vertexShader: ShaderChunk.meshtoon_vert, fragmentShader: ShaderChunk.meshtoon_frag }, matcap: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, UniformsLib.fog, { matcap: { value: null } } ] ), vertexShader: ShaderChunk.meshmatcap_vert, fragmentShader: ShaderChunk.meshmatcap_frag }, points: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.points, UniformsLib.fog ] ), vertexShader: ShaderChunk.points_vert, fragmentShader: ShaderChunk.points_frag }, dashed: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.fog, { scale: { value: 1 }, dashSize: { value: 1 }, totalSize: { value: 2 } } ] ), vertexShader: ShaderChunk.linedashed_vert, fragmentShader: ShaderChunk.linedashed_frag }, depth: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap ] ), vertexShader: ShaderChunk.depth_vert, fragmentShader: ShaderChunk.depth_frag }, normal: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.bumpmap, UniformsLib.normalmap, UniformsLib.displacementmap, { opacity: { value: 1.0 } } ] ), vertexShader: ShaderChunk.meshnormal_vert, fragmentShader: ShaderChunk.meshnormal_frag }, sprite: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.sprite, UniformsLib.fog ] ), vertexShader: ShaderChunk.sprite_vert, fragmentShader: ShaderChunk.sprite_frag }, background: { uniforms: { uvTransform: { value: /*@__PURE__*/ new Matrix3() }, t2D: { value: null }, backgroundIntensity: { value: 1 } }, vertexShader: ShaderChunk.background_vert, fragmentShader: ShaderChunk.background_frag }, backgroundCube: { uniforms: { envMap: { value: null }, flipEnvMap: { value: -1 }, backgroundBlurriness: { value: 0 }, backgroundIntensity: { value: 1 }, backgroundRotation: { value: /*@__PURE__*/ new Matrix3() } }, vertexShader: ShaderChunk.backgroundCube_vert, fragmentShader: ShaderChunk.backgroundCube_frag }, cube: { uniforms: { tCube: { value: null }, tFlip: { value: -1 }, opacity: { value: 1.0 } }, vertexShader: ShaderChunk.cube_vert, fragmentShader: ShaderChunk.cube_frag }, equirect: { uniforms: { tEquirect: { value: null }, }, vertexShader: ShaderChunk.equirect_vert, fragmentShader: ShaderChunk.equirect_frag }, distanceRGBA: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.common, UniformsLib.displacementmap, { referencePosition: { value: /*@__PURE__*/ new Vector3() }, nearDistance: { value: 1 }, farDistance: { value: 1000 } } ] ), vertexShader: ShaderChunk.distanceRGBA_vert, fragmentShader: ShaderChunk.distanceRGBA_frag }, shadow: { uniforms: /*@__PURE__*/ mergeUniforms( [ UniformsLib.lights, UniformsLib.fog, { color: { value: /*@__PURE__*/ new Color( 0x00000 ) }, opacity: { value: 1.0 } }, ] ), vertexShader: ShaderChunk.shadow_vert, fragmentShader: ShaderChunk.shadow_frag } }; ShaderLib.physical = { uniforms: /*@__PURE__*/ mergeUniforms( [ ShaderLib.standard.uniforms, { clearcoat: { value: 0 }, clearcoatMap: { value: null }, clearcoatMapTransform: { value: /*@__PURE__*/ new Matrix3() }, clearcoatNormalMap: { value: null }, clearcoatNormalMapTransform: { value: /*@__PURE__*/ new Matrix3() }, clearcoatNormalScale: { value: /*@__PURE__*/ new Vector2( 1, 1 ) }, clearcoatRoughness: { value: 0 }, clearcoatRoughnessMap: { value: null }, clearcoatRoughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, dispersion: { value: 0 }, iridescence: { value: 0 }, iridescenceMap: { value: null }, iridescenceMapTransform: { value: /*@__PURE__*/ new Matrix3() }, iridescenceIOR: { value: 1.3 }, iridescenceThicknessMinimum: { value: 100 }, iridescenceThicknessMaximum: { value: 400 }, iridescenceThicknessMap: { value: null }, iridescenceThicknessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, sheen: { value: 0 }, sheenColor: { value: /*@__PURE__*/ new Color( 0x000000 ) }, sheenColorMap: { value: null }, sheenColorMapTransform: { value: /*@__PURE__*/ new Matrix3() }, sheenRoughness: { value: 1 }, sheenRoughnessMap: { value: null }, sheenRoughnessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, transmission: { value: 0 }, transmissionMap: { value: null }, transmissionMapTransform: { value: /*@__PURE__*/ new Matrix3() }, transmissionSamplerSize: { value: /*@__PURE__*/ new Vector2() }, transmissionSamplerMap: { value: null }, thickness: { value: 0 }, thicknessMap: { value: null }, thicknessMapTransform: { value: /*@__PURE__*/ new Matrix3() }, attenuationDistance: { value: 0 }, attenuationColor: { value: /*@__PURE__*/ new Color( 0x000000 ) }, specularColor: { value: /*@__PURE__*/ new Color( 1, 1, 1 ) }, specularColorMap: { value: null }, specularColorMapTransform: { value: /*@__PURE__*/ new Matrix3() }, specularIntensity: { value: 1 }, specularIntensityMap: { value: null }, specularIntensityMapTransform: { value: /*@__PURE__*/ new Matrix3() }, anisotropyVector: { value: /*@__PURE__*/ new Vector2() }, anisotropyMap: { value: null }, anisotropyMapTransform: { value: /*@__PURE__*/ new Matrix3() }, } ] ), vertexShader: ShaderChunk.meshphysical_vert, fragmentShader: ShaderChunk.meshphysical_frag }; const _rgb = { r: 0, b: 0, g: 0 }; const _e1$1 = /*@__PURE__*/ new Euler(); const _m1$1 = /*@__PURE__*/ new Matrix4(); function WebGLBackground( renderer, cubemaps, cubeuvmaps, state, objects, alpha, premultipliedAlpha ) { const clearColor = new Color( 0x000000 ); let clearAlpha = alpha === true ? 0 : 1; let planeMesh; let boxMesh; let currentBackground = null; let currentBackgroundVersion = 0; let currentTonemapping = null; function getBackground( scene ) { let background = scene.isScene === true ? scene.background : null; if ( background && background.isTexture ) { const usePMREM = scene.backgroundBlurriness > 0; // use PMREM if the user wants to blur the background background = ( usePMREM ? cubeuvmaps : cubemaps ).get( background ); } return background; } function render( scene ) { let forceClear = false; const background = getBackground( scene ); if ( background === null ) { setClear( clearColor, clearAlpha ); } else if ( background && background.isColor ) { setClear( background, 1 ); forceClear = true; } const environmentBlendMode = renderer.xr.getEnvironmentBlendMode(); if ( environmentBlendMode === 'additive' ) { state.buffers.color.setClear( 0, 0, 0, 1, premultipliedAlpha ); } else if ( environmentBlendMode === 'alpha-blend' ) { state.buffers.color.setClear( 0, 0, 0, 0, premultipliedAlpha ); } if ( renderer.autoClear || forceClear ) { // buffers might not be writable which is required to ensure a correct clear state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true ); renderer.clear( renderer.autoClearColor, renderer.autoClearDepth, renderer.autoClearStencil ); } } function addToRenderList( renderList, scene ) { const background = getBackground( scene ); if ( background && ( background.isCubeTexture || background.mapping === CubeUVReflectionMapping ) ) { if ( boxMesh === undefined ) { boxMesh = new Mesh( new BoxGeometry( 1, 1, 1 ), new ShaderMaterial( { name: 'BackgroundCubeMaterial', uniforms: cloneUniforms( ShaderLib.backgroundCube.uniforms ), vertexShader: ShaderLib.backgroundCube.vertexShader, fragmentShader: ShaderLib.backgroundCube.fragmentShader, side: BackSide, depthTest: false, depthWrite: false, fog: false } ) ); boxMesh.geometry.deleteAttribute( 'normal' ); boxMesh.geometry.deleteAttribute( 'uv' ); boxMesh.onBeforeRender = function ( renderer, scene, camera ) { this.matrixWorld.copyPosition( camera.matrixWorld ); }; // add "envMap" material property so the renderer can evaluate it like for built-in materials Object.defineProperty( boxMesh.material, 'envMap', { get: function () { return this.uniforms.envMap.value; } } ); objects.update( boxMesh ); } _e1$1.copy( scene.backgroundRotation ); // accommodate left-handed frame _e1$1.x *= -1; _e1$1.y *= -1; _e1$1.z *= -1; if ( background.isCubeTexture && background.isRenderTargetTexture === false ) { // environment maps which are not cube render targets or PMREMs follow a different convention _e1$1.y *= -1; _e1$1.z *= -1; } boxMesh.material.uniforms.envMap.value = background; boxMesh.material.uniforms.flipEnvMap.value = ( background.isCubeTexture && background.isRenderTargetTexture === false ) ? -1 : 1; boxMesh.material.uniforms.backgroundBlurriness.value = scene.backgroundBlurriness; boxMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; boxMesh.material.uniforms.backgroundRotation.value.setFromMatrix4( _m1$1.makeRotationFromEuler( _e1$1 ) ); boxMesh.material.toneMapped = ColorManagement.getTransfer( background.colorSpace ) !== SRGBTransfer; if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { boxMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } boxMesh.layers.enableAll(); // push to the pre-sorted opaque render list renderList.unshift( boxMesh, boxMesh.geometry, boxMesh.material, 0, 0, null ); } else if ( background && background.isTexture ) { if ( planeMesh === undefined ) { planeMesh = new Mesh( new PlaneGeometry( 2, 2 ), new ShaderMaterial( { name: 'BackgroundMaterial', uniforms: cloneUniforms( ShaderLib.background.uniforms ), vertexShader: ShaderLib.background.vertexShader, fragmentShader: ShaderLib.background.fragmentShader, side: FrontSide, depthTest: false, depthWrite: false, fog: false } ) ); planeMesh.geometry.deleteAttribute( 'normal' ); // add "map" material property so the renderer can evaluate it like for built-in materials Object.defineProperty( planeMesh.material, 'map', { get: function () { return this.uniforms.t2D.value; } } ); objects.update( planeMesh ); } planeMesh.material.uniforms.t2D.value = background; planeMesh.material.uniforms.backgroundIntensity.value = scene.backgroundIntensity; planeMesh.material.toneMapped = ColorManagement.getTransfer( background.colorSpace ) !== SRGBTransfer; if ( background.matrixAutoUpdate === true ) { background.updateMatrix(); } planeMesh.material.uniforms.uvTransform.value.copy( background.matrix ); if ( currentBackground !== background || currentBackgroundVersion !== background.version || currentTonemapping !== renderer.toneMapping ) { planeMesh.material.needsUpdate = true; currentBackground = background; currentBackgroundVersion = background.version; currentTonemapping = renderer.toneMapping; } planeMesh.layers.enableAll(); // push to the pre-sorted opaque render list renderList.unshift( planeMesh, planeMesh.geometry, planeMesh.material, 0, 0, null ); } } function setClear( color, alpha ) { color.getRGB( _rgb, getUnlitUniformColorSpace( renderer ) ); state.buffers.color.setClear( _rgb.r, _rgb.g, _rgb.b, alpha, premultipliedAlpha ); } return { getClearColor: function () { return clearColor; }, setClearColor: function ( color, alpha = 1 ) { clearColor.set( color ); clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, getClearAlpha: function () { return clearAlpha; }, setClearAlpha: function ( alpha ) { clearAlpha = alpha; setClear( clearColor, clearAlpha ); }, render: render, addToRenderList: addToRenderList }; } function WebGLBindingStates( gl, attributes ) { const maxVertexAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); const bindingStates = {}; const defaultState = createBindingState( null ); let currentState = defaultState; let forceUpdate = false; function setup( object, material, program, geometry, index ) { let updateBuffers = false; const state = getBindingState( geometry, program, material ); if ( currentState !== state ) { currentState = state; bindVertexArrayObject( currentState.object ); } updateBuffers = needsUpdate( object, geometry, program, index ); if ( updateBuffers ) saveCache( object, geometry, program, index ); if ( index !== null ) { attributes.update( index, gl.ELEMENT_ARRAY_BUFFER ); } if ( updateBuffers || forceUpdate ) { forceUpdate = false; setupVertexAttributes( object, material, program, geometry ); if ( index !== null ) { gl.bindBuffer( gl.ELEMENT_ARRAY_BUFFER, attributes.get( index ).buffer ); } } } function createVertexArrayObject() { return gl.createVertexArray(); } function bindVertexArrayObject( vao ) { return gl.bindVertexArray( vao ); } function deleteVertexArrayObject( vao ) { return gl.deleteVertexArray( vao ); } function getBindingState( geometry, program, material ) { const wireframe = ( material.wireframe === true ); let programMap = bindingStates[ geometry.id ]; if ( programMap === undefined ) { programMap = {}; bindingStates[ geometry.id ] = programMap; } let stateMap = programMap[ program.id ]; if ( stateMap === undefined ) { stateMap = {}; programMap[ program.id ] = stateMap; } let state = stateMap[ wireframe ]; if ( state === undefined ) { state = createBindingState( createVertexArrayObject() ); stateMap[ wireframe ] = state; } return state; } function createBindingState( vao ) { const newAttributes = []; const enabledAttributes = []; const attributeDivisors = []; for ( let i = 0; i < maxVertexAttributes; i ++ ) { newAttributes[ i ] = 0; enabledAttributes[ i ] = 0; attributeDivisors[ i ] = 0; } return { // for backward compatibility on non-VAO support browser geometry: null, program: null, wireframe: false, newAttributes: newAttributes, enabledAttributes: enabledAttributes, attributeDivisors: attributeDivisors, object: vao, attributes: {}, index: null }; } function needsUpdate( object, geometry, program, index ) { const cachedAttributes = currentState.attributes; const geometryAttributes = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { const cachedAttribute = cachedAttributes[ name ]; let geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; } if ( cachedAttribute === undefined ) return true; if ( cachedAttribute.attribute !== geometryAttribute ) return true; if ( geometryAttribute && cachedAttribute.data !== geometryAttribute.data ) return true; attributesNum ++; } } if ( currentState.attributesNum !== attributesNum ) return true; if ( currentState.index !== index ) return true; return false; } function saveCache( object, geometry, program, index ) { const cache = {}; const attributes = geometry.attributes; let attributesNum = 0; const programAttributes = program.getAttributes(); for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { let attribute = attributes[ name ]; if ( attribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) attribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) attribute = object.instanceColor; } const data = {}; data.attribute = attribute; if ( attribute && attribute.data ) { data.data = attribute.data; } cache[ name ] = data; attributesNum ++; } } currentState.attributes = cache; currentState.attributesNum = attributesNum; currentState.index = index; } function initAttributes() { const newAttributes = currentState.newAttributes; for ( let i = 0, il = newAttributes.length; i < il; i ++ ) { newAttributes[ i ] = 0; } } function enableAttribute( attribute ) { enableAttributeAndDivisor( attribute, 0 ); } function enableAttributeAndDivisor( attribute, meshPerAttribute ) { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; const attributeDivisors = currentState.attributeDivisors; newAttributes[ attribute ] = 1; if ( enabledAttributes[ attribute ] === 0 ) { gl.enableVertexAttribArray( attribute ); enabledAttributes[ attribute ] = 1; } if ( attributeDivisors[ attribute ] !== meshPerAttribute ) { gl.vertexAttribDivisor( attribute, meshPerAttribute ); attributeDivisors[ attribute ] = meshPerAttribute; } } function disableUnusedAttributes() { const newAttributes = currentState.newAttributes; const enabledAttributes = currentState.enabledAttributes; for ( let i = 0, il = enabledAttributes.length; i < il; i ++ ) { if ( enabledAttributes[ i ] !== newAttributes[ i ] ) { gl.disableVertexAttribArray( i ); enabledAttributes[ i ] = 0; } } } function vertexAttribPointer( index, size, type, normalized, stride, offset, integer ) { if ( integer === true ) { gl.vertexAttribIPointer( index, size, type, stride, offset ); } else { gl.vertexAttribPointer( index, size, type, normalized, stride, offset ); } } function setupVertexAttributes( object, material, program, geometry ) { initAttributes(); const geometryAttributes = geometry.attributes; const programAttributes = program.getAttributes(); const materialDefaultAttributeValues = material.defaultAttributeValues; for ( const name in programAttributes ) { const programAttribute = programAttributes[ name ]; if ( programAttribute.location >= 0 ) { let geometryAttribute = geometryAttributes[ name ]; if ( geometryAttribute === undefined ) { if ( name === 'instanceMatrix' && object.instanceMatrix ) geometryAttribute = object.instanceMatrix; if ( name === 'instanceColor' && object.instanceColor ) geometryAttribute = object.instanceColor; } if ( geometryAttribute !== undefined ) { const normalized = geometryAttribute.normalized; const size = geometryAttribute.itemSize; const attribute = attributes.get( geometryAttribute ); // TODO Attribute may not be available on context restore if ( attribute === undefined ) continue; const buffer = attribute.buffer; const type = attribute.type; const bytesPerElement = attribute.bytesPerElement; // check for integer attributes const integer = ( type === gl.INT || type === gl.UNSIGNED_INT || geometryAttribute.gpuType === IntType ); if ( geometryAttribute.isInterleavedBufferAttribute ) { const data = geometryAttribute.data; const stride = data.stride; const offset = geometryAttribute.offset; if ( data.isInstancedInterleavedBuffer ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, data.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = data.meshPerAttribute * data.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( gl.ARRAY_BUFFER, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, stride * bytesPerElement, ( offset + ( size / programAttribute.locationSize ) * i ) * bytesPerElement, integer ); } } else { if ( geometryAttribute.isInstancedBufferAttribute ) { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttributeAndDivisor( programAttribute.location + i, geometryAttribute.meshPerAttribute ); } if ( object.isInstancedMesh !== true && geometry._maxInstanceCount === undefined ) { geometry._maxInstanceCount = geometryAttribute.meshPerAttribute * geometryAttribute.count; } } else { for ( let i = 0; i < programAttribute.locationSize; i ++ ) { enableAttribute( programAttribute.location + i ); } } gl.bindBuffer( gl.ARRAY_BUFFER, buffer ); for ( let i = 0; i < programAttribute.locationSize; i ++ ) { vertexAttribPointer( programAttribute.location + i, size / programAttribute.locationSize, type, normalized, size * bytesPerElement, ( size / programAttribute.locationSize ) * i * bytesPerElement, integer ); } } } else if ( materialDefaultAttributeValues !== undefined ) { const value = materialDefaultAttributeValues[ name ]; if ( value !== undefined ) { switch ( value.length ) { case 2: gl.vertexAttrib2fv( programAttribute.location, value ); break; case 3: gl.vertexAttrib3fv( programAttribute.location, value ); break; case 4: gl.vertexAttrib4fv( programAttribute.location, value ); break; default: gl.vertexAttrib1fv( programAttribute.location, value ); } } } } } disableUnusedAttributes(); } function dispose() { reset(); for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometryId ]; } } function releaseStatesOfGeometry( geometry ) { if ( bindingStates[ geometry.id ] === undefined ) return; const programMap = bindingStates[ geometry.id ]; for ( const programId in programMap ) { const stateMap = programMap[ programId ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ programId ]; } delete bindingStates[ geometry.id ]; } function releaseStatesOfProgram( program ) { for ( const geometryId in bindingStates ) { const programMap = bindingStates[ geometryId ]; if ( programMap[ program.id ] === undefined ) continue; const stateMap = programMap[ program.id ]; for ( const wireframe in stateMap ) { deleteVertexArrayObject( stateMap[ wireframe ].object ); delete stateMap[ wireframe ]; } delete programMap[ program.id ]; } } function reset() { resetDefaultState(); forceUpdate = true; if ( currentState === defaultState ) return; currentState = defaultState; bindVertexArrayObject( currentState.object ); } // for backward-compatibility function resetDefaultState() { defaultState.geometry = null; defaultState.program = null; defaultState.wireframe = false; } return { setup: setup, reset: reset, resetDefaultState: resetDefaultState, dispose: dispose, releaseStatesOfGeometry: releaseStatesOfGeometry, releaseStatesOfProgram: releaseStatesOfProgram, initAttributes: initAttributes, enableAttribute: enableAttribute, disableUnusedAttributes: disableUnusedAttributes }; } function WebGLBufferRenderer( gl, extensions, info ) { let mode; function setMode( value ) { mode = value; } function render( start, count ) { gl.drawArrays( mode, start, count ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; gl.drawArraysInstanced( mode, start, count, primcount ); info.update( count, mode, primcount ); } function renderMultiDraw( starts, counts, drawCount ) { if ( drawCount === 0 ) return; const extension = extensions.get( 'WEBGL_multi_draw' ); extension.multiDrawArraysWEBGL( mode, starts, 0, counts, 0, drawCount ); let elementCount = 0; for ( let i = 0; i < drawCount; i ++ ) { elementCount += counts[ i ]; } info.update( elementCount, mode, 1 ); } function renderMultiDrawInstances( starts, counts, drawCount, primcount ) { if ( drawCount === 0 ) return; const extension = extensions.get( 'WEBGL_multi_draw' ); if ( extension === null ) { for ( let i = 0; i < starts.length; i ++ ) { renderInstances( starts[ i ], counts[ i ], primcount[ i ] ); } } else { extension.multiDrawArraysInstancedWEBGL( mode, starts, 0, counts, 0, primcount, 0, drawCount ); let elementCount = 0; for ( let i = 0; i < drawCount; i ++ ) { elementCount += counts[ i ]; } for ( let i = 0; i < primcount.length; i ++ ) { info.update( elementCount, mode, primcount[ i ] ); } } } // this.setMode = setMode; this.render = render; this.renderInstances = renderInstances; this.renderMultiDraw = renderMultiDraw; this.renderMultiDrawInstances = renderMultiDrawInstances; } function WebGLCapabilities( gl, extensions, parameters, utils ) { let maxAnisotropy; function getMaxAnisotropy() { if ( maxAnisotropy !== undefined ) return maxAnisotropy; if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); maxAnisotropy = gl.getParameter( extension.MAX_TEXTURE_MAX_ANISOTROPY_EXT ); } else { maxAnisotropy = 0; } return maxAnisotropy; } function textureFormatReadable( textureFormat ) { if ( textureFormat !== RGBAFormat && utils.convert( textureFormat ) !== gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_FORMAT ) ) { return false; } return true; } function textureTypeReadable( textureType ) { const halfFloatSupportedByExt = ( textureType === HalfFloatType ) && ( extensions.has( 'EXT_color_buffer_half_float' ) || extensions.has( 'EXT_color_buffer_float' ) ); if ( textureType !== UnsignedByteType && utils.convert( textureType ) !== gl.getParameter( gl.IMPLEMENTATION_COLOR_READ_TYPE ) && // Edge and Chrome Mac < 52 (#9513) textureType !== FloatType && ! halfFloatSupportedByExt ) { return false; } return true; } function getMaxPrecision( precision ) { if ( precision === 'highp' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.HIGH_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.HIGH_FLOAT ).precision > 0 ) { return 'highp'; } precision = 'mediump'; } if ( precision === 'mediump' ) { if ( gl.getShaderPrecisionFormat( gl.VERTEX_SHADER, gl.MEDIUM_FLOAT ).precision > 0 && gl.getShaderPrecisionFormat( gl.FRAGMENT_SHADER, gl.MEDIUM_FLOAT ).precision > 0 ) { return 'mediump'; } } return 'lowp'; } let precision = parameters.precision !== undefined ? parameters.precision : 'highp'; const maxPrecision = getMaxPrecision( precision ); if ( maxPrecision !== precision ) { console.warn( 'THREE.WebGLRenderer:', precision, 'not supported, using', maxPrecision, 'instead.' ); precision = maxPrecision; } const logarithmicDepthBuffer = parameters.logarithmicDepthBuffer === true; const reverseDepthBuffer = parameters.reverseDepthBuffer === true && extensions.has( 'EXT_clip_control' ); if ( reverseDepthBuffer === true ) { const ext = extensions.get( 'EXT_clip_control' ); ext.clipControlEXT( ext.LOWER_LEFT_EXT, ext.ZERO_TO_ONE_EXT ); } const maxTextures = gl.getParameter( gl.MAX_TEXTURE_IMAGE_UNITS ); const maxVertexTextures = gl.getParameter( gl.MAX_VERTEX_TEXTURE_IMAGE_UNITS ); const maxTextureSize = gl.getParameter( gl.MAX_TEXTURE_SIZE ); const maxCubemapSize = gl.getParameter( gl.MAX_CUBE_MAP_TEXTURE_SIZE ); const maxAttributes = gl.getParameter( gl.MAX_VERTEX_ATTRIBS ); const maxVertexUniforms = gl.getParameter( gl.MAX_VERTEX_UNIFORM_VECTORS ); const maxVaryings = gl.getParameter( gl.MAX_VARYING_VECTORS ); const maxFragmentUniforms = gl.getParameter( gl.MAX_FRAGMENT_UNIFORM_VECTORS ); const vertexTextures = maxVertexTextures > 0; const maxSamples = gl.getParameter( gl.MAX_SAMPLES ); return { isWebGL2: true, // keeping this for backwards compatibility getMaxAnisotropy: getMaxAnisotropy, getMaxPrecision: getMaxPrecision, textureFormatReadable: textureFormatReadable, textureTypeReadable: textureTypeReadable, precision: precision, logarithmicDepthBuffer: logarithmicDepthBuffer, reverseDepthBuffer: reverseDepthBuffer, maxTextures: maxTextures, maxVertexTextures: maxVertexTextures, maxTextureSize: maxTextureSize, maxCubemapSize: maxCubemapSize, maxAttributes: maxAttributes, maxVertexUniforms: maxVertexUniforms, maxVaryings: maxVaryings, maxFragmentUniforms: maxFragmentUniforms, vertexTextures: vertexTextures, maxSamples: maxSamples }; } function WebGLClipping( properties ) { const scope = this; let globalState = null, numGlobalPlanes = 0, localClippingEnabled = false, renderingShadows = false; const plane = new Plane(), viewNormalMatrix = new Matrix3(), uniform = { value: null, needsUpdate: false }; this.uniform = uniform; this.numPlanes = 0; this.numIntersection = 0; this.init = function ( planes, enableLocalClipping ) { const enabled = planes.length !== 0 || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes !== 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; numGlobalPlanes = planes.length; return enabled; }; this.beginShadows = function () { renderingShadows = true; projectPlanes( null ); }; this.endShadows = function () { renderingShadows = false; }; this.setGlobalState = function ( planes, camera ) { globalState = projectPlanes( planes, camera, 0 ); }; this.setState = function ( material, camera, useCache ) { const planes = material.clippingPlanes, clipIntersection = material.clipIntersection, clipShadows = material.clipShadows; const materialProperties = properties.get( material ); if ( ! localClippingEnabled || planes === null || planes.length === 0 || renderingShadows && ! clipShadows ) { // there's no local clipping if ( renderingShadows ) { // there's no global clipping projectPlanes( null ); } else { resetGlobalState(); } } else { const nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; let dstArray = materialProperties.clippingState || null; uniform.value = dstArray; // ensure unique state dstArray = projectPlanes( planes, camera, lGlobal, useCache ); for ( let i = 0; i !== lGlobal; ++ i ) { dstArray[ i ] = globalState[ i ]; } materialProperties.clippingState = dstArray; this.numIntersection = clipIntersection ? this.numPlanes : 0; this.numPlanes += nGlobal; } }; function resetGlobalState() { if ( uniform.value !== globalState ) { uniform.value = globalState; uniform.needsUpdate = numGlobalPlanes > 0; } scope.numPlanes = numGlobalPlanes; scope.numIntersection = 0; } function projectPlanes( planes, camera, dstOffset, skipTransform ) { const nPlanes = planes !== null ? planes.length : 0; let dstArray = null; if ( nPlanes !== 0 ) { dstArray = uniform.value; if ( skipTransform !== true || dstArray === null ) { const flatSize = dstOffset + nPlanes * 4, viewMatrix = camera.matrixWorldInverse; viewNormalMatrix.getNormalMatrix( viewMatrix ); if ( dstArray === null || dstArray.length < flatSize ) { dstArray = new Float32Array( flatSize ); } for ( let i = 0, i4 = dstOffset; i !== nPlanes; ++ i, i4 += 4 ) { plane.copy( planes[ i ] ).applyMatrix4( viewMatrix, viewNormalMatrix ); plane.normal.toArray( dstArray, i4 ); dstArray[ i4 + 3 ] = plane.constant; } } uniform.value = dstArray; uniform.needsUpdate = true; } scope.numPlanes = nPlanes; scope.numIntersection = 0; return dstArray; } } function WebGLCubeMaps( renderer ) { let cubemaps = new WeakMap(); function mapTextureMapping( texture, mapping ) { if ( mapping === EquirectangularReflectionMapping ) { texture.mapping = CubeReflectionMapping; } else if ( mapping === EquirectangularRefractionMapping ) { texture.mapping = CubeRefractionMapping; } return texture; } function get( texture ) { if ( texture && texture.isTexture ) { const mapping = texture.mapping; if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { if ( cubemaps.has( texture ) ) { const cubemap = cubemaps.get( texture ).texture; return mapTextureMapping( cubemap, texture.mapping ); } else { const image = texture.image; if ( image && image.height > 0 ) { const renderTarget = new WebGLCubeRenderTarget( image.height ); renderTarget.fromEquirectangularTexture( renderer, texture ); cubemaps.set( texture, renderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return mapTextureMapping( renderTarget.texture, texture.mapping ); } else { // image not yet ready. try the conversion next frame return null; } } } } return texture; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemap = cubemaps.get( texture ); if ( cubemap !== undefined ) { cubemaps.delete( texture ); cubemap.dispose(); } } function dispose() { cubemaps = new WeakMap(); } return { get: get, dispose: dispose }; } class OrthographicCamera extends Camera { constructor( left = -1, right = 1, top = 1, bottom = -1, near = 0.1, far = 2000 ) { super(); this.isOrthographicCamera = true; this.type = 'OrthographicCamera'; this.zoom = 1; this.view = null; this.left = left; this.right = right; this.top = top; this.bottom = bottom; this.near = near; this.far = far; this.updateProjectionMatrix(); } copy( source, recursive ) { super.copy( source, recursive ); this.left = source.left; this.right = source.right; this.top = source.top; this.bottom = source.bottom; this.near = source.near; this.far = source.far; this.zoom = source.zoom; this.view = source.view === null ? null : Object.assign( {}, source.view ); return this; } setViewOffset( fullWidth, fullHeight, x, y, width, height ) { if ( this.view === null ) { this.view = { enabled: true, fullWidth: 1, fullHeight: 1, offsetX: 0, offsetY: 0, width: 1, height: 1 }; } this.view.enabled = true; this.view.fullWidth = fullWidth; this.view.fullHeight = fullHeight; this.view.offsetX = x; this.view.offsetY = y; this.view.width = width; this.view.height = height; this.updateProjectionMatrix(); } clearViewOffset() { if ( this.view !== null ) { this.view.enabled = false; } this.updateProjectionMatrix(); } updateProjectionMatrix() { const dx = ( this.right - this.left ) / ( 2 * this.zoom ); const dy = ( this.top - this.bottom ) / ( 2 * this.zoom ); const cx = ( this.right + this.left ) / 2; const cy = ( this.top + this.bottom ) / 2; let left = cx - dx; let right = cx + dx; let top = cy + dy; let bottom = cy - dy; if ( this.view !== null && this.view.enabled ) { const scaleW = ( this.right - this.left ) / this.view.fullWidth / this.zoom; const scaleH = ( this.top - this.bottom ) / this.view.fullHeight / this.zoom; left += scaleW * this.view.offsetX; right = left + scaleW * this.view.width; top -= scaleH * this.view.offsetY; bottom = top - scaleH * this.view.height; } this.projectionMatrix.makeOrthographic( left, right, top, bottom, this.near, this.far, this.coordinateSystem ); this.projectionMatrixInverse.copy( this.projectionMatrix ).invert(); } toJSON( meta ) { const data = super.toJSON( meta ); data.object.zoom = this.zoom; data.object.left = this.left; data.object.right = this.right; data.object.top = this.top; data.object.bottom = this.bottom; data.object.near = this.near; data.object.far = this.far; if ( this.view !== null ) data.object.view = Object.assign( {}, this.view ); return data; } } const LOD_MIN$1 = 4; // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA$1 = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES$1 = 20; const _flatCamera$1 = /*@__PURE__*/ new OrthographicCamera(); const _clearColor$2 = /*@__PURE__*/ new Color(); let _oldTarget$1 = null; let _oldActiveCubeFace$1 = 0; let _oldActiveMipmapLevel$1 = 0; let _oldXrEnabled = false; // Golden Ratio const PHI$1 = ( 1 + Math.sqrt( 5 ) ) / 2; const INV_PHI$1 = 1 / PHI$1; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections$1 = [ /*@__PURE__*/ new Vector3( - PHI$1, INV_PHI$1, 0 ), /*@__PURE__*/ new Vector3( PHI$1, INV_PHI$1, 0 ), /*@__PURE__*/ new Vector3( - INV_PHI$1, 0, PHI$1 ), /*@__PURE__*/ new Vector3( INV_PHI$1, 0, PHI$1 ), /*@__PURE__*/ new Vector3( 0, PHI$1, - INV_PHI$1 ), /*@__PURE__*/ new Vector3( 0, PHI$1, INV_PHI$1 ), /*@__PURE__*/ new Vector3( -1, 1, -1 ), /*@__PURE__*/ new Vector3( 1, 1, -1 ), /*@__PURE__*/ new Vector3( -1, 1, 1 ), /*@__PURE__*/ new Vector3( 1, 1, 1 ) ]; /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ let PMREMGenerator$1 = class PMREMGenerator { constructor( renderer ) { this._renderer = renderer; this._pingPongRenderTarget = null; this._lodMax = 0; this._cubeSize = 0; this._lodPlanes = []; this._sizeLods = []; this._sigmas = []; this._blurMaterial = null; this._cubemapMaterial = null; this._equirectMaterial = null; this._compileMaterial( this._blurMaterial ); } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene( scene, sigma = 0, near = 0.1, far = 100 ) { _oldTarget$1 = this._renderer.getRenderTarget(); _oldActiveCubeFace$1 = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel$1 = this._renderer.getActiveMipmapLevel(); _oldXrEnabled = this._renderer.xr.enabled; this._renderer.xr.enabled = false; this._setSize( 256 ); const cubeUVRenderTarget = this._allocateTargets(); cubeUVRenderTarget.depthBuffer = true; this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); if ( sigma > 0 ) { this._blur( cubeUVRenderTarget, 0, 0, sigma ); } this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * or HDR. The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. * The smallest supported equirectangular image size is 64 x 32. */ fromEquirectangular( equirectangular, renderTarget = null ) { return this._fromTexture( equirectangular, renderTarget ); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * or HDR. The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. * The smallest supported cube size is 16 x 16. */ fromCubemap( cubemap, renderTarget = null ) { return this._fromTexture( cubemap, renderTarget ); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileCubemapShader() { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial$1(); this._compileMaterial( this._cubemapMaterial ); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ compileEquirectangularShader() { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial$1(); this._compileMaterial( this._equirectMaterial ); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._dispose(); if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); } // private interface _setSize( cubeSize ) { this._lodMax = Math.floor( Math.log2( cubeSize ) ); this._cubeSize = Math.pow( 2, this._lodMax ); } _dispose() { if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); for ( let i = 0; i < this._lodPlanes.length; i ++ ) { this._lodPlanes[ i ].dispose(); } } _cleanup( outputTarget ) { this._renderer.setRenderTarget( _oldTarget$1, _oldActiveCubeFace$1, _oldActiveMipmapLevel$1 ); this._renderer.xr.enabled = _oldXrEnabled; outputTarget.scissorTest = false; _setViewport$1( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); } _fromTexture( texture, renderTarget ) { if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); } else { // Equirectangular this._setSize( texture.image.width / 4 ); } _oldTarget$1 = this._renderer.getRenderTarget(); _oldActiveCubeFace$1 = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel$1 = this._renderer.getActiveMipmapLevel(); _oldXrEnabled = this._renderer.xr.enabled; this._renderer.xr.enabled = false; const cubeUVRenderTarget = renderTarget || this._allocateTargets(); this._textureToCubeUV( texture, cubeUVRenderTarget ); this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } _allocateTargets() { const width = 3 * Math.max( this._cubeSize, 16 * 7 ); const height = 4 * this._cubeSize; const params = { magFilter: LinearFilter, minFilter: LinearFilter, generateMipmaps: false, type: HalfFloatType, format: RGBAFormat, colorSpace: LinearSRGBColorSpace, depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget$1( width, height, params ); // NEEDLE: This was added to work around a caching bug in PMREMGenerator that lead to incorrect results. const { _lodMax } = this; ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes$1( _lodMax ) ); if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) { if ( this._pingPongRenderTarget !== null ) { this._dispose(); } this._pingPongRenderTarget = _createRenderTarget$1( width, height, params ); const { _lodMax } = this; ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas } = _createPlanes$1( _lodMax ) ); this._blurMaterial = _getBlurShader$1( _lodMax, width, height ); } return cubeUVRenderTarget; } _compileMaterial( material ) { const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material ); this._renderer.compile( tmpMesh, _flatCamera$1 ); } _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) { const fov = 90; const aspect = 1; const cubeCamera = new PerspectiveCamera( fov, aspect, near, far ); const upSign = [ 1, -1, 1, 1, 1, 1 ]; const forwardSign = [ 1, 1, 1, -1, -1, -1 ]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; const toneMapping = renderer.toneMapping; renderer.getClearColor( _clearColor$2 ); renderer.toneMapping = NoToneMapping; renderer.autoClear = false; const backgroundMaterial = new MeshBasicMaterial( { name: 'PMREM.Background', side: BackSide, depthWrite: false, depthTest: false, } ); const backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); let useSolidColor = false; const background = scene.background; if ( background ) { if ( background.isColor ) { backgroundMaterial.color.copy( background ); scene.background = null; useSolidColor = true; } } else { backgroundMaterial.color.copy( _clearColor$2 ); useSolidColor = true; } for ( let i = 0; i < 6; i ++ ) { const col = i % 3; if ( col === 0 ) { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); } else if ( col === 1 ) { cubeCamera.up.set( 0, 0, upSign[ i ] ); cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); } else { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); } const size = this._cubeSize; _setViewport$1( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); renderer.setRenderTarget( cubeUVRenderTarget ); if ( useSolidColor ) { renderer.render( backgroundBox, cubeCamera ); } renderer.render( scene, cubeCamera ); } backgroundBox.geometry.dispose(); backgroundBox.material.dispose(); renderer.toneMapping = toneMapping; renderer.autoClear = originalAutoClear; scene.background = background; } _textureToCubeUV( texture, cubeUVRenderTarget ) { const renderer = this._renderer; const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); if ( isCubeTexture ) { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial$1(); } this._cubemapMaterial.uniforms.flipEnvMap.value = ( texture.isRenderTargetTexture === false ) ? -1 : 1; } else { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial$1(); } } const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; const mesh = new Mesh( this._lodPlanes[ 0 ], material ); const uniforms = material.uniforms; uniforms[ 'envMap' ].value = texture; const size = this._cubeSize; _setViewport$1( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( mesh, _flatCamera$1 ); } _applyPMREM( cubeUVRenderTarget ) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; const n = this._lodPlanes.length; for ( let i = 1; i < n; i ++ ) { const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); const poleAxis = _axisDirections$1[ ( n - i - 1 ) % _axisDirections$1.length ]; this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis ); } _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { console.error( 'blur direction must be either latitudinal or longitudinal!' ); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = new Mesh( this._lodPlanes[ lodOut ], blurMaterial ); const blurUniforms = blurMaterial.uniforms; const pixels = this._sizeLods[ lodIn ] - 1; const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES$1 - 1 ); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES$1; if ( samples > MAX_SAMPLES$1 ) { console.warn( `sigmaRadians, ${ sigmaRadians}, is too large and will clip, as it requested ${ samples} samples when the maximum is set to ${MAX_SAMPLES$1}` ); } const weights = []; let sum = 0; for ( let i = 0; i < MAX_SAMPLES$1; ++ i ) { const x = i / sigmaPixels; const weight = Math.exp( - x * x / 2 ); weights.push( weight ); if ( i === 0 ) { sum += weight; } else if ( i < samples ) { sum += 2 * weight; } } for ( let i = 0; i < weights.length; i ++ ) { weights[ i ] = weights[ i ] / sum; } blurUniforms[ 'envMap' ].value = targetIn.texture; blurUniforms[ 'samples' ].value = samples; blurUniforms[ 'weights' ].value = weights; blurUniforms[ 'latitudinal' ].value = direction === 'latitudinal'; if ( poleAxis ) { blurUniforms[ 'poleAxis' ].value = poleAxis; } const { _lodMax } = this; blurUniforms[ 'dTheta' ].value = radiansPerPixel; blurUniforms[ 'mipInt' ].value = _lodMax - lodIn; const outputSize = this._sizeLods[ lodOut ]; const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN$1 ? lodOut - _lodMax + LOD_MIN$1 : 0 ); const y = 4 * ( this._cubeSize - outputSize ); _setViewport$1( targetOut, x, y, 3 * outputSize, 2 * outputSize ); renderer.setRenderTarget( targetOut ); renderer.render( blurMesh, _flatCamera$1 ); } }; function _createPlanes$1( lodMax ) { const lodPlanes = []; const sizeLods = []; const sigmas = []; let lod = lodMax; const totalLods = lodMax - LOD_MIN$1 + 1 + EXTRA_LOD_SIGMA$1.length; for ( let i = 0; i < totalLods; i ++ ) { const sizeLod = Math.pow( 2, lod ); sizeLods.push( sizeLod ); let sigma = 1.0 / sizeLod; if ( i > lodMax - LOD_MIN$1 ) { sigma = EXTRA_LOD_SIGMA$1[ i - lodMax + LOD_MIN$1 - 1 ]; } else if ( i === 0 ) { sigma = 0; } sigmas.push( sigma ); const texelSize = 1.0 / ( sizeLod - 2 ); const min = - texelSize; const max = 1 + texelSize; const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array( positionSize * vertices * cubeFaces ); const uv = new Float32Array( uvSize * vertices * cubeFaces ); const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); for ( let face = 0; face < cubeFaces; face ++ ) { const x = ( face % 3 ) * 2 / 3 - 1; const y = face > 2 ? 0 : -1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; position.set( coordinates, positionSize * vertices * face ); uv.set( uv1, uvSize * vertices * face ); const fill = [ face, face, face, face, face, face ]; faceIndex.set( fill, faceIndexSize * vertices * face ); } const planes = new BufferGeometry(); planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); lodPlanes.push( planes ); if ( lod > LOD_MIN$1 ) { lod --; } } return { lodPlanes, sizeLods, sigmas }; } function _createRenderTarget$1( width, height, params ) { const cubeUVRenderTarget = new WebGLRenderTarget( width, height, params ); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport$1( target, x, y, width, height ) { target.viewport.set( x, y, width, height ); target.scissor.set( x, y, width, height ); } function _getBlurShader$1( lodMax, width, height ) { const weights = new Float32Array( MAX_SAMPLES$1 ); const poleAxis = new Vector3( 0, 1, 0 ); const shaderMaterial = new ShaderMaterial( { name: 'SphericalGaussianBlur', defines: { 'n': MAX_SAMPLES$1, 'CUBEUV_TEXEL_WIDTH': 1.0 / width, 'CUBEUV_TEXEL_HEIGHT': 1.0 / height, 'CUBEUV_MAX_MIP': `${lodMax}.0`, }, uniforms: { 'envMap': { value: null }, 'samples': { value: 1 }, 'weights': { value: weights }, 'latitudinal': { value: false }, 'dTheta': { value: 0 }, 'mipInt': { value: 0 }, 'poleAxis': { value: poleAxis } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; uniform int samples; uniform float weights[ n ]; uniform bool latitudinal; uniform float dTheta; uniform float mipInt; uniform vec3 poleAxis; #define ENVMAP_TYPE_CUBE_UV #include vec3 getSample( float theta, vec3 axis ) { float cosTheta = cos( theta ); // Rodrigues' axis-angle rotation vec3 sampleDirection = vOutputDirection * cosTheta + cross( axis, vOutputDirection ) * sin( theta ) + axis * dot( axis, vOutputDirection ) * ( 1.0 - cosTheta ); return bilinearCubeUV( envMap, sampleDirection, mipInt ); } void main() { vec3 axis = latitudinal ? poleAxis : cross( poleAxis, vOutputDirection ); if ( all( equal( axis, vec3( 0.0 ) ) ) ) { axis = vec3( vOutputDirection.z, 0.0, - vOutputDirection.x ); } axis = normalize( axis ); gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 ); gl_FragColor.rgb += weights[ 0 ] * getSample( 0.0, axis ); for ( int i = 1; i < n; i++ ) { if ( i >= samples ) { break; } float theta = dTheta * float( i ); gl_FragColor.rgb += weights[ i ] * getSample( -1.0 * theta, axis ); gl_FragColor.rgb += weights[ i ] * getSample( theta, axis ); } } `, blending: NoBlending, depthTest: false, depthWrite: false } ); return shaderMaterial; } function _getEquirectMaterial$1() { return new ShaderMaterial( { name: 'EquirectangularToCubeUV', uniforms: { 'envMap': { value: null } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; varying vec3 vOutputDirection; uniform sampler2D envMap; #include void main() { vec3 outputDirection = normalize( vOutputDirection ); vec2 uv = equirectUv( outputDirection ); gl_FragColor = vec4( texture2D ( envMap, uv ).rgb, 1.0 ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); } function _getCubemapMaterial$1() { return new ShaderMaterial( { name: 'CubemapToCubeUV', uniforms: { 'envMap': { value: null }, 'flipEnvMap': { value: -1 } }, vertexShader: _getCommonVertexShader(), fragmentShader: /* glsl */` precision mediump float; precision mediump int; uniform float flipEnvMap; varying vec3 vOutputDirection; uniform samplerCube envMap; void main() { gl_FragColor = textureCube( envMap, vec3( flipEnvMap * vOutputDirection.x, vOutputDirection.yz ) ); } `, blending: NoBlending, depthTest: false, depthWrite: false } ); } function _getCommonVertexShader() { return /* glsl */` precision mediump float; precision mediump int; attribute float faceIndex; varying vec3 vOutputDirection; // RH coordinate system; PMREM face-indexing convention vec3 getDirection( vec2 uv, float face ) { uv = 2.0 * uv - 1.0; vec3 direction = vec3( uv, 1.0 ); if ( face == 0.0 ) { direction = direction.zyx; // ( 1, v, u ) pos x } else if ( face == 1.0 ) { direction = direction.xzy; direction.xz *= -1.0; // ( -u, 1, -v ) pos y } else if ( face == 2.0 ) { direction.x *= -1.0; // ( -u, v, 1 ) pos z } else if ( face == 3.0 ) { direction = direction.zyx; direction.xz *= -1.0; // ( -1, v, -u ) neg x } else if ( face == 4.0 ) { direction = direction.xzy; direction.xy *= -1.0; // ( -u, -1, v ) neg y } else if ( face == 5.0 ) { direction.z *= -1.0; // ( u, v, -1 ) neg z } return direction; } void main() { vOutputDirection = getDirection( uv, faceIndex ); gl_Position = vec4( position, 1.0 ); } `; } function WebGLCubeUVMaps( renderer ) { let cubeUVmaps = new WeakMap(); let pmremGenerator = null; function get( texture ) { if ( texture && texture.isTexture ) { const mapping = texture.mapping; const isEquirectMap = ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ); const isCubeMap = ( mapping === CubeReflectionMapping || mapping === CubeRefractionMapping ); // equirect/cube map to cubeUV conversion if ( isEquirectMap || isCubeMap ) { let renderTarget = cubeUVmaps.get( texture ); const currentPMREMVersion = renderTarget !== undefined ? renderTarget.texture.pmremVersion : 0; if ( texture.isRenderTargetTexture && texture.pmremVersion !== currentPMREMVersion ) { if ( pmremGenerator === null ) pmremGenerator = new PMREMGenerator$1( renderer ); renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture, renderTarget ) : pmremGenerator.fromCubemap( texture, renderTarget ); renderTarget.texture.pmremVersion = texture.pmremVersion; cubeUVmaps.set( texture, renderTarget ); return renderTarget.texture; } else { if ( renderTarget !== undefined ) { return renderTarget.texture; } else { const image = texture.image; if ( ( isEquirectMap && image && image.height > 0 ) || ( isCubeMap && image && isCubeTextureComplete( image ) ) ) { // NEEDLE: The caching here was removed because of a bug where wrong results were returned for subsequent PMREMGenerator usage; // the root cause is still unclear. pmremGenerator = new PMREMGenerator$1( renderer ); renderTarget = isEquirectMap ? pmremGenerator.fromEquirectangular( texture ) : pmremGenerator.fromCubemap( texture ); renderTarget.texture.pmremVersion = texture.pmremVersion; cubeUVmaps.set( texture, renderTarget ); texture.addEventListener( 'dispose', onTextureDispose ); return renderTarget.texture; } else { // image not yet ready. try the conversion next frame return null; } } } } } return texture; } function isCubeTextureComplete( image ) { let count = 0; const length = 6; for ( let i = 0; i < length; i ++ ) { if ( image[ i ] !== undefined ) count ++; } return count === length; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const cubemapUV = cubeUVmaps.get( texture ); if ( cubemapUV !== undefined ) { cubeUVmaps.delete( texture ); cubemapUV.dispose(); } } function dispose() { cubeUVmaps = new WeakMap(); if ( pmremGenerator !== null ) { pmremGenerator.dispose(); pmremGenerator = null; } } return { get: get, dispose: dispose }; } function WebGLExtensions( gl ) { const extensions = {}; function getExtension( name ) { if ( extensions[ name ] !== undefined ) { return extensions[ name ]; } let extension; switch ( name ) { case 'WEBGL_depth_texture': extension = gl.getExtension( 'WEBGL_depth_texture' ) || gl.getExtension( 'MOZ_WEBGL_depth_texture' ) || gl.getExtension( 'WEBKIT_WEBGL_depth_texture' ); break; case 'EXT_texture_filter_anisotropic': extension = gl.getExtension( 'EXT_texture_filter_anisotropic' ) || gl.getExtension( 'MOZ_EXT_texture_filter_anisotropic' ) || gl.getExtension( 'WEBKIT_EXT_texture_filter_anisotropic' ); break; case 'WEBGL_compressed_texture_s3tc': extension = gl.getExtension( 'WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'MOZ_WEBGL_compressed_texture_s3tc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_s3tc' ); break; case 'WEBGL_compressed_texture_pvrtc': extension = gl.getExtension( 'WEBGL_compressed_texture_pvrtc' ) || gl.getExtension( 'WEBKIT_WEBGL_compressed_texture_pvrtc' ); break; default: extension = gl.getExtension( name ); } extensions[ name ] = extension; return extension; } return { has: function ( name ) { return getExtension( name ) !== null; }, init: function () { getExtension( 'EXT_color_buffer_float' ); getExtension( 'WEBGL_clip_cull_distance' ); getExtension( 'OES_texture_float_linear' ); getExtension( 'EXT_color_buffer_half_float' ); getExtension( 'WEBGL_multisampled_render_to_texture' ); getExtension( 'WEBGL_render_shared_exponent' ); }, get: function ( name ) { const extension = getExtension( name ); if ( extension === null ) { warnOnce( 'THREE.WebGLRenderer: ' + name + ' extension not supported.' ); } return extension; } }; } function WebGLGeometries( gl, attributes, info, bindingStates ) { const geometries = {}; const wireframeAttributes = new WeakMap(); function onGeometryDispose( event ) { const geometry = event.target; if ( geometry.index !== null ) { attributes.remove( geometry.index ); } for ( const name in geometry.attributes ) { attributes.remove( geometry.attributes[ name ] ); } for ( const name in geometry.morphAttributes ) { const array = geometry.morphAttributes[ name ]; for ( let i = 0, l = array.length; i < l; i ++ ) { attributes.remove( array[ i ] ); } } geometry.removeEventListener( 'dispose', onGeometryDispose ); delete geometries[ geometry.id ]; const attribute = wireframeAttributes.get( geometry ); if ( attribute ) { attributes.remove( attribute ); wireframeAttributes.delete( geometry ); } bindingStates.releaseStatesOfGeometry( geometry ); if ( geometry.isInstancedBufferGeometry === true ) { delete geometry._maxInstanceCount; } // info.memory.geometries --; } function get( object, geometry ) { if ( geometries[ geometry.id ] === true ) return geometry; geometry.addEventListener( 'dispose', onGeometryDispose ); geometries[ geometry.id ] = true; info.memory.geometries ++; return geometry; } function update( geometry ) { const geometryAttributes = geometry.attributes; // Updating index buffer in VAO now. See WebGLBindingStates. for ( const name in geometryAttributes ) { attributes.update( geometryAttributes[ name ], gl.ARRAY_BUFFER ); } // morph targets const morphAttributes = geometry.morphAttributes; for ( const name in morphAttributes ) { const array = morphAttributes[ name ]; for ( let i = 0, l = array.length; i < l; i ++ ) { attributes.update( array[ i ], gl.ARRAY_BUFFER ); } } } function updateWireframeAttribute( geometry ) { const indices = []; const geometryIndex = geometry.index; const geometryPosition = geometry.attributes.position; let version = 0; if ( geometryIndex !== null ) { const array = geometryIndex.array; version = geometryIndex.version; for ( let i = 0, l = array.length; i < l; i += 3 ) { const a = array[ i + 0 ]; const b = array[ i + 1 ]; const c = array[ i + 2 ]; indices.push( a, b, b, c, c, a ); } } else if ( geometryPosition !== undefined ) { const array = geometryPosition.array; version = geometryPosition.version; for ( let i = 0, l = ( array.length / 3 ) - 1; i < l; i += 3 ) { const a = i + 0; const b = i + 1; const c = i + 2; indices.push( a, b, b, c, c, a ); } } else { return; } const attribute = new ( arrayNeedsUint32( indices ) ? Uint32BufferAttribute : Uint16BufferAttribute )( indices, 1 ); attribute.version = version; // Updating index buffer in VAO now. See WebGLBindingStates // const previousAttribute = wireframeAttributes.get( geometry ); if ( previousAttribute ) attributes.remove( previousAttribute ); // wireframeAttributes.set( geometry, attribute ); } function getWireframeAttribute( geometry ) { const currentAttribute = wireframeAttributes.get( geometry ); if ( currentAttribute ) { const geometryIndex = geometry.index; if ( geometryIndex !== null ) { // if the attribute is obsolete, create a new one if ( currentAttribute.version < geometryIndex.version ) { updateWireframeAttribute( geometry ); } } } else { updateWireframeAttribute( geometry ); } return wireframeAttributes.get( geometry ); } return { get: get, update: update, getWireframeAttribute: getWireframeAttribute }; } function WebGLIndexedBufferRenderer( gl, extensions, info ) { let mode; function setMode( value ) { mode = value; } let type, bytesPerElement; function setIndex( value ) { type = value.type; bytesPerElement = value.bytesPerElement; } function render( start, count ) { gl.drawElements( mode, count, type, start * bytesPerElement ); info.update( count, mode, 1 ); } function renderInstances( start, count, primcount ) { if ( primcount === 0 ) return; gl.drawElementsInstanced( mode, count, type, start * bytesPerElement, primcount ); info.update( count, mode, primcount ); } function renderMultiDraw( starts, counts, drawCount ) { if ( drawCount === 0 ) return; const extension = extensions.get( 'WEBGL_multi_draw' ); extension.multiDrawElementsWEBGL( mode, counts, 0, type, starts, 0, drawCount ); let elementCount = 0; for ( let i = 0; i < drawCount; i ++ ) { elementCount += counts[ i ]; } info.update( elementCount, mode, 1 ); } function renderMultiDrawInstances( starts, counts, drawCount, primcount ) { if ( drawCount === 0 ) return; const extension = extensions.get( 'WEBGL_multi_draw' ); if ( extension === null ) { for ( let i = 0; i < starts.length; i ++ ) { renderInstances( starts[ i ] / bytesPerElement, counts[ i ], primcount[ i ] ); } } else { extension.multiDrawElementsInstancedWEBGL( mode, counts, 0, type, starts, 0, primcount, 0, drawCount ); let elementCount = 0; for ( let i = 0; i < drawCount; i ++ ) { elementCount += counts[ i ]; } for ( let i = 0; i < primcount.length; i ++ ) { info.update( elementCount, mode, primcount[ i ] ); } } } // this.setMode = setMode; this.setIndex = setIndex; this.render = render; this.renderInstances = renderInstances; this.renderMultiDraw = renderMultiDraw; this.renderMultiDrawInstances = renderMultiDrawInstances; } function WebGLInfo( gl ) { const memory = { geometries: 0, textures: 0 }; const render = { frame: 0, calls: 0, triangles: 0, points: 0, lines: 0 }; function update( count, mode, instanceCount ) { render.calls ++; switch ( mode ) { case gl.TRIANGLES: render.triangles += instanceCount * ( count / 3 ); break; case gl.LINES: render.lines += instanceCount * ( count / 2 ); break; case gl.LINE_STRIP: render.lines += instanceCount * ( count - 1 ); break; case gl.LINE_LOOP: render.lines += instanceCount * count; break; case gl.POINTS: render.points += instanceCount * count; break; default: console.error( 'THREE.WebGLInfo: Unknown draw mode:', mode ); break; } } function reset() { render.calls = 0; render.triangles = 0; render.points = 0; render.lines = 0; } return { memory: memory, render: render, programs: null, autoReset: true, reset: reset, update: update }; } function WebGLMorphtargets( gl, capabilities, textures ) { const morphTextures = new WeakMap(); const morph = new Vector4(); function update( object, geometry, program ) { const objectInfluences = object.morphTargetInfluences; // the following encodes morph targets into an array of data textures. Each layer represents a single morph target. const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; let entry = morphTextures.get( geometry ); if ( entry === undefined || entry.count !== morphTargetsCount ) { if ( entry !== undefined ) entry.texture.dispose(); const hasMorphPosition = geometry.morphAttributes.position !== undefined; const hasMorphNormals = geometry.morphAttributes.normal !== undefined; const hasMorphColors = geometry.morphAttributes.color !== undefined; const morphTargets = geometry.morphAttributes.position || []; const morphNormals = geometry.morphAttributes.normal || []; const morphColors = geometry.morphAttributes.color || []; let vertexDataCount = 0; if ( hasMorphPosition === true ) vertexDataCount = 1; if ( hasMorphNormals === true ) vertexDataCount = 2; if ( hasMorphColors === true ) vertexDataCount = 3; let width = geometry.attributes.position.count * vertexDataCount; let height = 1; if ( width > capabilities.maxTextureSize ) { height = Math.ceil( width / capabilities.maxTextureSize ); width = capabilities.maxTextureSize; } const buffer = new Float32Array( width * height * 4 * morphTargetsCount ); const texture = new DataArrayTexture( buffer, width, height, morphTargetsCount ); texture.type = FloatType; texture.needsUpdate = true; // fill buffer const vertexDataStride = vertexDataCount * 4; for ( let i = 0; i < morphTargetsCount; i ++ ) { const morphTarget = morphTargets[ i ]; const morphNormal = morphNormals[ i ]; const morphColor = morphColors[ i ]; const offset = width * height * 4 * i; for ( let j = 0; j < morphTarget.count; j ++ ) { const stride = j * vertexDataStride; if ( hasMorphPosition === true ) { morph.fromBufferAttribute( morphTarget, j ); buffer[ offset + stride + 0 ] = morph.x; buffer[ offset + stride + 1 ] = morph.y; buffer[ offset + stride + 2 ] = morph.z; buffer[ offset + stride + 3 ] = 0; } if ( hasMorphNormals === true ) { morph.fromBufferAttribute( morphNormal, j ); buffer[ offset + stride + 4 ] = morph.x; buffer[ offset + stride + 5 ] = morph.y; buffer[ offset + stride + 6 ] = morph.z; buffer[ offset + stride + 7 ] = 0; } if ( hasMorphColors === true ) { morph.fromBufferAttribute( morphColor, j ); buffer[ offset + stride + 8 ] = morph.x; buffer[ offset + stride + 9 ] = morph.y; buffer[ offset + stride + 10 ] = morph.z; buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? morph.w : 1; } } } entry = { count: morphTargetsCount, texture: texture, size: new Vector2( width, height ) }; morphTextures.set( geometry, entry ); function disposeTexture() { texture.dispose(); morphTextures.delete( geometry ); geometry.removeEventListener( 'dispose', disposeTexture ); } geometry.addEventListener( 'dispose', disposeTexture ); } // if ( object.isInstancedMesh === true && object.morphTexture !== null ) { program.getUniforms().setValue( gl, 'morphTexture', object.morphTexture, textures ); } else { let morphInfluencesSum = 0; for ( let i = 0; i < objectInfluences.length; i ++ ) { morphInfluencesSum += objectInfluences[ i ]; } const morphBaseInfluence = geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; program.getUniforms().setValue( gl, 'morphTargetBaseInfluence', morphBaseInfluence ); program.getUniforms().setValue( gl, 'morphTargetInfluences', objectInfluences ); } program.getUniforms().setValue( gl, 'morphTargetsTexture', entry.texture, textures ); program.getUniforms().setValue( gl, 'morphTargetsTextureSize', entry.size ); } return { update: update }; } function WebGLObjects( gl, geometries, attributes, info ) { let updateMap = new WeakMap(); function update( object ) { const frame = info.render.frame; const geometry = object.geometry; const buffergeometry = geometries.get( object, geometry ); // Update once per frame if ( updateMap.get( buffergeometry ) !== frame ) { geometries.update( buffergeometry ); updateMap.set( buffergeometry, frame ); } if ( object.isInstancedMesh ) { if ( object.hasEventListener( 'dispose', onInstancedMeshDispose ) === false ) { object.addEventListener( 'dispose', onInstancedMeshDispose ); } if ( updateMap.get( object ) !== frame ) { attributes.update( object.instanceMatrix, gl.ARRAY_BUFFER ); if ( object.instanceColor !== null ) { attributes.update( object.instanceColor, gl.ARRAY_BUFFER ); } updateMap.set( object, frame ); } } if ( object.isSkinnedMesh ) { const skeleton = object.skeleton; if ( updateMap.get( skeleton ) !== frame ) { skeleton.update(); updateMap.set( skeleton, frame ); } } return buffergeometry; } function dispose() { updateMap = new WeakMap(); } function onInstancedMeshDispose( event ) { const instancedMesh = event.target; instancedMesh.removeEventListener( 'dispose', onInstancedMeshDispose ); attributes.remove( instancedMesh.instanceMatrix ); if ( instancedMesh.instanceColor !== null ) attributes.remove( instancedMesh.instanceColor ); } return { update: update, dispose: dispose }; } class DepthTexture extends Texture { constructor( width, height, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, format = DepthFormat ) { if ( format !== DepthFormat && format !== DepthStencilFormat ) { throw new Error( 'DepthTexture format must be either THREE.DepthFormat or THREE.DepthStencilFormat' ); } if ( type === undefined && format === DepthFormat ) type = UnsignedIntType; if ( type === undefined && format === DepthStencilFormat ) type = UnsignedInt248Type; super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.isDepthTexture = true; this.image = { width: width, height: height }; this.magFilter = magFilter !== undefined ? magFilter : NearestFilter; this.minFilter = minFilter !== undefined ? minFilter : NearestFilter; this.flipY = false; this.generateMipmaps = false; this.compareFunction = null; } copy( source ) { super.copy( source ); this.compareFunction = source.compareFunction; return this; } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.compareFunction !== null ) data.compareFunction = this.compareFunction; return data; } } /** * Uniforms of a program. * Those form a tree structure with a special top-level container for the root, * which you get by calling 'new WebGLUniforms( gl, program )'. * * * Properties of inner nodes including the top-level container: * * .seq - array of nested uniforms * .map - nested uniforms by name * * * Methods of all nodes except the top-level container: * * .setValue( gl, value, [textures] ) * * uploads a uniform value(s) * the 'textures' parameter is needed for sampler uniforms * * * Static methods of the top-level container (textures factorizations): * * .upload( gl, seq, values, textures ) * * sets uniforms in 'seq' to 'values[id].value' * * .seqWithValue( seq, values ) : filteredSeq * * filters 'seq' entries with corresponding entry in values * * * Methods of the top-level container (textures factorizations): * * .setValue( gl, name, value, textures ) * * sets uniform with name 'name' to 'value' * * .setOptional( gl, obj, prop ) * * like .set for an optional property of the object * */ const emptyTexture = /*@__PURE__*/ new Texture(); const emptyShadowTexture = /*@__PURE__*/ new DepthTexture( 1, 1 ); const emptyArrayTexture = /*@__PURE__*/ new DataArrayTexture(); const empty3dTexture = /*@__PURE__*/ new Data3DTexture(); const emptyCubeTexture = /*@__PURE__*/ new CubeTexture(); // --- Utilities --- // Array Caches (provide typed arrays for temporary by size) const arrayCacheF32 = []; const arrayCacheI32 = []; // Float32Array caches used for uploading Matrix uniforms const mat4array = new Float32Array( 16 ); const mat3array = new Float32Array( 9 ); const mat2array = new Float32Array( 4 ); // Flattening for arrays of vectors and matrices function flatten( array, nBlocks, blockSize ) { const firstElem = array[ 0 ]; if ( firstElem <= 0 || firstElem > 0 ) return array; // unoptimized: ! isNaN( firstElem ) // see http://jacksondunstan.com/articles/983 const n = nBlocks * blockSize; let r = arrayCacheF32[ n ]; if ( r === undefined ) { r = new Float32Array( n ); arrayCacheF32[ n ] = r; } if ( nBlocks !== 0 ) { firstElem.toArray( r, 0 ); for ( let i = 1, offset = 0; i !== nBlocks; ++ i ) { offset += blockSize; array[ i ].toArray( r, offset ); } } return r; } function arraysEqual( a, b ) { if ( a.length !== b.length ) return false; for ( let i = 0, l = a.length; i < l; i ++ ) { if ( a[ i ] !== b[ i ] ) return false; } return true; } function copyArray( a, b ) { for ( let i = 0, l = b.length; i < l; i ++ ) { a[ i ] = b[ i ]; } } // Texture unit allocation function allocTexUnits( textures, n ) { let r = arrayCacheI32[ n ]; if ( r === undefined ) { r = new Int32Array( n ); arrayCacheI32[ n ] = r; } for ( let i = 0; i !== n; ++ i ) { r[ i ] = textures.allocateTextureUnit(); } return r; } // --- Setters --- // Note: Defining these methods externally, because they come in a bunch // and this way their names minify. // Single scalar function setValueV1f( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1f( this.addr, v ); cache[ 0 ] = v; } // Single float vector (from flat array or THREE.VectorN) function setValueV2f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2f( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2fv( this.addr, v ); copyArray( cache, v ); } } function setValueV3f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3f( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else if ( v.r !== undefined ) { if ( cache[ 0 ] !== v.r || cache[ 1 ] !== v.g || cache[ 2 ] !== v.b ) { gl.uniform3f( this.addr, v.r, v.g, v.b ); cache[ 0 ] = v.r; cache[ 1 ] = v.g; cache[ 2 ] = v.b; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3fv( this.addr, v ); copyArray( cache, v ); } } function setValueV4f( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4f( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4fv( this.addr, v ); copyArray( cache, v ); } } // Single matrix (from flat array or THREE.MatrixN) function setValueM2( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix2fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat2array.set( elements ); gl.uniformMatrix2fv( this.addr, false, mat2array ); copyArray( cache, elements ); } } function setValueM3( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix3fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat3array.set( elements ); gl.uniformMatrix3fv( this.addr, false, mat3array ); copyArray( cache, elements ); } } function setValueM4( gl, v ) { const cache = this.cache; const elements = v.elements; if ( elements === undefined ) { if ( arraysEqual( cache, v ) ) return; gl.uniformMatrix4fv( this.addr, false, v ); copyArray( cache, v ); } else { if ( arraysEqual( cache, elements ) ) return; mat4array.set( elements ); gl.uniformMatrix4fv( this.addr, false, mat4array ); copyArray( cache, elements ); } } // Single integer / boolean function setValueV1i( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1i( this.addr, v ); cache[ 0 ] = v; } // Single integer / boolean vector (from flat array or THREE.VectorN) function setValueV2i( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2i( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2iv( this.addr, v ); copyArray( cache, v ); } } function setValueV3i( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3i( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3iv( this.addr, v ); copyArray( cache, v ); } } function setValueV4i( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4i( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4iv( this.addr, v ); copyArray( cache, v ); } } // Single unsigned integer function setValueV1ui( gl, v ) { const cache = this.cache; if ( cache[ 0 ] === v ) return; gl.uniform1ui( this.addr, v ); cache[ 0 ] = v; } // Single unsigned integer vector (from flat array or THREE.VectorN) function setValueV2ui( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y ) { gl.uniform2ui( this.addr, v.x, v.y ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform2uiv( this.addr, v ); copyArray( cache, v ); } } function setValueV3ui( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z ) { gl.uniform3ui( this.addr, v.x, v.y, v.z ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform3uiv( this.addr, v ); copyArray( cache, v ); } } function setValueV4ui( gl, v ) { const cache = this.cache; if ( v.x !== undefined ) { if ( cache[ 0 ] !== v.x || cache[ 1 ] !== v.y || cache[ 2 ] !== v.z || cache[ 3 ] !== v.w ) { gl.uniform4ui( this.addr, v.x, v.y, v.z, v.w ); cache[ 0 ] = v.x; cache[ 1 ] = v.y; cache[ 2 ] = v.z; cache[ 3 ] = v.w; } } else { if ( arraysEqual( cache, v ) ) return; gl.uniform4uiv( this.addr, v ); copyArray( cache, v ); } } // Single texture (2D / Cube) function setValueT1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } let emptyTexture2D; if ( this.type === gl.SAMPLER_2D_SHADOW ) { emptyShadowTexture.compareFunction = LessEqualCompare; // #28670 emptyTexture2D = emptyShadowTexture; } else { emptyTexture2D = emptyTexture; } textures.setTexture2D( v || emptyTexture2D, unit ); } function setValueT3D1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture3D( v || empty3dTexture, unit ); } function setValueT6( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTextureCube( v || emptyCubeTexture, unit ); } function setValueT2DArray1( gl, v, textures ) { const cache = this.cache; const unit = textures.allocateTextureUnit(); if ( cache[ 0 ] !== unit ) { gl.uniform1i( this.addr, unit ); cache[ 0 ] = unit; } textures.setTexture2DArray( v || emptyArrayTexture, unit ); } // Helper to pick the right setter for the singular case function getSingularSetter( type ) { switch ( type ) { case 0x1406: return setValueV1f; // FLOAT case 0x8b50: return setValueV2f; // _VEC2 case 0x8b51: return setValueV3f; // _VEC3 case 0x8b52: return setValueV4f; // _VEC4 case 0x8b5a: return setValueM2; // _MAT2 case 0x8b5b: return setValueM3; // _MAT3 case 0x8b5c: return setValueM4; // _MAT4 case 0x1404: case 0x8b56: return setValueV1i; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2i; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3i; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4i; // _VEC4 case 0x1405: return setValueV1ui; // UINT case 0x8dc6: return setValueV2ui; // _VEC2 case 0x8dc7: return setValueV3ui; // _VEC3 case 0x8dc8: return setValueV4ui; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3D1; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArray1; } } // Array of scalars function setValueV1fArray( gl, v ) { gl.uniform1fv( this.addr, v ); } // Array of vectors (from flat array or array of THREE.VectorN) function setValueV2fArray( gl, v ) { const data = flatten( v, this.size, 2 ); gl.uniform2fv( this.addr, data ); } function setValueV3fArray( gl, v ) { const data = flatten( v, this.size, 3 ); gl.uniform3fv( this.addr, data ); } function setValueV4fArray( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniform4fv( this.addr, data ); } // Array of matrices (from flat array or array of THREE.MatrixN) function setValueM2Array( gl, v ) { const data = flatten( v, this.size, 4 ); gl.uniformMatrix2fv( this.addr, false, data ); } function setValueM3Array( gl, v ) { const data = flatten( v, this.size, 9 ); gl.uniformMatrix3fv( this.addr, false, data ); } function setValueM4Array( gl, v ) { const data = flatten( v, this.size, 16 ); gl.uniformMatrix4fv( this.addr, false, data ); } // Array of integer / boolean function setValueV1iArray( gl, v ) { gl.uniform1iv( this.addr, v ); } // Array of integer / boolean vectors (from flat array) function setValueV2iArray( gl, v ) { gl.uniform2iv( this.addr, v ); } function setValueV3iArray( gl, v ) { gl.uniform3iv( this.addr, v ); } function setValueV4iArray( gl, v ) { gl.uniform4iv( this.addr, v ); } // Array of unsigned integer function setValueV1uiArray( gl, v ) { gl.uniform1uiv( this.addr, v ); } // Array of unsigned integer vectors (from flat array) function setValueV2uiArray( gl, v ) { gl.uniform2uiv( this.addr, v ); } function setValueV3uiArray( gl, v ) { gl.uniform3uiv( this.addr, v ); } function setValueV4uiArray( gl, v ) { gl.uniform4uiv( this.addr, v ); } // Array of textures (2D / 3D / Cube / 2DArray) function setValueT1Array( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTexture2D( v[ i ] || emptyTexture, units[ i ] ); } } function setValueT3DArray( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTexture3D( v[ i ] || empty3dTexture, units[ i ] ); } } function setValueT6Array( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTextureCube( v[ i ] || emptyCubeTexture, units[ i ] ); } } function setValueT2DArrayArray( gl, v, textures ) { const cache = this.cache; const n = v.length; const units = allocTexUnits( textures, n ); if ( ! arraysEqual( cache, units ) ) { gl.uniform1iv( this.addr, units ); copyArray( cache, units ); } for ( let i = 0; i !== n; ++ i ) { textures.setTexture2DArray( v[ i ] || emptyArrayTexture, units[ i ] ); } } // Helper to pick the right setter for a pure (bottom-level) array function getPureArraySetter( type ) { switch ( type ) { case 0x1406: return setValueV1fArray; // FLOAT case 0x8b50: return setValueV2fArray; // _VEC2 case 0x8b51: return setValueV3fArray; // _VEC3 case 0x8b52: return setValueV4fArray; // _VEC4 case 0x8b5a: return setValueM2Array; // _MAT2 case 0x8b5b: return setValueM3Array; // _MAT3 case 0x8b5c: return setValueM4Array; // _MAT4 case 0x1404: case 0x8b56: return setValueV1iArray; // INT, BOOL case 0x8b53: case 0x8b57: return setValueV2iArray; // _VEC2 case 0x8b54: case 0x8b58: return setValueV3iArray; // _VEC3 case 0x8b55: case 0x8b59: return setValueV4iArray; // _VEC4 case 0x1405: return setValueV1uiArray; // UINT case 0x8dc6: return setValueV2uiArray; // _VEC2 case 0x8dc7: return setValueV3uiArray; // _VEC3 case 0x8dc8: return setValueV4uiArray; // _VEC4 case 0x8b5e: // SAMPLER_2D case 0x8d66: // SAMPLER_EXTERNAL_OES case 0x8dca: // INT_SAMPLER_2D case 0x8dd2: // UNSIGNED_INT_SAMPLER_2D case 0x8b62: // SAMPLER_2D_SHADOW return setValueT1Array; case 0x8b5f: // SAMPLER_3D case 0x8dcb: // INT_SAMPLER_3D case 0x8dd3: // UNSIGNED_INT_SAMPLER_3D return setValueT3DArray; case 0x8b60: // SAMPLER_CUBE case 0x8dcc: // INT_SAMPLER_CUBE case 0x8dd4: // UNSIGNED_INT_SAMPLER_CUBE case 0x8dc5: // SAMPLER_CUBE_SHADOW return setValueT6Array; case 0x8dc1: // SAMPLER_2D_ARRAY case 0x8dcf: // INT_SAMPLER_2D_ARRAY case 0x8dd7: // UNSIGNED_INT_SAMPLER_2D_ARRAY case 0x8dc4: // SAMPLER_2D_ARRAY_SHADOW return setValueT2DArrayArray; } } // --- Uniform Classes --- class SingleUniform { constructor( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.type = activeInfo.type; this.setValue = getSingularSetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } } class PureArrayUniform { constructor( id, activeInfo, addr ) { this.id = id; this.addr = addr; this.cache = []; this.type = activeInfo.type; this.size = activeInfo.size; this.setValue = getPureArraySetter( activeInfo.type ); // this.path = activeInfo.name; // DEBUG } } class StructuredUniform { constructor( id ) { this.id = id; this.seq = []; this.map = {}; } setValue( gl, value, textures ) { const seq = this.seq; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; u.setValue( gl, value[ u.id ], textures ); } } } // --- Top-level --- // Parser - builds up the property tree from the path strings const RePathPart = /(\w+)(\])?(\[|\.)?/g; // extracts // - the identifier (member name or array index) // - followed by an optional right bracket (found when array index) // - followed by an optional left bracket or dot (type of subscript) // // Note: These portions can be read in a non-overlapping fashion and // allow straightforward parsing of the hierarchy that WebGL encodes // in the uniform names. function addUniform( container, uniformObject ) { container.seq.push( uniformObject ); container.map[ uniformObject.id ] = uniformObject; } function parseUniform( activeInfo, addr, container ) { const path = activeInfo.name, pathLength = path.length; // reset RegExp object, because of the early exit of a previous run RePathPart.lastIndex = 0; while ( true ) { const match = RePathPart.exec( path ), matchEnd = RePathPart.lastIndex; let id = match[ 1 ]; const idIsIndex = match[ 2 ] === ']', subscript = match[ 3 ]; if ( idIsIndex ) id = id | 0; // convert to integer if ( subscript === undefined || subscript === '[' && matchEnd + 2 === pathLength ) { // bare name or "pure" bottom-level array "[0]" suffix addUniform( container, subscript === undefined ? new SingleUniform( id, activeInfo, addr ) : new PureArrayUniform( id, activeInfo, addr ) ); break; } else { // step into inner node / create it in case it doesn't exist const map = container.map; let next = map[ id ]; if ( next === undefined ) { next = new StructuredUniform( id ); addUniform( container, next ); } container = next; } } } // Root Container class WebGLUniforms { constructor( gl, program ) { this.seq = []; this.map = {}; const n = gl.getProgramParameter( program, gl.ACTIVE_UNIFORMS ); for ( let i = 0; i < n; ++ i ) { const info = gl.getActiveUniform( program, i ), addr = gl.getUniformLocation( program, info.name ); parseUniform( info, addr, this ); } } setValue( gl, name, value, textures ) { const u = this.map[ name ]; if ( u !== undefined ) u.setValue( gl, value, textures ); } setOptional( gl, object, name ) { const v = object[ name ]; if ( v !== undefined ) this.setValue( gl, name, v ); } static upload( gl, seq, values, textures ) { for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ], v = values[ u.id ]; if ( v.needsUpdate !== false ) { // note: always updating when .needsUpdate is undefined u.setValue( gl, v.value, textures ); } } } static seqWithValue( seq, values ) { const r = []; for ( let i = 0, n = seq.length; i !== n; ++ i ) { const u = seq[ i ]; if ( u.id in values ) r.push( u ); } return r; } } function WebGLShader( gl, type, string ) { const shader = gl.createShader( type ); gl.shaderSource( shader, string ); gl.compileShader( shader ); return shader; } // From https://www.khronos.org/registry/webgl/extensions/KHR_parallel_shader_compile/ const COMPLETION_STATUS_KHR = 0x91B1; let programIdCount = 0; function handleSource( string, errorLine ) { const lines = string.split( '\n' ); const lines2 = []; const from = Math.max( errorLine - 6, 0 ); const to = Math.min( errorLine + 6, lines.length ); for ( let i = from; i < to; i ++ ) { const line = i + 1; lines2.push( `${line === errorLine ? '>' : ' '} ${line}: ${lines[ i ]}` ); } return lines2.join( '\n' ); } function getEncodingComponents( colorSpace ) { const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); const encodingPrimaries = ColorManagement.getPrimaries( colorSpace ); let gamutMapping; if ( workingPrimaries === encodingPrimaries ) { gamutMapping = ''; } else if ( workingPrimaries === P3Primaries && encodingPrimaries === Rec709Primaries ) { gamutMapping = 'LinearDisplayP3ToLinearSRGB'; } else if ( workingPrimaries === Rec709Primaries && encodingPrimaries === P3Primaries ) { gamutMapping = 'LinearSRGBToLinearDisplayP3'; } switch ( colorSpace ) { case LinearSRGBColorSpace: case LinearDisplayP3ColorSpace: return [ gamutMapping, 'LinearTransferOETF' ]; case SRGBColorSpace: case DisplayP3ColorSpace: return [ gamutMapping, 'sRGBTransferOETF' ]; default: console.warn( 'THREE.WebGLProgram: Unsupported color space:', colorSpace ); return [ gamutMapping, 'LinearTransferOETF' ]; } } function getShaderErrors( gl, shader, type ) { const status = gl.getShaderParameter( shader, gl.COMPILE_STATUS ); const errors = gl.getShaderInfoLog( shader ).trim(); if ( status && errors === '' ) return ''; const errorMatches = /ERROR: 0:(\d+)/.exec( errors ); if ( errorMatches ) { // --enable-privileged-webgl-extension // console.log( '**' + type + '**', gl.getExtension( 'WEBGL_debug_shaders' ).getTranslatedShaderSource( shader ) ); const errorLine = parseInt( errorMatches[ 1 ] ); return type.toUpperCase() + '\n\n' + errors + '\n\n' + handleSource( gl.getShaderSource( shader ), errorLine ); } else { return errors; } } function getTexelEncodingFunction( functionName, colorSpace ) { const components = getEncodingComponents( colorSpace ); return `vec4 ${functionName}( vec4 value ) { return ${components[ 0 ]}( ${components[ 1 ]}( value ) ); }`; } function getToneMappingFunction( functionName, toneMapping ) { let toneMappingName; switch ( toneMapping ) { case LinearToneMapping: toneMappingName = 'Linear'; break; case ReinhardToneMapping: toneMappingName = 'Reinhard'; break; case CineonToneMapping: toneMappingName = 'Cineon'; break; case ACESFilmicToneMapping: toneMappingName = 'ACESFilmic'; break; case AgXToneMapping: toneMappingName = 'AgX'; break; case NeutralToneMapping: toneMappingName = 'Neutral'; break; case CustomToneMapping: toneMappingName = 'Custom'; break; default: console.warn( 'THREE.WebGLProgram: Unsupported toneMapping:', toneMapping ); toneMappingName = 'Linear'; } return 'vec3 ' + functionName + '( vec3 color ) { return ' + toneMappingName + 'ToneMapping( color ); }'; } const _v0$1 = /*@__PURE__*/ new Vector3(); function getLuminanceFunction() { ColorManagement.getLuminanceCoefficients( _v0$1 ); const r = _v0$1.x.toFixed( 4 ); const g = _v0$1.y.toFixed( 4 ); const b = _v0$1.z.toFixed( 4 ); return [ 'float luminance( const in vec3 rgb ) {', ` const vec3 weights = vec3( ${ r }, ${ g }, ${ b } );`, ' return dot( weights, rgb );', '}' ].join( '\n' ); } function generateVertexExtensions( parameters ) { const chunks = [ parameters.extensionClipCullDistance ? '#extension GL_ANGLE_clip_cull_distance : require' : '', parameters.extensionMultiDraw ? '#extension GL_ANGLE_multi_draw : require' : '', ]; return chunks.filter( filterEmptyLine ).join( '\n' ); } function generateDefines( defines ) { const chunks = []; for ( const name in defines ) { const value = defines[ name ]; if ( value === false ) continue; chunks.push( '#define ' + name + ' ' + value ); } return chunks.join( '\n' ); } function fetchAttributeLocations( gl, program ) { const attributes = {}; const n = gl.getProgramParameter( program, gl.ACTIVE_ATTRIBUTES ); for ( let i = 0; i < n; i ++ ) { const info = gl.getActiveAttrib( program, i ); const name = info.name; let locationSize = 1; if ( info.type === gl.FLOAT_MAT2 ) locationSize = 2; if ( info.type === gl.FLOAT_MAT3 ) locationSize = 3; if ( info.type === gl.FLOAT_MAT4 ) locationSize = 4; // console.log( 'THREE.WebGLProgram: ACTIVE VERTEX ATTRIBUTE:', name, i ); attributes[ name ] = { type: info.type, location: gl.getAttribLocation( program, name ), locationSize: locationSize }; } return attributes; } function filterEmptyLine( string ) { return string !== ''; } function replaceLightNums( string, parameters ) { const numSpotLightCoords = parameters.numSpotLightShadows + parameters.numSpotLightMaps - parameters.numSpotLightShadowsWithMaps; return string .replace( /NUM_DIR_LIGHTS/g, parameters.numDirLights ) .replace( /NUM_SPOT_LIGHTS/g, parameters.numSpotLights ) .replace( /NUM_SPOT_LIGHT_MAPS/g, parameters.numSpotLightMaps ) .replace( /NUM_SPOT_LIGHT_COORDS/g, numSpotLightCoords ) .replace( /NUM_RECT_AREA_LIGHTS/g, parameters.numRectAreaLights ) .replace( /NUM_POINT_LIGHTS/g, parameters.numPointLights ) .replace( /NUM_HEMI_LIGHTS/g, parameters.numHemiLights ) .replace( /NUM_DIR_LIGHT_SHADOWS/g, parameters.numDirLightShadows ) .replace( /NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS/g, parameters.numSpotLightShadowsWithMaps ) .replace( /NUM_SPOT_LIGHT_SHADOWS/g, parameters.numSpotLightShadows ) .replace( /NUM_POINT_LIGHT_SHADOWS/g, parameters.numPointLightShadows ); } function replaceClippingPlaneNums( string, parameters ) { return string .replace( /NUM_CLIPPING_PLANES/g, parameters.numClippingPlanes ) .replace( /UNION_CLIPPING_PLANES/g, ( parameters.numClippingPlanes - parameters.numClipIntersection ) ); } // Resolve Includes const includePattern = /^[ \t]*#include +<([\w\d./]+)>/gm; function resolveIncludes( string ) { return string.replace( includePattern, includeReplacer ); } const shaderChunkMap = new Map(); function includeReplacer( match, include ) { let string = ShaderChunk[ include ]; if ( string === undefined ) { const newInclude = shaderChunkMap.get( include ); if ( newInclude !== undefined ) { string = ShaderChunk[ newInclude ]; console.warn( 'THREE.WebGLRenderer: Shader chunk "%s" has been deprecated. Use "%s" instead.', include, newInclude ); } else { throw new Error( 'Can not resolve #include <' + include + '>' ); } } return resolveIncludes( string ); } // Unroll Loops const unrollLoopPattern = /#pragma unroll_loop_start\s+for\s*\(\s*int\s+i\s*=\s*(\d+)\s*;\s*i\s*<\s*(\d+)\s*;\s*i\s*\+\+\s*\)\s*{([\s\S]+?)}\s+#pragma unroll_loop_end/g; function unrollLoops( string ) { return string.replace( unrollLoopPattern, loopReplacer ); } function loopReplacer( match, start, end, snippet ) { let string = ''; for ( let i = parseInt( start ); i < parseInt( end ); i ++ ) { string += snippet .replace( /\[\s*i\s*\]/g, '[ ' + i + ' ]' ) .replace( /UNROLLED_LOOP_INDEX/g, i ); } return string; } // function generatePrecision( parameters ) { let precisionstring = `precision ${parameters.precision} float; precision ${parameters.precision} int; precision ${parameters.precision} sampler2D; precision ${parameters.precision} samplerCube; precision ${parameters.precision} sampler3D; precision ${parameters.precision} sampler2DArray; precision ${parameters.precision} sampler2DShadow; precision ${parameters.precision} samplerCubeShadow; precision ${parameters.precision} sampler2DArrayShadow; precision ${parameters.precision} isampler2D; precision ${parameters.precision} isampler3D; precision ${parameters.precision} isamplerCube; precision ${parameters.precision} isampler2DArray; precision ${parameters.precision} usampler2D; precision ${parameters.precision} usampler3D; precision ${parameters.precision} usamplerCube; precision ${parameters.precision} usampler2DArray; `; if ( parameters.precision === 'highp' ) { precisionstring += '\n#define HIGH_PRECISION'; } else if ( parameters.precision === 'mediump' ) { precisionstring += '\n#define MEDIUM_PRECISION'; } else if ( parameters.precision === 'lowp' ) { precisionstring += '\n#define LOW_PRECISION'; } return precisionstring; } function generateShadowMapTypeDefine( parameters ) { let shadowMapTypeDefine = 'SHADOWMAP_TYPE_BASIC'; if ( parameters.shadowMapType === PCFShadowMap$1 ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF'; } else if ( parameters.shadowMapType === PCFSoftShadowMap$1 ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_PCF_SOFT'; } else if ( parameters.shadowMapType === VSMShadowMap ) { shadowMapTypeDefine = 'SHADOWMAP_TYPE_VSM'; } return shadowMapTypeDefine; } function generateEnvMapTypeDefine( parameters ) { let envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeReflectionMapping: case CubeRefractionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE'; break; case CubeUVReflectionMapping: envMapTypeDefine = 'ENVMAP_TYPE_CUBE_UV'; break; } } return envMapTypeDefine; } function generateEnvMapModeDefine( parameters ) { let envMapModeDefine = 'ENVMAP_MODE_REFLECTION'; if ( parameters.envMap ) { switch ( parameters.envMapMode ) { case CubeRefractionMapping: envMapModeDefine = 'ENVMAP_MODE_REFRACTION'; break; } } return envMapModeDefine; } function generateEnvMapBlendingDefine( parameters ) { let envMapBlendingDefine = 'ENVMAP_BLENDING_NONE'; if ( parameters.envMap ) { switch ( parameters.combine ) { case MultiplyOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MULTIPLY'; break; case MixOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_MIX'; break; case AddOperation: envMapBlendingDefine = 'ENVMAP_BLENDING_ADD'; break; } } return envMapBlendingDefine; } function generateCubeUVSize( parameters ) { const imageHeight = parameters.envMapCubeUVHeight; if ( imageHeight === null ) return null; const maxMip = Math.log2( imageHeight ) - 2; const texelHeight = 1.0 / imageHeight; const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) ); return { texelWidth, texelHeight, maxMip }; } function WebGLProgram( renderer, cacheKey, parameters, bindingStates ) { // TODO Send this event to Three.js DevTools // console.log( 'WebGLProgram', cacheKey ); const gl = renderer.getContext(); const defines = parameters.defines; let vertexShader = parameters.vertexShader; let fragmentShader = parameters.fragmentShader; const shadowMapTypeDefine = generateShadowMapTypeDefine( parameters ); const envMapTypeDefine = generateEnvMapTypeDefine( parameters ); const envMapModeDefine = generateEnvMapModeDefine( parameters ); const envMapBlendingDefine = generateEnvMapBlendingDefine( parameters ); const envMapCubeUVSize = generateCubeUVSize( parameters ); const customVertexExtensions = generateVertexExtensions( parameters ); const customDefines = generateDefines( defines ); const program = gl.createProgram(); let prefixVertex, prefixFragment; let versionString = parameters.glslVersion ? '#version ' + parameters.glslVersion + '\n' : ''; if ( parameters.isRawShaderMaterial ) { prefixVertex = [ '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixVertex.length > 0 ) { prefixVertex += '\n'; } prefixFragment = [ '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines ].filter( filterEmptyLine ).join( '\n' ); if ( prefixFragment.length > 0 ) { prefixFragment += '\n'; } } else { prefixVertex = [ generatePrecision( parameters ), '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.extensionClipCullDistance ? '#define USE_CLIP_DISTANCE' : '', parameters.batching ? '#define USE_BATCHING' : '', parameters.batchingColor ? '#define USE_BATCHING_COLOR' : '', parameters.instancing ? '#define USE_INSTANCING' : '', parameters.instancingColor ? '#define USE_INSTANCING_COLOR' : '', parameters.instancingMorph ? '#define USE_INSTANCING_MORPH' : '', parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.map ? '#define USE_MAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMapObjectSpace ? '#define USE_NORMALMAP_OBJECTSPACE' : '', parameters.normalMapTangentSpace ? '#define USE_NORMALMAP_TANGENTSPACE' : '', parameters.displacementMap ? '#define USE_DISPLACEMENTMAP' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.anisotropy ? '#define USE_ANISOTROPY' : '', parameters.anisotropyMap ? '#define USE_ANISOTROPYMAP' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularColorMap ? '#define USE_SPECULAR_COLORMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULAR_INTENSITYMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaHash ? '#define USE_ALPHAHASH' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.sheenColorMap ? '#define USE_SHEEN_COLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEEN_ROUGHNESSMAP' : '', // parameters.mapUv ? '#define MAP_UV ' + parameters.mapUv : '', parameters.alphaMapUv ? '#define ALPHAMAP_UV ' + parameters.alphaMapUv : '', parameters.lightMapUv ? '#define LIGHTMAP_UV ' + parameters.lightMapUv : '', parameters.aoMapUv ? '#define AOMAP_UV ' + parameters.aoMapUv : '', parameters.emissiveMapUv ? '#define EMISSIVEMAP_UV ' + parameters.emissiveMapUv : '', parameters.bumpMapUv ? '#define BUMPMAP_UV ' + parameters.bumpMapUv : '', parameters.normalMapUv ? '#define NORMALMAP_UV ' + parameters.normalMapUv : '', parameters.displacementMapUv ? '#define DISPLACEMENTMAP_UV ' + parameters.displacementMapUv : '', parameters.metalnessMapUv ? '#define METALNESSMAP_UV ' + parameters.metalnessMapUv : '', parameters.roughnessMapUv ? '#define ROUGHNESSMAP_UV ' + parameters.roughnessMapUv : '', parameters.anisotropyMapUv ? '#define ANISOTROPYMAP_UV ' + parameters.anisotropyMapUv : '', parameters.clearcoatMapUv ? '#define CLEARCOATMAP_UV ' + parameters.clearcoatMapUv : '', parameters.clearcoatNormalMapUv ? '#define CLEARCOAT_NORMALMAP_UV ' + parameters.clearcoatNormalMapUv : '', parameters.clearcoatRoughnessMapUv ? '#define CLEARCOAT_ROUGHNESSMAP_UV ' + parameters.clearcoatRoughnessMapUv : '', parameters.iridescenceMapUv ? '#define IRIDESCENCEMAP_UV ' + parameters.iridescenceMapUv : '', parameters.iridescenceThicknessMapUv ? '#define IRIDESCENCE_THICKNESSMAP_UV ' + parameters.iridescenceThicknessMapUv : '', parameters.sheenColorMapUv ? '#define SHEEN_COLORMAP_UV ' + parameters.sheenColorMapUv : '', parameters.sheenRoughnessMapUv ? '#define SHEEN_ROUGHNESSMAP_UV ' + parameters.sheenRoughnessMapUv : '', parameters.specularMapUv ? '#define SPECULARMAP_UV ' + parameters.specularMapUv : '', parameters.specularColorMapUv ? '#define SPECULAR_COLORMAP_UV ' + parameters.specularColorMapUv : '', parameters.specularIntensityMapUv ? '#define SPECULAR_INTENSITYMAP_UV ' + parameters.specularIntensityMapUv : '', parameters.transmissionMapUv ? '#define TRANSMISSIONMAP_UV ' + parameters.transmissionMapUv : '', parameters.thicknessMapUv ? '#define THICKNESSMAP_UV ' + parameters.thicknessMapUv : '', // parameters.vertexTangents && parameters.flatShading === false ? '#define USE_TANGENT' : '', parameters.vertexColors ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUv1s ? '#define USE_UV1' : '', parameters.vertexUv2s ? '#define USE_UV2' : '', parameters.vertexUv3s ? '#define USE_UV3' : '', parameters.pointsUvs ? '#define USE_POINTS_UV' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.skinning ? '#define USE_SKINNING' : '', parameters.morphTargets ? '#define USE_MORPHTARGETS' : '', parameters.morphNormals && parameters.flatShading === false ? '#define USE_MORPHNORMALS' : '', ( parameters.morphColors ) ? '#define USE_MORPHCOLORS' : '', ( parameters.morphTargetsCount > 0 ) ? '#define MORPHTARGETS_TEXTURE_STRIDE ' + parameters.morphTextureStride : '', ( parameters.morphTargetsCount > 0 ) ? '#define MORPHTARGETS_COUNT ' + parameters.morphTargetsCount : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.sizeAttenuation ? '#define USE_SIZEATTENUATION' : '', parameters.numLightProbes > 0 ? '#define USE_LIGHT_PROBES' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.reverseDepthBuffer ? '#define USE_REVERSEDEPTHBUF' : '', 'uniform mat4 modelMatrix;', 'uniform mat4 modelViewMatrix;', 'uniform mat4 projectionMatrix;', 'uniform mat4 viewMatrix;', 'uniform mat3 normalMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', '#ifdef USE_INSTANCING', ' attribute mat4 instanceMatrix;', '#endif', '#ifdef USE_INSTANCING_COLOR', ' attribute vec3 instanceColor;', '#endif', '#ifdef USE_INSTANCING_MORPH', ' uniform sampler2D morphTexture;', '#endif', 'attribute vec3 position;', 'attribute vec3 normal;', 'attribute vec2 uv;', '#ifdef USE_UV1', ' attribute vec2 uv1;', '#endif', '#ifdef USE_UV2', ' attribute vec2 uv2;', '#endif', '#ifdef USE_UV3', ' attribute vec2 uv3;', '#endif', '#ifdef USE_TANGENT', ' attribute vec4 tangent;', '#endif', '#if defined( USE_COLOR_ALPHA )', ' attribute vec4 color;', '#elif defined( USE_COLOR )', ' attribute vec3 color;', '#endif', '#ifdef USE_SKINNING', ' attribute vec4 skinIndex;', ' attribute vec4 skinWeight;', '#endif', '\n' ].filter( filterEmptyLine ).join( '\n' ); prefixFragment = [ generatePrecision( parameters ), '#define SHADER_TYPE ' + parameters.shaderType, '#define SHADER_NAME ' + parameters.shaderName, customDefines, parameters.useFog && parameters.fog ? '#define USE_FOG' : '', parameters.useFog && parameters.fogExp2 ? '#define FOG_EXP2' : '', parameters.alphaToCoverage ? '#define ALPHA_TO_COVERAGE' : '', parameters.map ? '#define USE_MAP' : '', parameters.matcap ? '#define USE_MATCAP' : '', parameters.envMap ? '#define USE_ENVMAP' : '', parameters.envMap ? '#define ' + envMapTypeDefine : '', parameters.envMap ? '#define ' + envMapModeDefine : '', parameters.envMap ? '#define ' + envMapBlendingDefine : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_WIDTH ' + envMapCubeUVSize.texelWidth : '', envMapCubeUVSize ? '#define CUBEUV_TEXEL_HEIGHT ' + envMapCubeUVSize.texelHeight : '', envMapCubeUVSize ? '#define CUBEUV_MAX_MIP ' + envMapCubeUVSize.maxMip + '.0' : '', parameters.lightMap ? '#define USE_LIGHTMAP' : '', parameters.aoMap ? '#define USE_AOMAP' : '', parameters.bumpMap ? '#define USE_BUMPMAP' : '', parameters.normalMap ? '#define USE_NORMALMAP' : '', parameters.normalMapObjectSpace ? '#define USE_NORMALMAP_OBJECTSPACE' : '', parameters.normalMapTangentSpace ? '#define USE_NORMALMAP_TANGENTSPACE' : '', parameters.emissiveMap ? '#define USE_EMISSIVEMAP' : '', parameters.anisotropy ? '#define USE_ANISOTROPY' : '', parameters.anisotropyMap ? '#define USE_ANISOTROPYMAP' : '', parameters.clearcoat ? '#define USE_CLEARCOAT' : '', parameters.clearcoatMap ? '#define USE_CLEARCOATMAP' : '', parameters.clearcoatRoughnessMap ? '#define USE_CLEARCOAT_ROUGHNESSMAP' : '', parameters.clearcoatNormalMap ? '#define USE_CLEARCOAT_NORMALMAP' : '', parameters.dispersion ? '#define USE_DISPERSION' : '', parameters.iridescence ? '#define USE_IRIDESCENCE' : '', parameters.iridescenceMap ? '#define USE_IRIDESCENCEMAP' : '', parameters.iridescenceThicknessMap ? '#define USE_IRIDESCENCE_THICKNESSMAP' : '', parameters.specularMap ? '#define USE_SPECULARMAP' : '', parameters.specularColorMap ? '#define USE_SPECULAR_COLORMAP' : '', parameters.specularIntensityMap ? '#define USE_SPECULAR_INTENSITYMAP' : '', parameters.roughnessMap ? '#define USE_ROUGHNESSMAP' : '', parameters.metalnessMap ? '#define USE_METALNESSMAP' : '', parameters.alphaMap ? '#define USE_ALPHAMAP' : '', parameters.alphaTest ? '#define USE_ALPHATEST' : '', parameters.alphaHash ? '#define USE_ALPHAHASH' : '', parameters.sheen ? '#define USE_SHEEN' : '', parameters.sheenColorMap ? '#define USE_SHEEN_COLORMAP' : '', parameters.sheenRoughnessMap ? '#define USE_SHEEN_ROUGHNESSMAP' : '', parameters.transmission ? '#define USE_TRANSMISSION' : '', parameters.transmissionMap ? '#define USE_TRANSMISSIONMAP' : '', parameters.thicknessMap ? '#define USE_THICKNESSMAP' : '', parameters.vertexTangents && parameters.flatShading === false ? '#define USE_TANGENT' : '', parameters.vertexColors || parameters.instancingColor || parameters.batchingColor ? '#define USE_COLOR' : '', parameters.vertexAlphas ? '#define USE_COLOR_ALPHA' : '', parameters.vertexUv1s ? '#define USE_UV1' : '', parameters.vertexUv2s ? '#define USE_UV2' : '', parameters.vertexUv3s ? '#define USE_UV3' : '', parameters.pointsUvs ? '#define USE_POINTS_UV' : '', parameters.gradientMap ? '#define USE_GRADIENTMAP' : '', parameters.flatShading ? '#define FLAT_SHADED' : '', parameters.doubleSided ? '#define DOUBLE_SIDED' : '', parameters.flipSided ? '#define FLIP_SIDED' : '', parameters.shadowMapEnabled ? '#define USE_SHADOWMAP' : '', parameters.shadowMapEnabled ? '#define ' + shadowMapTypeDefine : '', parameters.premultipliedAlpha ? '#define PREMULTIPLIED_ALPHA' : '', parameters.numLightProbes > 0 ? '#define USE_LIGHT_PROBES' : '', parameters.decodeVideoTexture ? '#define DECODE_VIDEO_TEXTURE' : '', parameters.logarithmicDepthBuffer ? '#define USE_LOGDEPTHBUF' : '', parameters.reverseDepthBuffer ? '#define USE_REVERSEDEPTHBUF' : '', 'uniform mat4 viewMatrix;', 'uniform vec3 cameraPosition;', 'uniform bool isOrthographic;', ( parameters.toneMapping !== NoToneMapping ) ? '#define TONE_MAPPING' : '', ( parameters.toneMapping !== NoToneMapping ) ? ShaderChunk[ 'tonemapping_pars_fragment' ] : '', // this code is required here because it is used by the toneMapping() function defined below ( parameters.toneMapping !== NoToneMapping ) ? getToneMappingFunction( 'toneMapping', parameters.toneMapping ) : '', parameters.dithering ? '#define DITHERING' : '', parameters.opaque ? '#define OPAQUE' : '', ShaderChunk[ 'colorspace_pars_fragment' ], // this code is required here because it is used by the various encoding/decoding function defined below getTexelEncodingFunction( 'linearToOutputTexel', parameters.outputColorSpace ), getLuminanceFunction(), parameters.useDepthPacking ? '#define DEPTH_PACKING ' + parameters.depthPacking : '', '\n' ].filter( filterEmptyLine ).join( '\n' ); } vertexShader = resolveIncludes( vertexShader ); vertexShader = replaceLightNums( vertexShader, parameters ); vertexShader = replaceClippingPlaneNums( vertexShader, parameters ); fragmentShader = resolveIncludes( fragmentShader ); fragmentShader = replaceLightNums( fragmentShader, parameters ); fragmentShader = replaceClippingPlaneNums( fragmentShader, parameters ); vertexShader = unrollLoops( vertexShader ); fragmentShader = unrollLoops( fragmentShader ); if ( parameters.isRawShaderMaterial !== true ) { // GLSL 3.0 conversion for built-in materials and ShaderMaterial versionString = '#version 300 es\n'; prefixVertex = [ customVertexExtensions, '#define attribute in', '#define varying out', '#define texture2D texture' ].join( '\n' ) + '\n' + prefixVertex; prefixFragment = [ '#define varying in', ( parameters.glslVersion === GLSL3 ) ? '' : 'layout(location = 0) out highp vec4 pc_fragColor;', ( parameters.glslVersion === GLSL3 ) ? '' : '#define gl_FragColor pc_fragColor', '#define gl_FragDepthEXT gl_FragDepth', '#define texture2D texture', '#define textureCube texture', '#define texture2DProj textureProj', '#define texture2DLodEXT textureLod', '#define texture2DProjLodEXT textureProjLod', '#define textureCubeLodEXT textureLod', '#define texture2DGradEXT textureGrad', '#define texture2DProjGradEXT textureProjGrad', '#define textureCubeGradEXT textureGrad' ].join( '\n' ) + '\n' + prefixFragment; } const vertexGlsl = versionString + prefixVertex + vertexShader; const fragmentGlsl = versionString + prefixFragment + fragmentShader; // console.log( '*VERTEX*', vertexGlsl ); // console.log( '*FRAGMENT*', fragmentGlsl ); const glVertexShader = WebGLShader( gl, gl.VERTEX_SHADER, vertexGlsl ); const glFragmentShader = WebGLShader( gl, gl.FRAGMENT_SHADER, fragmentGlsl ); gl.attachShader( program, glVertexShader ); gl.attachShader( program, glFragmentShader ); // Force a particular attribute to index 0. if ( parameters.index0AttributeName !== undefined ) { gl.bindAttribLocation( program, 0, parameters.index0AttributeName ); } else if ( parameters.morphTargets === true ) { // programs with morphTargets displace position out of attribute 0 gl.bindAttribLocation( program, 0, 'position' ); } gl.linkProgram( program ); function onFirstUse( self ) { // check for link errors if ( renderer.debug.checkShaderErrors ) { const programLog = gl.getProgramInfoLog( program ).trim(); const vertexLog = gl.getShaderInfoLog( glVertexShader ).trim(); const fragmentLog = gl.getShaderInfoLog( glFragmentShader ).trim(); let runnable = true; let haveDiagnostics = true; if ( gl.getProgramParameter( program, gl.LINK_STATUS ) === false ) { runnable = false; if ( typeof renderer.debug.onShaderError === 'function' ) { renderer.debug.onShaderError( gl, program, glVertexShader, glFragmentShader ); } else { // default error reporting const vertexErrors = getShaderErrors( gl, glVertexShader, 'vertex' ); const fragmentErrors = getShaderErrors( gl, glFragmentShader, 'fragment' ); console.error( 'THREE.WebGLProgram: Shader Error ' + gl.getError() + ' - ' + 'VALIDATE_STATUS ' + gl.getProgramParameter( program, gl.VALIDATE_STATUS ) + '\n\n' + 'Material Name: ' + self.name + '\n' + 'Material Type: ' + self.type + '\n\n' + 'Program Info Log: ' + programLog + '\n' + vertexErrors + '\n' + fragmentErrors ); } } else if ( programLog !== '' ) { console.warn( 'THREE.WebGLProgram: Program Info Log:', programLog ); } else if ( vertexLog === '' || fragmentLog === '' ) { haveDiagnostics = false; } if ( haveDiagnostics ) { self.diagnostics = { runnable: runnable, programLog: programLog, vertexShader: { log: vertexLog, prefix: prefixVertex }, fragmentShader: { log: fragmentLog, prefix: prefixFragment } }; } } // Clean up // Crashes in iOS9 and iOS10. #18402 // gl.detachShader( program, glVertexShader ); // gl.detachShader( program, glFragmentShader ); gl.deleteShader( glVertexShader ); gl.deleteShader( glFragmentShader ); cachedUniforms = new WebGLUniforms( gl, program ); cachedAttributes = fetchAttributeLocations( gl, program ); } // set up caching for uniform locations let cachedUniforms; this.getUniforms = function () { if ( cachedUniforms === undefined ) { // Populates cachedUniforms and cachedAttributes onFirstUse( this ); } return cachedUniforms; }; // set up caching for attribute locations let cachedAttributes; this.getAttributes = function () { if ( cachedAttributes === undefined ) { // Populates cachedAttributes and cachedUniforms onFirstUse( this ); } return cachedAttributes; }; // indicate when the program is ready to be used. if the KHR_parallel_shader_compile extension isn't supported, // flag the program as ready immediately. It may cause a stall when it's first used. let programReady = ( parameters.rendererExtensionParallelShaderCompile === false ); this.isReady = function () { if ( programReady === false ) { programReady = gl.getProgramParameter( program, COMPLETION_STATUS_KHR ); } return programReady; }; // free resource this.destroy = function () { bindingStates.releaseStatesOfProgram( this ); gl.deleteProgram( program ); this.program = undefined; }; // this.type = parameters.shaderType; this.name = parameters.shaderName; this.id = programIdCount ++; this.cacheKey = cacheKey; this.usedTimes = 1; this.program = program; this.vertexShader = glVertexShader; this.fragmentShader = glFragmentShader; return this; } let _id$2 = 0; class WebGLShaderCache { constructor() { this.shaderCache = new Map(); this.materialCache = new Map(); } update( material ) { const vertexShader = material.vertexShader; const fragmentShader = material.fragmentShader; const vertexShaderStage = this._getShaderStage( vertexShader ); const fragmentShaderStage = this._getShaderStage( fragmentShader ); const materialShaders = this._getShaderCacheForMaterial( material ); if ( materialShaders.has( vertexShaderStage ) === false ) { materialShaders.add( vertexShaderStage ); vertexShaderStage.usedTimes ++; } if ( materialShaders.has( fragmentShaderStage ) === false ) { materialShaders.add( fragmentShaderStage ); fragmentShaderStage.usedTimes ++; } return this; } remove( material ) { const materialShaders = this.materialCache.get( material ); for ( const shaderStage of materialShaders ) { shaderStage.usedTimes --; if ( shaderStage.usedTimes === 0 ) this.shaderCache.delete( shaderStage.code ); } this.materialCache.delete( material ); return this; } getVertexShaderID( material ) { return this._getShaderStage( material.vertexShader ).id; } getFragmentShaderID( material ) { return this._getShaderStage( material.fragmentShader ).id; } dispose() { this.shaderCache.clear(); this.materialCache.clear(); } _getShaderCacheForMaterial( material ) { const cache = this.materialCache; let set = cache.get( material ); if ( set === undefined ) { set = new Set(); cache.set( material, set ); } return set; } _getShaderStage( code ) { const cache = this.shaderCache; let stage = cache.get( code ); if ( stage === undefined ) { stage = new WebGLShaderStage( code ); cache.set( code, stage ); } return stage; } } class WebGLShaderStage { constructor( code ) { this.id = _id$2 ++; this.code = code; this.usedTimes = 0; } } function WebGLPrograms( renderer, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ) { const _programLayers = new Layers(); const _customShaders = new WebGLShaderCache(); const _activeChannels = new Set(); const programs = []; const logarithmicDepthBuffer = capabilities.logarithmicDepthBuffer; const reverseDepthBuffer = capabilities.reverseDepthBuffer; const SUPPORTS_VERTEX_TEXTURES = capabilities.vertexTextures; let precision = capabilities.precision; const shaderIDs = { MeshDepthMaterial: 'depth', MeshDistanceMaterial: 'distanceRGBA', MeshNormalMaterial: 'normal', MeshBasicMaterial: 'basic', MeshLambertMaterial: 'lambert', MeshPhongMaterial: 'phong', MeshToonMaterial: 'toon', MeshStandardMaterial: 'physical', MeshPhysicalMaterial: 'physical', MeshMatcapMaterial: 'matcap', LineBasicMaterial: 'basic', LineDashedMaterial: 'dashed', PointsMaterial: 'points', ShadowMaterial: 'shadow', SpriteMaterial: 'sprite' }; function getChannel( value ) { _activeChannels.add( value ); if ( value === 0 ) return 'uv'; return `uv${ value }`; } function getParameters( material, lights, shadows, scene, object ) { const fog = scene.fog; const geometry = object.geometry; const environment = material.isMeshStandardMaterial ? scene.environment : null; const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const envMapCubeUVHeight = ( !! envMap ) && ( envMap.mapping === CubeUVReflectionMapping ) ? envMap.image.height : null; const shaderID = shaderIDs[ material.type ]; // heuristics to create shader parameters according to lights in the scene // (not to blow over maxLights budget) if ( material.precision !== null ) { precision = capabilities.getMaxPrecision( material.precision ); if ( precision !== material.precision ) { console.warn( 'THREE.WebGLProgram.getParameters:', material.precision, 'not supported, using', precision, 'instead.' ); } } // const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; let morphTextureStride = 0; if ( geometry.morphAttributes.position !== undefined ) morphTextureStride = 1; if ( geometry.morphAttributes.normal !== undefined ) morphTextureStride = 2; if ( geometry.morphAttributes.color !== undefined ) morphTextureStride = 3; // let vertexShader, fragmentShader; let customVertexShaderID, customFragmentShaderID; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; vertexShader = shader.vertexShader; fragmentShader = shader.fragmentShader; } else { vertexShader = material.vertexShader; fragmentShader = material.fragmentShader; _customShaders.update( material ); customVertexShaderID = _customShaders.getVertexShaderID( material ); customFragmentShaderID = _customShaders.getFragmentShaderID( material ); } const currentRenderTarget = renderer.getRenderTarget(); const IS_INSTANCEDMESH = object.isInstancedMesh === true; const IS_BATCHEDMESH = object.isBatchedMesh === true; const HAS_MAP = !! material.map; const HAS_MATCAP = !! material.matcap; const HAS_ENVMAP = !! envMap; const HAS_AOMAP = !! material.aoMap; const HAS_LIGHTMAP = !! material.lightMap; const HAS_BUMPMAP = !! material.bumpMap; const HAS_NORMALMAP = !! material.normalMap; const HAS_DISPLACEMENTMAP = !! material.displacementMap; const HAS_EMISSIVEMAP = !! material.emissiveMap; const HAS_METALNESSMAP = !! material.metalnessMap; const HAS_ROUGHNESSMAP = !! material.roughnessMap; const HAS_ANISOTROPY = material.anisotropy > 0; const HAS_CLEARCOAT = material.clearcoat > 0; const HAS_DISPERSION = material.dispersion > 0; const HAS_IRIDESCENCE = material.iridescence > 0; const HAS_SHEEN = material.sheen > 0; const HAS_TRANSMISSION = material.transmission > 0; const HAS_ANISOTROPYMAP = HAS_ANISOTROPY && !! material.anisotropyMap; const HAS_CLEARCOATMAP = HAS_CLEARCOAT && !! material.clearcoatMap; const HAS_CLEARCOAT_NORMALMAP = HAS_CLEARCOAT && !! material.clearcoatNormalMap; const HAS_CLEARCOAT_ROUGHNESSMAP = HAS_CLEARCOAT && !! material.clearcoatRoughnessMap; const HAS_IRIDESCENCEMAP = HAS_IRIDESCENCE && !! material.iridescenceMap; const HAS_IRIDESCENCE_THICKNESSMAP = HAS_IRIDESCENCE && !! material.iridescenceThicknessMap; const HAS_SHEEN_COLORMAP = HAS_SHEEN && !! material.sheenColorMap; const HAS_SHEEN_ROUGHNESSMAP = HAS_SHEEN && !! material.sheenRoughnessMap; const HAS_SPECULARMAP = !! material.specularMap; const HAS_SPECULAR_COLORMAP = !! material.specularColorMap; const HAS_SPECULAR_INTENSITYMAP = !! material.specularIntensityMap; const HAS_TRANSMISSIONMAP = HAS_TRANSMISSION && !! material.transmissionMap; const HAS_THICKNESSMAP = HAS_TRANSMISSION && !! material.thicknessMap; const HAS_GRADIENTMAP = !! material.gradientMap; const HAS_ALPHAMAP = !! material.alphaMap; const HAS_ALPHATEST = material.alphaTest > 0; const HAS_ALPHAHASH = !! material.alphaHash; const HAS_EXTENSIONS = !! material.extensions; let toneMapping = NoToneMapping; if ( material.toneMapped ) { if ( currentRenderTarget === null || currentRenderTarget.isXRRenderTarget === true ) { toneMapping = renderer.toneMapping; } } const parameters = { shaderID: shaderID, shaderType: material.type, shaderName: material.name, vertexShader: vertexShader, fragmentShader: fragmentShader, defines: material.defines, customVertexShaderID: customVertexShaderID, customFragmentShaderID: customFragmentShaderID, isRawShaderMaterial: material.isRawShaderMaterial === true, glslVersion: material.glslVersion, precision: precision, batching: IS_BATCHEDMESH, batchingColor: IS_BATCHEDMESH && object._colorsTexture !== null, instancing: IS_INSTANCEDMESH, instancingColor: IS_INSTANCEDMESH && object.instanceColor !== null, instancingMorph: IS_INSTANCEDMESH && object.morphTexture !== null, supportsVertexTextures: SUPPORTS_VERTEX_TEXTURES, outputColorSpace: ( currentRenderTarget === null ) ? renderer.outputColorSpace : ( currentRenderTarget.isXRRenderTarget === true ? currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace ), alphaToCoverage: !! material.alphaToCoverage, map: HAS_MAP, matcap: HAS_MATCAP, envMap: HAS_ENVMAP, envMapMode: HAS_ENVMAP && envMap.mapping, envMapCubeUVHeight: envMapCubeUVHeight, aoMap: HAS_AOMAP, lightMap: HAS_LIGHTMAP, bumpMap: HAS_BUMPMAP, normalMap: HAS_NORMALMAP, displacementMap: SUPPORTS_VERTEX_TEXTURES && HAS_DISPLACEMENTMAP, emissiveMap: HAS_EMISSIVEMAP, normalMapObjectSpace: HAS_NORMALMAP && material.normalMapType === ObjectSpaceNormalMap, normalMapTangentSpace: HAS_NORMALMAP && material.normalMapType === TangentSpaceNormalMap, metalnessMap: HAS_METALNESSMAP, roughnessMap: HAS_ROUGHNESSMAP, anisotropy: HAS_ANISOTROPY, anisotropyMap: HAS_ANISOTROPYMAP, clearcoat: HAS_CLEARCOAT, clearcoatMap: HAS_CLEARCOATMAP, clearcoatNormalMap: HAS_CLEARCOAT_NORMALMAP, clearcoatRoughnessMap: HAS_CLEARCOAT_ROUGHNESSMAP, dispersion: HAS_DISPERSION, iridescence: HAS_IRIDESCENCE, iridescenceMap: HAS_IRIDESCENCEMAP, iridescenceThicknessMap: HAS_IRIDESCENCE_THICKNESSMAP, sheen: HAS_SHEEN, sheenColorMap: HAS_SHEEN_COLORMAP, sheenRoughnessMap: HAS_SHEEN_ROUGHNESSMAP, specularMap: HAS_SPECULARMAP, specularColorMap: HAS_SPECULAR_COLORMAP, specularIntensityMap: HAS_SPECULAR_INTENSITYMAP, transmission: HAS_TRANSMISSION, transmissionMap: HAS_TRANSMISSIONMAP, thicknessMap: HAS_THICKNESSMAP, gradientMap: HAS_GRADIENTMAP, opaque: material.transparent === false && material.blending === NormalBlending && material.alphaToCoverage === false, alphaMap: HAS_ALPHAMAP, alphaTest: HAS_ALPHATEST, alphaHash: HAS_ALPHAHASH, combine: material.combine, // mapUv: HAS_MAP && getChannel( material.map.channel ), aoMapUv: HAS_AOMAP && getChannel( material.aoMap.channel ), lightMapUv: HAS_LIGHTMAP && getChannel( material.lightMap.channel ), bumpMapUv: HAS_BUMPMAP && getChannel( material.bumpMap.channel ), normalMapUv: HAS_NORMALMAP && getChannel( material.normalMap.channel ), displacementMapUv: HAS_DISPLACEMENTMAP && getChannel( material.displacementMap.channel ), emissiveMapUv: HAS_EMISSIVEMAP && getChannel( material.emissiveMap.channel ), metalnessMapUv: HAS_METALNESSMAP && getChannel( material.metalnessMap.channel ), roughnessMapUv: HAS_ROUGHNESSMAP && getChannel( material.roughnessMap.channel ), anisotropyMapUv: HAS_ANISOTROPYMAP && getChannel( material.anisotropyMap.channel ), clearcoatMapUv: HAS_CLEARCOATMAP && getChannel( material.clearcoatMap.channel ), clearcoatNormalMapUv: HAS_CLEARCOAT_NORMALMAP && getChannel( material.clearcoatNormalMap.channel ), clearcoatRoughnessMapUv: HAS_CLEARCOAT_ROUGHNESSMAP && getChannel( material.clearcoatRoughnessMap.channel ), iridescenceMapUv: HAS_IRIDESCENCEMAP && getChannel( material.iridescenceMap.channel ), iridescenceThicknessMapUv: HAS_IRIDESCENCE_THICKNESSMAP && getChannel( material.iridescenceThicknessMap.channel ), sheenColorMapUv: HAS_SHEEN_COLORMAP && getChannel( material.sheenColorMap.channel ), sheenRoughnessMapUv: HAS_SHEEN_ROUGHNESSMAP && getChannel( material.sheenRoughnessMap.channel ), specularMapUv: HAS_SPECULARMAP && getChannel( material.specularMap.channel ), specularColorMapUv: HAS_SPECULAR_COLORMAP && getChannel( material.specularColorMap.channel ), specularIntensityMapUv: HAS_SPECULAR_INTENSITYMAP && getChannel( material.specularIntensityMap.channel ), transmissionMapUv: HAS_TRANSMISSIONMAP && getChannel( material.transmissionMap.channel ), thicknessMapUv: HAS_THICKNESSMAP && getChannel( material.thicknessMap.channel ), alphaMapUv: HAS_ALPHAMAP && getChannel( material.alphaMap.channel ), // vertexTangents: !! geometry.attributes.tangent && ( HAS_NORMALMAP || HAS_ANISOTROPY ), vertexColors: material.vertexColors, vertexAlphas: material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4, pointsUvs: object.isPoints === true && !! geometry.attributes.uv && ( HAS_MAP || HAS_ALPHAMAP ), fog: !! fog, useFog: material.fog === true, fogExp2: ( !! fog && fog.isFogExp2 ), flatShading: material.flatShading === true, sizeAttenuation: material.sizeAttenuation === true, logarithmicDepthBuffer: logarithmicDepthBuffer, reverseDepthBuffer: reverseDepthBuffer, skinning: object.isSkinnedMesh === true, morphTargets: geometry.morphAttributes.position !== undefined, morphNormals: geometry.morphAttributes.normal !== undefined, morphColors: geometry.morphAttributes.color !== undefined, morphTargetsCount: morphTargetsCount, morphTextureStride: morphTextureStride, numDirLights: lights.directional.length, numPointLights: lights.point.length, numSpotLights: lights.spot.length, numSpotLightMaps: lights.spotLightMap.length, numRectAreaLights: lights.rectArea.length, numHemiLights: lights.hemi.length, numDirLightShadows: lights.directionalShadowMap.length, numPointLightShadows: lights.pointShadowMap.length, numSpotLightShadows: lights.spotShadowMap.length, numSpotLightShadowsWithMaps: lights.numSpotLightShadowsWithMaps, numLightProbes: lights.numLightProbes, numClippingPlanes: clipping.numPlanes, numClipIntersection: clipping.numIntersection, dithering: material.dithering, shadowMapEnabled: renderer.shadowMap.enabled && shadows.length > 0, shadowMapType: renderer.shadowMap.type, toneMapping: toneMapping, decodeVideoTexture: HAS_MAP && ( material.map.isVideoTexture === true ) && ( ColorManagement.getTransfer( material.map.colorSpace ) === SRGBTransfer ), premultipliedAlpha: material.premultipliedAlpha, doubleSided: material.side === DoubleSide, flipSided: material.side === BackSide, useDepthPacking: material.depthPacking >= 0, depthPacking: material.depthPacking || 0, index0AttributeName: material.index0AttributeName, extensionClipCullDistance: HAS_EXTENSIONS && material.extensions.clipCullDistance === true && extensions.has( 'WEBGL_clip_cull_distance' ), extensionMultiDraw: ( HAS_EXTENSIONS && material.extensions.multiDraw === true || IS_BATCHEDMESH ) && extensions.has( 'WEBGL_multi_draw' ), rendererExtensionParallelShaderCompile: extensions.has( 'KHR_parallel_shader_compile' ), customProgramCacheKey: material.customProgramCacheKey() }; // the usage of getChannel() determines the active texture channels for this shader parameters.vertexUv1s = _activeChannels.has( 1 ); parameters.vertexUv2s = _activeChannels.has( 2 ); parameters.vertexUv3s = _activeChannels.has( 3 ); _activeChannels.clear(); return parameters; } function getProgramCacheKey( parameters ) { const array = []; if ( parameters.shaderID ) { array.push( parameters.shaderID ); } else { array.push( parameters.customVertexShaderID ); array.push( parameters.customFragmentShaderID ); } if ( parameters.defines !== undefined ) { for ( const name in parameters.defines ) { array.push( name ); array.push( parameters.defines[ name ] ); } } if ( parameters.isRawShaderMaterial === false ) { getProgramCacheKeyParameters( array, parameters ); getProgramCacheKeyBooleans( array, parameters ); array.push( renderer.outputColorSpace ); } array.push( parameters.customProgramCacheKey ); return array.join(); } function getProgramCacheKeyParameters( array, parameters ) { array.push( parameters.precision ); array.push( parameters.outputColorSpace ); array.push( parameters.envMapMode ); array.push( parameters.envMapCubeUVHeight ); array.push( parameters.mapUv ); array.push( parameters.alphaMapUv ); array.push( parameters.lightMapUv ); array.push( parameters.aoMapUv ); array.push( parameters.bumpMapUv ); array.push( parameters.normalMapUv ); array.push( parameters.displacementMapUv ); array.push( parameters.emissiveMapUv ); array.push( parameters.metalnessMapUv ); array.push( parameters.roughnessMapUv ); array.push( parameters.anisotropyMapUv ); array.push( parameters.clearcoatMapUv ); array.push( parameters.clearcoatNormalMapUv ); array.push( parameters.clearcoatRoughnessMapUv ); array.push( parameters.iridescenceMapUv ); array.push( parameters.iridescenceThicknessMapUv ); array.push( parameters.sheenColorMapUv ); array.push( parameters.sheenRoughnessMapUv ); array.push( parameters.specularMapUv ); array.push( parameters.specularColorMapUv ); array.push( parameters.specularIntensityMapUv ); array.push( parameters.transmissionMapUv ); array.push( parameters.thicknessMapUv ); array.push( parameters.combine ); array.push( parameters.fogExp2 ); array.push( parameters.sizeAttenuation ); array.push( parameters.morphTargetsCount ); array.push( parameters.morphAttributeCount ); array.push( parameters.numDirLights ); array.push( parameters.numPointLights ); array.push( parameters.numSpotLights ); array.push( parameters.numSpotLightMaps ); array.push( parameters.numHemiLights ); array.push( parameters.numRectAreaLights ); array.push( parameters.numDirLightShadows ); array.push( parameters.numPointLightShadows ); array.push( parameters.numSpotLightShadows ); array.push( parameters.numSpotLightShadowsWithMaps ); array.push( parameters.numLightProbes ); array.push( parameters.shadowMapType ); array.push( parameters.toneMapping ); array.push( parameters.numClippingPlanes ); array.push( parameters.numClipIntersection ); array.push( parameters.depthPacking ); } function getProgramCacheKeyBooleans( array, parameters ) { _programLayers.disableAll(); if ( parameters.supportsVertexTextures ) _programLayers.enable( 0 ); if ( parameters.instancing ) _programLayers.enable( 1 ); if ( parameters.instancingColor ) _programLayers.enable( 2 ); if ( parameters.instancingMorph ) _programLayers.enable( 3 ); if ( parameters.matcap ) _programLayers.enable( 4 ); if ( parameters.envMap ) _programLayers.enable( 5 ); if ( parameters.normalMapObjectSpace ) _programLayers.enable( 6 ); if ( parameters.normalMapTangentSpace ) _programLayers.enable( 7 ); if ( parameters.clearcoat ) _programLayers.enable( 8 ); if ( parameters.iridescence ) _programLayers.enable( 9 ); if ( parameters.alphaTest ) _programLayers.enable( 10 ); if ( parameters.vertexColors ) _programLayers.enable( 11 ); if ( parameters.vertexAlphas ) _programLayers.enable( 12 ); if ( parameters.vertexUv1s ) _programLayers.enable( 13 ); if ( parameters.vertexUv2s ) _programLayers.enable( 14 ); if ( parameters.vertexUv3s ) _programLayers.enable( 15 ); if ( parameters.vertexTangents ) _programLayers.enable( 16 ); if ( parameters.anisotropy ) _programLayers.enable( 17 ); if ( parameters.alphaHash ) _programLayers.enable( 18 ); if ( parameters.batching ) _programLayers.enable( 19 ); if ( parameters.dispersion ) _programLayers.enable( 20 ); if ( parameters.batchingColor ) _programLayers.enable( 21 ); array.push( _programLayers.mask ); _programLayers.disableAll(); if ( parameters.fog ) _programLayers.enable( 0 ); if ( parameters.useFog ) _programLayers.enable( 1 ); if ( parameters.flatShading ) _programLayers.enable( 2 ); if ( parameters.logarithmicDepthBuffer ) _programLayers.enable( 3 ); if ( parameters.reverseDepthBuffer ) _programLayers.enable( 4 ); if ( parameters.skinning ) _programLayers.enable( 5 ); if ( parameters.morphTargets ) _programLayers.enable( 6 ); if ( parameters.morphNormals ) _programLayers.enable( 7 ); if ( parameters.morphColors ) _programLayers.enable( 8 ); if ( parameters.premultipliedAlpha ) _programLayers.enable( 9 ); if ( parameters.shadowMapEnabled ) _programLayers.enable( 10 ); if ( parameters.doubleSided ) _programLayers.enable( 11 ); if ( parameters.flipSided ) _programLayers.enable( 12 ); if ( parameters.useDepthPacking ) _programLayers.enable( 13 ); if ( parameters.dithering ) _programLayers.enable( 14 ); if ( parameters.transmission ) _programLayers.enable( 15 ); if ( parameters.sheen ) _programLayers.enable( 16 ); if ( parameters.opaque ) _programLayers.enable( 17 ); if ( parameters.pointsUvs ) _programLayers.enable( 18 ); if ( parameters.decodeVideoTexture ) _programLayers.enable( 19 ); if ( parameters.alphaToCoverage ) _programLayers.enable( 20 ); array.push( _programLayers.mask ); } function getUniforms( material ) { const shaderID = shaderIDs[ material.type ]; let uniforms; if ( shaderID ) { const shader = ShaderLib[ shaderID ]; uniforms = UniformsUtils.clone( shader.uniforms ); } else { uniforms = material.uniforms; } return uniforms; } function acquireProgram( parameters, cacheKey ) { let program; // Check if code has been already compiled for ( let p = 0, pl = programs.length; p < pl; p ++ ) { const preexistingProgram = programs[ p ]; if ( preexistingProgram.cacheKey === cacheKey ) { program = preexistingProgram; ++ program.usedTimes; break; } } if ( program === undefined ) { program = new WebGLProgram( renderer, cacheKey, parameters, bindingStates ); programs.push( program ); } return program; } function releaseProgram( program ) { if ( -- program.usedTimes === 0 ) { // Remove from unordered set const i = programs.indexOf( program ); programs[ i ] = programs[ programs.length - 1 ]; programs.pop(); // Free WebGL resources program.destroy(); } } function releaseShaderCache( material ) { _customShaders.remove( material ); } function dispose() { _customShaders.dispose(); } return { getParameters: getParameters, getProgramCacheKey: getProgramCacheKey, getUniforms: getUniforms, acquireProgram: acquireProgram, releaseProgram: releaseProgram, releaseShaderCache: releaseShaderCache, // Exposed for resource monitoring & error feedback via renderer.info: programs: programs, dispose: dispose }; } function WebGLProperties() { let properties = new WeakMap(); function has( object ) { return properties.has( object ); } function get( object ) { let map = properties.get( object ); if ( map === undefined ) { map = {}; properties.set( object, map ); } return map; } function remove( object ) { properties.delete( object ); } function update( object, key, value ) { properties.get( object )[ key ] = value; } function dispose() { properties = new WeakMap(); } return { has: has, get: get, remove: remove, update: update, dispose: dispose }; } function painterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.material.id !== b.material.id ) { return a.material.id - b.material.id; } else if ( a.z !== b.z ) { return a.z - b.z; } else { return a.id - b.id; } } function reversePainterSortStable( a, b ) { if ( a.groupOrder !== b.groupOrder ) { return a.groupOrder - b.groupOrder; } else if ( a.renderOrder !== b.renderOrder ) { return a.renderOrder - b.renderOrder; } else if ( a.z !== b.z ) { return b.z - a.z; } else { return a.id - b.id; } } function WebGLRenderList() { const renderItems = []; let renderItemsIndex = 0; const opaque = []; const transmissive = []; const transparent = []; function init() { renderItemsIndex = 0; opaque.length = 0; transmissive.length = 0; transparent.length = 0; } function getNextRenderItem( object, geometry, material, groupOrder, z, group ) { let renderItem = renderItems[ renderItemsIndex ]; if ( renderItem === undefined ) { renderItem = { id: object.id, object: object, geometry: geometry, material: material, groupOrder: groupOrder, renderOrder: object.renderOrder, z: z, group: group }; renderItems[ renderItemsIndex ] = renderItem; } else { renderItem.id = object.id; renderItem.object = object; renderItem.geometry = geometry; renderItem.material = material; renderItem.groupOrder = groupOrder; renderItem.renderOrder = object.renderOrder; renderItem.z = z; renderItem.group = group; } renderItemsIndex ++; return renderItem; } function push( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.push( renderItem ); } else if ( material.transparent === true ) { transparent.push( renderItem ); } else { opaque.push( renderItem ); } } function unshift( object, geometry, material, groupOrder, z, group ) { const renderItem = getNextRenderItem( object, geometry, material, groupOrder, z, group ); if ( material.transmission > 0.0 ) { transmissive.unshift( renderItem ); } else if ( material.transparent === true ) { transparent.unshift( renderItem ); } else { opaque.unshift( renderItem ); } } function sort( customOpaqueSort, customTransparentSort ) { if ( opaque.length > 1 ) opaque.sort( customOpaqueSort || painterSortStable ); if ( transmissive.length > 1 ) transmissive.sort( customTransparentSort || reversePainterSortStable ); if ( transparent.length > 1 ) transparent.sort( customTransparentSort || reversePainterSortStable ); } function finish() { // Clear references from inactive renderItems in the list for ( let i = renderItemsIndex, il = renderItems.length; i < il; i ++ ) { const renderItem = renderItems[ i ]; if ( renderItem.id === null ) break; renderItem.id = null; renderItem.object = null; renderItem.geometry = null; renderItem.material = null; renderItem.group = null; } } return { opaque: opaque, transmissive: transmissive, transparent: transparent, init: init, push: push, unshift: unshift, finish: finish, sort: sort }; } function WebGLRenderLists() { let lists = new WeakMap(); function get( scene, renderCallDepth ) { const listArray = lists.get( scene ); let list; if ( listArray === undefined ) { list = new WebGLRenderList(); lists.set( scene, [ list ] ); } else { if ( renderCallDepth >= listArray.length ) { list = new WebGLRenderList(); listArray.push( list ); } else { list = listArray[ renderCallDepth ]; } } return list; } function dispose() { lists = new WeakMap(); } return { get: get, dispose: dispose }; } function UniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { direction: new Vector3(), color: new Color() }; break; case 'SpotLight': uniforms = { position: new Vector3(), direction: new Vector3(), color: new Color(), distance: 0, coneCos: 0, penumbraCos: 0, decay: 0 }; break; case 'PointLight': uniforms = { position: new Vector3(), color: new Color(), distance: 0, decay: 0 }; break; case 'HemisphereLight': uniforms = { direction: new Vector3(), skyColor: new Color(), groundColor: new Color() }; break; case 'RectAreaLight': uniforms = { color: new Color(), position: new Vector3(), halfWidth: new Vector3(), halfHeight: new Vector3() }; break; } lights[ light.id ] = uniforms; return uniforms; } }; } function ShadowUniformsCache() { const lights = {}; return { get: function ( light ) { if ( lights[ light.id ] !== undefined ) { return lights[ light.id ]; } let uniforms; switch ( light.type ) { case 'DirectionalLight': uniforms = { shadowIntensity: 1, shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'SpotLight': uniforms = { shadowIntensity: 1, shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2() }; break; case 'PointLight': uniforms = { shadowIntensity: 1, shadowBias: 0, shadowNormalBias: 0, shadowRadius: 1, shadowMapSize: new Vector2(), shadowCameraNear: 1, shadowCameraFar: 1000 }; break; // TODO (abelnation): set RectAreaLight shadow uniforms } lights[ light.id ] = uniforms; return uniforms; } }; } let nextVersion = 0; function shadowCastingAndTexturingLightsFirst( lightA, lightB ) { return ( lightB.castShadow ? 2 : 0 ) - ( lightA.castShadow ? 2 : 0 ) + ( lightB.map ? 1 : 0 ) - ( lightA.map ? 1 : 0 ); } function WebGLLights( extensions ) { const cache = new UniformsCache(); const shadowCache = ShadowUniformsCache(); const state = { version: 0, hash: { directionalLength: -1, pointLength: -1, spotLength: -1, rectAreaLength: -1, hemiLength: -1, numDirectionalShadows: -1, numPointShadows: -1, numSpotShadows: -1, numSpotMaps: -1, numLightProbes: -1 }, ambient: [ 0, 0, 0 ], probe: [], directional: [], directionalShadow: [], directionalShadowMap: [], directionalShadowMatrix: [], spot: [], spotLightMap: [], spotShadow: [], spotShadowMap: [], spotLightMatrix: [], rectArea: [], rectAreaLTC1: null, rectAreaLTC2: null, point: [], pointShadow: [], pointShadowMap: [], pointShadowMatrix: [], hemi: [], numSpotLightShadowsWithMaps: 0, numLightProbes: 0 }; for ( let i = 0; i < 9; i ++ ) state.probe.push( new Vector3() ); const vector3 = new Vector3(); const matrix4 = new Matrix4(); const matrix42 = new Matrix4(); function setup( lights ) { let r = 0, g = 0, b = 0; for ( let i = 0; i < 9; i ++ ) state.probe[ i ].set( 0, 0, 0 ); let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; let numDirectionalShadows = 0; let numPointShadows = 0; let numSpotShadows = 0; let numSpotMaps = 0; let numSpotShadowsWithMaps = 0; let numLightProbes = 0; // ordering : [shadow casting + map texturing, map texturing, shadow casting, none ] lights.sort( shadowCastingAndTexturingLightsFirst ); for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; const color = light.color; const intensity = light.intensity; const distance = light.distance; const shadowMap = ( light.shadow && light.shadow.map ) ? light.shadow.map.texture : null; if ( light.isAmbientLight ) { r += color.r * intensity; g += color.g * intensity; b += color.b * intensity; } else if ( light.isLightProbe ) { for ( let j = 0; j < 9; j ++ ) { state.probe[ j ].addScaledVector( light.sh.coefficients[ j ], intensity ); } numLightProbes ++; } else if ( light.isDirectionalLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowIntensity = shadow.intensity; shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.directionalShadow[ directionalLength ] = shadowUniforms; state.directionalShadowMap[ directionalLength ] = shadowMap; state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix; numDirectionalShadows ++; } state.directional[ directionalLength ] = uniforms; directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = cache.get( light ); uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.distance = distance; uniforms.coneCos = Math.cos( light.angle ); uniforms.penumbraCos = Math.cos( light.angle * ( 1 - light.penumbra ) ); uniforms.decay = light.decay; state.spot[ spotLength ] = uniforms; const shadow = light.shadow; if ( light.map ) { state.spotLightMap[ numSpotMaps ] = light.map; numSpotMaps ++; // make sure the lightMatrix is up to date // TODO : do it if required only shadow.updateMatrices( light ); if ( light.castShadow ) numSpotShadowsWithMaps ++; } state.spotLightMatrix[ spotLength ] = shadow.matrix; if ( light.castShadow ) { const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowIntensity = shadow.intensity; shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; state.spotShadow[ spotLength ] = shadowUniforms; state.spotShadowMap[ spotLength ] = shadowMap; numSpotShadows ++; } spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = cache.get( light ); uniforms.color.copy( color ).multiplyScalar( intensity ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); state.rectArea[ rectAreaLength ] = uniforms; rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = cache.get( light ); uniforms.color.copy( light.color ).multiplyScalar( light.intensity ); uniforms.distance = light.distance; uniforms.decay = light.decay; if ( light.castShadow ) { const shadow = light.shadow; const shadowUniforms = shadowCache.get( light ); shadowUniforms.shadowIntensity = shadow.intensity; shadowUniforms.shadowBias = shadow.bias; shadowUniforms.shadowNormalBias = shadow.normalBias; shadowUniforms.shadowRadius = shadow.radius; shadowUniforms.shadowMapSize = shadow.mapSize; shadowUniforms.shadowCameraNear = shadow.camera.near; shadowUniforms.shadowCameraFar = shadow.camera.far; state.pointShadow[ pointLength ] = shadowUniforms; state.pointShadowMap[ pointLength ] = shadowMap; state.pointShadowMatrix[ pointLength ] = light.shadow.matrix; numPointShadows ++; } state.point[ pointLength ] = uniforms; pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = cache.get( light ); uniforms.skyColor.copy( light.color ).multiplyScalar( intensity ); uniforms.groundColor.copy( light.groundColor ).multiplyScalar( intensity ); state.hemi[ hemiLength ] = uniforms; hemiLength ++; } } if ( rectAreaLength > 0 ) { if ( extensions.has( 'OES_texture_float_linear' ) === true ) { state.rectAreaLTC1 = UniformsLib.LTC_FLOAT_1; state.rectAreaLTC2 = UniformsLib.LTC_FLOAT_2; } else { state.rectAreaLTC1 = UniformsLib.LTC_HALF_1; state.rectAreaLTC2 = UniformsLib.LTC_HALF_2; } } state.ambient[ 0 ] = r; state.ambient[ 1 ] = g; state.ambient[ 2 ] = b; const hash = state.hash; if ( hash.directionalLength !== directionalLength || hash.pointLength !== pointLength || hash.spotLength !== spotLength || hash.rectAreaLength !== rectAreaLength || hash.hemiLength !== hemiLength || hash.numDirectionalShadows !== numDirectionalShadows || hash.numPointShadows !== numPointShadows || hash.numSpotShadows !== numSpotShadows || hash.numSpotMaps !== numSpotMaps || hash.numLightProbes !== numLightProbes ) { state.directional.length = directionalLength; state.spot.length = spotLength; state.rectArea.length = rectAreaLength; state.point.length = pointLength; state.hemi.length = hemiLength; state.directionalShadow.length = numDirectionalShadows; state.directionalShadowMap.length = numDirectionalShadows; state.pointShadow.length = numPointShadows; state.pointShadowMap.length = numPointShadows; state.spotShadow.length = numSpotShadows; state.spotShadowMap.length = numSpotShadows; state.directionalShadowMatrix.length = numDirectionalShadows; state.pointShadowMatrix.length = numPointShadows; state.spotLightMatrix.length = numSpotShadows + numSpotMaps - numSpotShadowsWithMaps; state.spotLightMap.length = numSpotMaps; state.numSpotLightShadowsWithMaps = numSpotShadowsWithMaps; state.numLightProbes = numLightProbes; hash.directionalLength = directionalLength; hash.pointLength = pointLength; hash.spotLength = spotLength; hash.rectAreaLength = rectAreaLength; hash.hemiLength = hemiLength; hash.numDirectionalShadows = numDirectionalShadows; hash.numPointShadows = numPointShadows; hash.numSpotShadows = numSpotShadows; hash.numSpotMaps = numSpotMaps; hash.numLightProbes = numLightProbes; state.version = nextVersion ++; } } function setupView( lights, camera ) { let directionalLength = 0; let pointLength = 0; let spotLength = 0; let rectAreaLength = 0; let hemiLength = 0; const viewMatrix = camera.matrixWorldInverse; for ( let i = 0, l = lights.length; i < l; i ++ ) { const light = lights[ i ]; if ( light.isDirectionalLight ) { const uniforms = state.directional[ directionalLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); directionalLength ++; } else if ( light.isSpotLight ) { const uniforms = state.spot[ spotLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); uniforms.direction.setFromMatrixPosition( light.matrixWorld ); vector3.setFromMatrixPosition( light.target.matrixWorld ); uniforms.direction.sub( vector3 ); uniforms.direction.transformDirection( viewMatrix ); spotLength ++; } else if ( light.isRectAreaLight ) { const uniforms = state.rectArea[ rectAreaLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); // extract local rotation of light to derive width/height half vectors matrix42.identity(); matrix4.copy( light.matrixWorld ); matrix4.premultiply( viewMatrix ); matrix42.extractRotation( matrix4 ); uniforms.halfWidth.set( light.width * 0.5, 0.0, 0.0 ); uniforms.halfHeight.set( 0.0, light.height * 0.5, 0.0 ); uniforms.halfWidth.applyMatrix4( matrix42 ); uniforms.halfHeight.applyMatrix4( matrix42 ); rectAreaLength ++; } else if ( light.isPointLight ) { const uniforms = state.point[ pointLength ]; uniforms.position.setFromMatrixPosition( light.matrixWorld ); uniforms.position.applyMatrix4( viewMatrix ); pointLength ++; } else if ( light.isHemisphereLight ) { const uniforms = state.hemi[ hemiLength ]; uniforms.direction.setFromMatrixPosition( light.matrixWorld ); uniforms.direction.transformDirection( viewMatrix ); hemiLength ++; } } } return { setup: setup, setupView: setupView, state: state }; } function WebGLRenderState( extensions ) { const lights = new WebGLLights( extensions ); const lightsArray = []; const shadowsArray = []; function init( camera ) { state.camera = camera; lightsArray.length = 0; shadowsArray.length = 0; } function pushLight( light ) { lightsArray.push( light ); } function pushShadow( shadowLight ) { shadowsArray.push( shadowLight ); } function setupLights() { lights.setup( lightsArray ); } function setupLightsView( camera ) { lights.setupView( lightsArray, camera ); } const state = { lightsArray: lightsArray, shadowsArray: shadowsArray, camera: null, lights: lights, transmissionRenderTarget: {} }; return { init: init, state: state, setupLights: setupLights, setupLightsView: setupLightsView, pushLight: pushLight, pushShadow: pushShadow }; } function WebGLRenderStates( extensions ) { let renderStates = new WeakMap(); function get( scene, renderCallDepth = 0 ) { const renderStateArray = renderStates.get( scene ); let renderState; if ( renderStateArray === undefined ) { renderState = new WebGLRenderState( extensions ); renderStates.set( scene, [ renderState ] ); } else { if ( renderCallDepth >= renderStateArray.length ) { renderState = new WebGLRenderState( extensions ); renderStateArray.push( renderState ); } else { renderState = renderStateArray[ renderCallDepth ]; } } return renderState; } function dispose() { renderStates = new WeakMap(); } return { get: get, dispose: dispose }; } class MeshDepthMaterial extends Material { constructor( parameters ) { super(); this.isMeshDepthMaterial = true; this.type = 'MeshDepthMaterial'; this.depthPacking = BasicDepthPacking; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.depthPacking = source.depthPacking; this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; return this; } } class MeshDistanceMaterial extends Material { constructor( parameters ) { super(); this.isMeshDistanceMaterial = true; this.type = 'MeshDistanceMaterial'; this.map = null; this.alphaMap = null; this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.map = source.map; this.alphaMap = source.alphaMap; this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; return this; } } const vertex = "void main() {\n\tgl_Position = vec4( position, 1.0 );\n}"; const fragment = "uniform sampler2D shadow_pass;\nuniform vec2 resolution;\nuniform float radius;\n#include \nvoid main() {\n\tconst float samples = float( VSM_SAMPLES );\n\tfloat mean = 0.0;\n\tfloat squared_mean = 0.0;\n\tfloat uvStride = samples <= 1.0 ? 0.0 : 2.0 / ( samples - 1.0 );\n\tfloat uvStart = samples <= 1.0 ? 0.0 : - 1.0;\n\tfor ( float i = 0.0; i < samples; i ++ ) {\n\t\tfloat uvOffset = uvStart + i * uvStride;\n\t\t#ifdef HORIZONTAL_PASS\n\t\t\tvec2 distribution = unpackRGBATo2Half( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( uvOffset, 0.0 ) * radius ) / resolution ) );\n\t\t\tmean += distribution.x;\n\t\t\tsquared_mean += distribution.y * distribution.y + distribution.x * distribution.x;\n\t\t#else\n\t\t\tfloat depth = unpackRGBAToDepth( texture2D( shadow_pass, ( gl_FragCoord.xy + vec2( 0.0, uvOffset ) * radius ) / resolution ) );\n\t\t\tmean += depth;\n\t\t\tsquared_mean += depth * depth;\n\t\t#endif\n\t}\n\tmean = mean / samples;\n\tsquared_mean = squared_mean / samples;\n\tfloat std_dev = sqrt( squared_mean - mean * mean );\n\tgl_FragColor = pack2HalfToRGBA( vec2( mean, std_dev ) );\n}"; function WebGLShadowMap( renderer, objects, capabilities ) { let _frustum = new Frustum(); const _shadowMapSize = new Vector2(), _viewportSize = new Vector2(), _viewport = new Vector4(), _depthMaterial = new MeshDepthMaterial( { depthPacking: RGBADepthPacking } ), _distanceMaterial = new MeshDistanceMaterial(), _materialCache = {}, _maxTextureSize = capabilities.maxTextureSize; const shadowSide = { [ FrontSide ]: BackSide, [ BackSide ]: FrontSide, [ DoubleSide ]: DoubleSide }; const shadowMaterialVertical = new ShaderMaterial( { defines: { VSM_SAMPLES: 8 }, uniforms: { shadow_pass: { value: null }, resolution: { value: new Vector2() }, radius: { value: 4.0 } }, vertexShader: vertex, fragmentShader: fragment } ); const shadowMaterialHorizontal = shadowMaterialVertical.clone(); shadowMaterialHorizontal.defines.HORIZONTAL_PASS = 1; const fullScreenTri = new BufferGeometry(); fullScreenTri.setAttribute( 'position', new BufferAttribute( new Float32Array( [ -1, -1, 0.5, 3, -1, 0.5, -1, 3, 0.5 ] ), 3 ) ); const fullScreenMesh = new Mesh( fullScreenTri, shadowMaterialVertical ); const scope = this; this.enabled = false; this.autoUpdate = true; this.needsUpdate = false; this.type = PCFShadowMap$1; let _previousType = this.type; this.render = function ( lights, scene, camera ) { if ( scope.enabled === false ) return; if ( scope.autoUpdate === false && scope.needsUpdate === false ) return; if ( lights.length === 0 ) return; const currentRenderTarget = renderer.getRenderTarget(); const activeCubeFace = renderer.getActiveCubeFace(); const activeMipmapLevel = renderer.getActiveMipmapLevel(); const _state = renderer.state; // Set GL state for depth map. _state.setBlending( NoBlending ); _state.buffers.color.setClear( 1, 1, 1, 1 ); _state.buffers.depth.setTest( true ); _state.setScissorTest( false ); // check for shadow map type changes const toVSM = ( _previousType !== VSMShadowMap && this.type === VSMShadowMap ); const fromVSM = ( _previousType === VSMShadowMap && this.type !== VSMShadowMap ); // render depth map for ( let i = 0, il = lights.length; i < il; i ++ ) { const light = lights[ i ]; const shadow = light.shadow; if ( shadow === undefined ) { console.warn( 'THREE.WebGLShadowMap:', light, 'has no shadow.' ); continue; } if ( shadow.autoUpdate === false && shadow.needsUpdate === false ) continue; _shadowMapSize.copy( shadow.mapSize ); const shadowFrameExtents = shadow.getFrameExtents(); _shadowMapSize.multiply( shadowFrameExtents ); _viewportSize.copy( shadow.mapSize ); if ( _shadowMapSize.x > _maxTextureSize || _shadowMapSize.y > _maxTextureSize ) { if ( _shadowMapSize.x > _maxTextureSize ) { _viewportSize.x = Math.floor( _maxTextureSize / shadowFrameExtents.x ); _shadowMapSize.x = _viewportSize.x * shadowFrameExtents.x; shadow.mapSize.x = _viewportSize.x; } if ( _shadowMapSize.y > _maxTextureSize ) { _viewportSize.y = Math.floor( _maxTextureSize / shadowFrameExtents.y ); _shadowMapSize.y = _viewportSize.y * shadowFrameExtents.y; shadow.mapSize.y = _viewportSize.y; } } if ( shadow.map === null || toVSM === true || fromVSM === true ) { const pars = ( this.type !== VSMShadowMap ) ? { minFilter: NearestFilter, magFilter: NearestFilter } : {}; if ( shadow.map !== null ) { shadow.map.dispose(); } shadow.map = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y, pars ); shadow.map.texture.name = light.name + '.shadowMap'; shadow.camera.updateProjectionMatrix(); } renderer.setRenderTarget( shadow.map ); renderer.clear(); const viewportCount = shadow.getViewportCount(); for ( let vp = 0; vp < viewportCount; vp ++ ) { const viewport = shadow.getViewport( vp ); _viewport.set( _viewportSize.x * viewport.x, _viewportSize.y * viewport.y, _viewportSize.x * viewport.z, _viewportSize.y * viewport.w ); _state.viewport( _viewport ); shadow.updateMatrices( light, vp ); _frustum = shadow.getFrustum(); renderObject( scene, camera, shadow.camera, light, this.type ); } // do blur pass for VSM if ( shadow.isPointLightShadow !== true && this.type === VSMShadowMap ) { VSMPass( shadow, camera ); } shadow.needsUpdate = false; } _previousType = this.type; scope.needsUpdate = false; renderer.setRenderTarget( currentRenderTarget, activeCubeFace, activeMipmapLevel ); }; function VSMPass( shadow, camera ) { const geometry = objects.update( fullScreenMesh ); if ( shadowMaterialVertical.defines.VSM_SAMPLES !== shadow.blurSamples ) { shadowMaterialVertical.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialHorizontal.defines.VSM_SAMPLES = shadow.blurSamples; shadowMaterialVertical.needsUpdate = true; shadowMaterialHorizontal.needsUpdate = true; } if ( shadow.mapPass === null ) { shadow.mapPass = new WebGLRenderTarget( _shadowMapSize.x, _shadowMapSize.y ); } // vertical pass shadowMaterialVertical.uniforms.shadow_pass.value = shadow.map.texture; shadowMaterialVertical.uniforms.resolution.value = shadow.mapSize; shadowMaterialVertical.uniforms.radius.value = shadow.radius; renderer.setRenderTarget( shadow.mapPass ); renderer.clear(); renderer.renderBufferDirect( camera, null, geometry, shadowMaterialVertical, fullScreenMesh, null ); // horizontal pass shadowMaterialHorizontal.uniforms.shadow_pass.value = shadow.mapPass.texture; shadowMaterialHorizontal.uniforms.resolution.value = shadow.mapSize; shadowMaterialHorizontal.uniforms.radius.value = shadow.radius; renderer.setRenderTarget( shadow.map ); renderer.clear(); renderer.renderBufferDirect( camera, null, geometry, shadowMaterialHorizontal, fullScreenMesh, null ); } function getDepthMaterial( object, material, light, type ) { let result = null; const customMaterial = ( light.isPointLight === true ) ? object.customDistanceMaterial : object.customDepthMaterial; if ( customMaterial !== undefined ) { result = customMaterial; } else { result = ( light.isPointLight === true ) ? _distanceMaterial : _depthMaterial; if ( ( renderer.localClippingEnabled && material.clipShadows === true && Array.isArray( material.clippingPlanes ) && material.clippingPlanes.length !== 0 ) || ( material.displacementMap && material.displacementScale !== 0 ) || ( material.alphaMap && material.alphaTest > 0 ) || ( material.map && material.alphaTest > 0 ) ) { // in this case we need a unique material instance reflecting the // appropriate state const keyA = result.uuid, keyB = material.uuid; let materialsForVariant = _materialCache[ keyA ]; if ( materialsForVariant === undefined ) { materialsForVariant = {}; _materialCache[ keyA ] = materialsForVariant; } let cachedMaterial = materialsForVariant[ keyB ]; if ( cachedMaterial === undefined ) { cachedMaterial = result.clone(); materialsForVariant[ keyB ] = cachedMaterial; material.addEventListener( 'dispose', onMaterialDispose ); } result = cachedMaterial; } } result.visible = material.visible; result.wireframe = material.wireframe; if ( type === VSMShadowMap ) { result.side = ( material.shadowSide !== null ) ? material.shadowSide : material.side; } else { result.side = ( material.shadowSide !== null ) ? material.shadowSide : shadowSide[ material.side ]; } result.alphaMap = material.alphaMap; result.alphaTest = material.alphaTest; result.map = material.map; result.clipShadows = material.clipShadows; result.clippingPlanes = material.clippingPlanes; result.clipIntersection = material.clipIntersection; result.displacementMap = material.displacementMap; result.displacementScale = material.displacementScale; result.displacementBias = material.displacementBias; result.wireframeLinewidth = material.wireframeLinewidth; result.linewidth = material.linewidth; if ( light.isPointLight === true && result.isMeshDistanceMaterial === true ) { const materialProperties = renderer.properties.get( result ); materialProperties.light = light; } return result; } function renderObject( object, camera, shadowCamera, light, type ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible && ( object.isMesh || object.isLine || object.isPoints ) ) { if ( ( object.castShadow || ( object.receiveShadow && type === VSMShadowMap ) ) && ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) ) { object.modelViewMatrix.multiplyMatrices( shadowCamera.matrixWorldInverse, object.matrixWorld ); const geometry = objects.update( object ); const material = object.material; if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let k = 0, kl = groups.length; k < kl; k ++ ) { const group = groups[ k ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { const depthMaterial = getDepthMaterial( object, groupMaterial, light, type ); object.onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, group ); renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, group ); object.onAfterShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, group ); } } } else if ( material.visible ) { const depthMaterial = getDepthMaterial( object, material, light, type ); object.onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, null ); renderer.renderBufferDirect( shadowCamera, null, geometry, depthMaterial, object, null ); object.onAfterShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial, null ); } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { renderObject( children[ i ], camera, shadowCamera, light, type ); } } function onMaterialDispose( event ) { const material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); // make sure to remove the unique distance/depth materials used for shadow map rendering for ( const id in _materialCache ) { const cache = _materialCache[ id ]; const uuid = event.target.uuid; if ( uuid in cache ) { const shadowMaterial = cache[ uuid ]; shadowMaterial.dispose(); delete cache[ uuid ]; } } } } const reversedFuncs = { [ NeverDepth ]: AlwaysDepth, [ LessDepth ]: GreaterDepth, [ EqualDepth ]: NotEqualDepth, [ LessEqualDepth ]: GreaterEqualDepth, [ AlwaysDepth ]: NeverDepth, [ GreaterDepth ]: LessDepth, [ NotEqualDepth ]: EqualDepth, [ GreaterEqualDepth ]: LessEqualDepth, }; function WebGLState( gl ) { function ColorBuffer() { let locked = false; const color = new Vector4(); let currentColorMask = null; const currentColorClear = new Vector4( 0, 0, 0, 0 ); return { setMask: function ( colorMask ) { if ( currentColorMask !== colorMask && ! locked ) { gl.colorMask( colorMask, colorMask, colorMask, colorMask ); currentColorMask = colorMask; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( r, g, b, a, premultipliedAlpha ) { if ( premultipliedAlpha === true ) { r *= a; g *= a; b *= a; } color.set( r, g, b, a ); if ( currentColorClear.equals( color ) === false ) { gl.clearColor( r, g, b, a ); currentColorClear.copy( color ); } }, reset: function () { locked = false; currentColorMask = null; currentColorClear.set( -1, 0, 0, 0 ); // set to invalid state } }; } function DepthBuffer() { let locked = false; let reversed = false; let currentDepthMask = null; let currentDepthFunc = null; let currentDepthClear = null; return { setReversed: function ( value ) { reversed = value; }, setTest: function ( depthTest ) { if ( depthTest ) { enable( gl.DEPTH_TEST ); } else { disable( gl.DEPTH_TEST ); } }, setMask: function ( depthMask ) { if ( currentDepthMask !== depthMask && ! locked ) { gl.depthMask( depthMask ); currentDepthMask = depthMask; } }, setFunc: function ( depthFunc ) { if ( reversed ) depthFunc = reversedFuncs[ depthFunc ]; if ( currentDepthFunc !== depthFunc ) { switch ( depthFunc ) { case NeverDepth: gl.depthFunc( gl.NEVER ); break; case AlwaysDepth: gl.depthFunc( gl.ALWAYS ); break; case LessDepth: gl.depthFunc( gl.LESS ); break; case LessEqualDepth: gl.depthFunc( gl.LEQUAL ); break; case EqualDepth: gl.depthFunc( gl.EQUAL ); break; case GreaterEqualDepth: gl.depthFunc( gl.GEQUAL ); break; case GreaterDepth: gl.depthFunc( gl.GREATER ); break; case NotEqualDepth: gl.depthFunc( gl.NOTEQUAL ); break; default: gl.depthFunc( gl.LEQUAL ); } currentDepthFunc = depthFunc; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( depth ) { if ( currentDepthClear !== depth ) { gl.clearDepth( depth ); currentDepthClear = depth; } }, reset: function () { locked = false; currentDepthMask = null; currentDepthFunc = null; currentDepthClear = null; } }; } function StencilBuffer() { let locked = false; let currentStencilMask = null; let currentStencilFunc = null; let currentStencilRef = null; let currentStencilFuncMask = null; let currentStencilFail = null; let currentStencilZFail = null; let currentStencilZPass = null; let currentStencilClear = null; return { setTest: function ( stencilTest ) { if ( ! locked ) { if ( stencilTest ) { enable( gl.STENCIL_TEST ); } else { disable( gl.STENCIL_TEST ); } } }, setMask: function ( stencilMask ) { if ( currentStencilMask !== stencilMask && ! locked ) { gl.stencilMask( stencilMask ); currentStencilMask = stencilMask; } }, setFunc: function ( stencilFunc, stencilRef, stencilMask ) { if ( currentStencilFunc !== stencilFunc || currentStencilRef !== stencilRef || currentStencilFuncMask !== stencilMask ) { gl.stencilFunc( stencilFunc, stencilRef, stencilMask ); currentStencilFunc = stencilFunc; currentStencilRef = stencilRef; currentStencilFuncMask = stencilMask; } }, setOp: function ( stencilFail, stencilZFail, stencilZPass ) { if ( currentStencilFail !== stencilFail || currentStencilZFail !== stencilZFail || currentStencilZPass !== stencilZPass ) { gl.stencilOp( stencilFail, stencilZFail, stencilZPass ); currentStencilFail = stencilFail; currentStencilZFail = stencilZFail; currentStencilZPass = stencilZPass; } }, setLocked: function ( lock ) { locked = lock; }, setClear: function ( stencil ) { if ( currentStencilClear !== stencil ) { gl.clearStencil( stencil ); currentStencilClear = stencil; } }, reset: function () { locked = false; currentStencilMask = null; currentStencilFunc = null; currentStencilRef = null; currentStencilFuncMask = null; currentStencilFail = null; currentStencilZFail = null; currentStencilZPass = null; currentStencilClear = null; } }; } // const colorBuffer = new ColorBuffer(); const depthBuffer = new DepthBuffer(); const stencilBuffer = new StencilBuffer(); const uboBindings = new WeakMap(); const uboProgramMap = new WeakMap(); let enabledCapabilities = {}; let currentBoundFramebuffers = {}; let currentDrawbuffers = new WeakMap(); let defaultDrawbuffers = []; let currentProgram = null; let currentBlendingEnabled = false; let currentBlending = null; let currentBlendEquation = null; let currentBlendSrc = null; let currentBlendDst = null; let currentBlendEquationAlpha = null; let currentBlendSrcAlpha = null; let currentBlendDstAlpha = null; let currentBlendColor = new Color( 0, 0, 0 ); let currentBlendAlpha = 0; let currentPremultipledAlpha = false; let currentFlipSided = null; let currentCullFace = null; let currentLineWidth = null; let currentPolygonOffsetFactor = null; let currentPolygonOffsetUnits = null; const maxTextures = gl.getParameter( gl.MAX_COMBINED_TEXTURE_IMAGE_UNITS ); let lineWidthAvailable = false; let version = 0; const glVersion = gl.getParameter( gl.VERSION ); if ( glVersion.indexOf( 'WebGL' ) !== -1 ) { version = parseFloat( /^WebGL (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 1.0 ); } else if ( glVersion.indexOf( 'OpenGL ES' ) !== -1 ) { version = parseFloat( /^OpenGL ES (\d)/.exec( glVersion )[ 1 ] ); lineWidthAvailable = ( version >= 2.0 ); } let currentTextureSlot = null; let currentBoundTextures = {}; const scissorParam = gl.getParameter( gl.SCISSOR_BOX ); const viewportParam = gl.getParameter( gl.VIEWPORT ); const currentScissor = new Vector4().fromArray( scissorParam ); const currentViewport = new Vector4().fromArray( viewportParam ); function createTexture( type, target, count, dimensions ) { const data = new Uint8Array( 4 ); // 4 is required to match default unpack alignment of 4. const texture = gl.createTexture(); gl.bindTexture( type, texture ); gl.texParameteri( type, gl.TEXTURE_MIN_FILTER, gl.NEAREST ); gl.texParameteri( type, gl.TEXTURE_MAG_FILTER, gl.NEAREST ); for ( let i = 0; i < count; i ++ ) { if ( type === gl.TEXTURE_3D || type === gl.TEXTURE_2D_ARRAY ) { gl.texImage3D( target, 0, gl.RGBA, 1, 1, dimensions, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); } else { gl.texImage2D( target + i, 0, gl.RGBA, 1, 1, 0, gl.RGBA, gl.UNSIGNED_BYTE, data ); } } return texture; } const emptyTextures = {}; emptyTextures[ gl.TEXTURE_2D ] = createTexture( gl.TEXTURE_2D, gl.TEXTURE_2D, 1 ); emptyTextures[ gl.TEXTURE_CUBE_MAP ] = createTexture( gl.TEXTURE_CUBE_MAP, gl.TEXTURE_CUBE_MAP_POSITIVE_X, 6 ); emptyTextures[ gl.TEXTURE_2D_ARRAY ] = createTexture( gl.TEXTURE_2D_ARRAY, gl.TEXTURE_2D_ARRAY, 1, 1 ); emptyTextures[ gl.TEXTURE_3D ] = createTexture( gl.TEXTURE_3D, gl.TEXTURE_3D, 1, 1 ); // init colorBuffer.setClear( 0, 0, 0, 1 ); depthBuffer.setClear( 1 ); stencilBuffer.setClear( 0 ); enable( gl.DEPTH_TEST ); depthBuffer.setFunc( LessEqualDepth ); setFlipSided( false ); setCullFace( CullFaceBack ); enable( gl.CULL_FACE ); setBlending( NoBlending ); // function enable( id ) { if ( enabledCapabilities[ id ] !== true ) { gl.enable( id ); enabledCapabilities[ id ] = true; } } function disable( id ) { if ( enabledCapabilities[ id ] !== false ) { gl.disable( id ); enabledCapabilities[ id ] = false; } } function bindFramebuffer( target, framebuffer ) { if ( currentBoundFramebuffers[ target ] !== framebuffer ) { gl.bindFramebuffer( target, framebuffer ); currentBoundFramebuffers[ target ] = framebuffer; // gl.DRAW_FRAMEBUFFER is equivalent to gl.FRAMEBUFFER if ( target === gl.DRAW_FRAMEBUFFER ) { currentBoundFramebuffers[ gl.FRAMEBUFFER ] = framebuffer; } if ( target === gl.FRAMEBUFFER ) { currentBoundFramebuffers[ gl.DRAW_FRAMEBUFFER ] = framebuffer; } return true; } return false; } function drawBuffers( renderTarget, framebuffer ) { let drawBuffers = defaultDrawbuffers; let needsUpdate = false; if ( renderTarget ) { drawBuffers = currentDrawbuffers.get( framebuffer ); if ( drawBuffers === undefined ) { drawBuffers = []; currentDrawbuffers.set( framebuffer, drawBuffers ); } const textures = renderTarget.textures; if ( drawBuffers.length !== textures.length || drawBuffers[ 0 ] !== gl.COLOR_ATTACHMENT0 ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { drawBuffers[ i ] = gl.COLOR_ATTACHMENT0 + i; } drawBuffers.length = textures.length; needsUpdate = true; } } else { if ( drawBuffers[ 0 ] !== gl.BACK ) { drawBuffers[ 0 ] = gl.BACK; needsUpdate = true; } } if ( needsUpdate ) { gl.drawBuffers( drawBuffers ); } } function useProgram( program ) { if ( currentProgram !== program ) { gl.useProgram( program ); currentProgram = program; return true; } return false; } const equationToGL = { [ AddEquation ]: gl.FUNC_ADD, [ SubtractEquation ]: gl.FUNC_SUBTRACT, [ ReverseSubtractEquation ]: gl.FUNC_REVERSE_SUBTRACT }; equationToGL[ MinEquation ] = gl.MIN; equationToGL[ MaxEquation ] = gl.MAX; const factorToGL = { [ ZeroFactor ]: gl.ZERO, [ OneFactor ]: gl.ONE, [ SrcColorFactor ]: gl.SRC_COLOR, [ SrcAlphaFactor ]: gl.SRC_ALPHA, [ SrcAlphaSaturateFactor ]: gl.SRC_ALPHA_SATURATE, [ DstColorFactor ]: gl.DST_COLOR, [ DstAlphaFactor ]: gl.DST_ALPHA, [ OneMinusSrcColorFactor ]: gl.ONE_MINUS_SRC_COLOR, [ OneMinusSrcAlphaFactor ]: gl.ONE_MINUS_SRC_ALPHA, [ OneMinusDstColorFactor ]: gl.ONE_MINUS_DST_COLOR, [ OneMinusDstAlphaFactor ]: gl.ONE_MINUS_DST_ALPHA, [ ConstantColorFactor ]: gl.CONSTANT_COLOR, [ OneMinusConstantColorFactor ]: gl.ONE_MINUS_CONSTANT_COLOR, [ ConstantAlphaFactor ]: gl.CONSTANT_ALPHA, [ OneMinusConstantAlphaFactor ]: gl.ONE_MINUS_CONSTANT_ALPHA }; function setBlending( blending, blendEquation, blendSrc, blendDst, blendEquationAlpha, blendSrcAlpha, blendDstAlpha, blendColor, blendAlpha, premultipliedAlpha ) { if ( blending === NoBlending ) { if ( currentBlendingEnabled === true ) { disable( gl.BLEND ); currentBlendingEnabled = false; } return; } if ( currentBlendingEnabled === false ) { enable( gl.BLEND ); currentBlendingEnabled = true; } if ( blending !== CustomBlending ) { if ( blending !== currentBlending || premultipliedAlpha !== currentPremultipledAlpha ) { if ( currentBlendEquation !== AddEquation || currentBlendEquationAlpha !== AddEquation ) { gl.blendEquation( gl.FUNC_ADD ); currentBlendEquation = AddEquation; currentBlendEquationAlpha = AddEquation; } if ( premultipliedAlpha ) { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( gl.ONE, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); break; case AdditiveBlending: gl.blendFunc( gl.ONE, gl.ONE ); break; case SubtractiveBlending: gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); break; case MultiplyBlending: gl.blendFuncSeparate( gl.ZERO, gl.SRC_COLOR, gl.ZERO, gl.SRC_ALPHA ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } else { switch ( blending ) { case NormalBlending: gl.blendFuncSeparate( gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA, gl.ONE, gl.ONE_MINUS_SRC_ALPHA ); break; case AdditiveBlending: gl.blendFunc( gl.SRC_ALPHA, gl.ONE ); break; case SubtractiveBlending: gl.blendFuncSeparate( gl.ZERO, gl.ONE_MINUS_SRC_COLOR, gl.ZERO, gl.ONE ); break; case MultiplyBlending: gl.blendFunc( gl.ZERO, gl.SRC_COLOR ); break; default: console.error( 'THREE.WebGLState: Invalid blending: ', blending ); break; } } currentBlendSrc = null; currentBlendDst = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlendColor.set( 0, 0, 0 ); currentBlendAlpha = 0; currentBlending = blending; currentPremultipledAlpha = premultipliedAlpha; } return; } // custom blending blendEquationAlpha = blendEquationAlpha || blendEquation; blendSrcAlpha = blendSrcAlpha || blendSrc; blendDstAlpha = blendDstAlpha || blendDst; if ( blendEquation !== currentBlendEquation || blendEquationAlpha !== currentBlendEquationAlpha ) { gl.blendEquationSeparate( equationToGL[ blendEquation ], equationToGL[ blendEquationAlpha ] ); currentBlendEquation = blendEquation; currentBlendEquationAlpha = blendEquationAlpha; } if ( blendSrc !== currentBlendSrc || blendDst !== currentBlendDst || blendSrcAlpha !== currentBlendSrcAlpha || blendDstAlpha !== currentBlendDstAlpha ) { gl.blendFuncSeparate( factorToGL[ blendSrc ], factorToGL[ blendDst ], factorToGL[ blendSrcAlpha ], factorToGL[ blendDstAlpha ] ); currentBlendSrc = blendSrc; currentBlendDst = blendDst; currentBlendSrcAlpha = blendSrcAlpha; currentBlendDstAlpha = blendDstAlpha; } if ( blendColor.equals( currentBlendColor ) === false || blendAlpha !== currentBlendAlpha ) { gl.blendColor( blendColor.r, blendColor.g, blendColor.b, blendAlpha ); currentBlendColor.copy( blendColor ); currentBlendAlpha = blendAlpha; } currentBlending = blending; currentPremultipledAlpha = false; } function setMaterial( material, frontFaceCW ) { material.side === DoubleSide ? disable( gl.CULL_FACE ) : enable( gl.CULL_FACE ); let flipSided = ( material.side === BackSide ); if ( frontFaceCW ) flipSided = ! flipSided; setFlipSided( flipSided ); ( material.blending === NormalBlending && material.transparent === false ) ? setBlending( NoBlending ) : setBlending( material.blending, material.blendEquation, material.blendSrc, material.blendDst, material.blendEquationAlpha, material.blendSrcAlpha, material.blendDstAlpha, material.blendColor, material.blendAlpha, material.premultipliedAlpha ); depthBuffer.setFunc( material.depthFunc ); depthBuffer.setTest( material.depthTest ); depthBuffer.setMask( material.depthWrite ); colorBuffer.setMask( material.colorWrite ); const stencilWrite = material.stencilWrite; stencilBuffer.setTest( stencilWrite ); if ( stencilWrite ) { stencilBuffer.setMask( material.stencilWriteMask ); stencilBuffer.setFunc( material.stencilFunc, material.stencilRef, material.stencilFuncMask ); stencilBuffer.setOp( material.stencilFail, material.stencilZFail, material.stencilZPass ); } setPolygonOffset( material.polygonOffset, material.polygonOffsetFactor, material.polygonOffsetUnits ); material.alphaToCoverage === true ? enable( gl.SAMPLE_ALPHA_TO_COVERAGE ) : disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); } // function setFlipSided( flipSided ) { if ( currentFlipSided !== flipSided ) { if ( flipSided ) { gl.frontFace( gl.CW ); } else { gl.frontFace( gl.CCW ); } currentFlipSided = flipSided; } } function setCullFace( cullFace ) { if ( cullFace !== CullFaceNone ) { enable( gl.CULL_FACE ); if ( cullFace !== currentCullFace ) { if ( cullFace === CullFaceBack ) { gl.cullFace( gl.BACK ); } else if ( cullFace === CullFaceFront ) { gl.cullFace( gl.FRONT ); } else { gl.cullFace( gl.FRONT_AND_BACK ); } } } else { disable( gl.CULL_FACE ); } currentCullFace = cullFace; } function setLineWidth( width ) { if ( width !== currentLineWidth ) { if ( lineWidthAvailable ) gl.lineWidth( width ); currentLineWidth = width; } } function setPolygonOffset( polygonOffset, factor, units ) { if ( polygonOffset ) { enable( gl.POLYGON_OFFSET_FILL ); if ( currentPolygonOffsetFactor !== factor || currentPolygonOffsetUnits !== units ) { gl.polygonOffset( factor, units ); currentPolygonOffsetFactor = factor; currentPolygonOffsetUnits = units; } } else { disable( gl.POLYGON_OFFSET_FILL ); } } function setScissorTest( scissorTest ) { if ( scissorTest ) { enable( gl.SCISSOR_TEST ); } else { disable( gl.SCISSOR_TEST ); } } // texture function activeTexture( webglSlot ) { if ( webglSlot === undefined ) webglSlot = gl.TEXTURE0 + maxTextures - 1; if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } } function bindTexture( webglType, webglTexture, webglSlot ) { if ( webglSlot === undefined ) { if ( currentTextureSlot === null ) { webglSlot = gl.TEXTURE0 + maxTextures - 1; } else { webglSlot = currentTextureSlot; } } let boundTexture = currentBoundTextures[ webglSlot ]; if ( boundTexture === undefined ) { boundTexture = { type: undefined, texture: undefined }; currentBoundTextures[ webglSlot ] = boundTexture; } if ( boundTexture.type !== webglType || boundTexture.texture !== webglTexture ) { if ( currentTextureSlot !== webglSlot ) { gl.activeTexture( webglSlot ); currentTextureSlot = webglSlot; } gl.bindTexture( webglType, webglTexture || emptyTextures[ webglType ] ); boundTexture.type = webglType; boundTexture.texture = webglTexture; } } function unbindTexture() { const boundTexture = currentBoundTextures[ currentTextureSlot ]; if ( boundTexture !== undefined && boundTexture.type !== undefined ) { gl.bindTexture( boundTexture.type, null ); boundTexture.type = undefined; boundTexture.texture = undefined; } } function compressedTexImage2D() { try { gl.compressedTexImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function compressedTexImage3D() { try { gl.compressedTexImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texSubImage2D() { try { gl.texSubImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texSubImage3D() { try { gl.texSubImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function compressedTexSubImage2D() { try { gl.compressedTexSubImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function compressedTexSubImage3D() { try { gl.compressedTexSubImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texStorage2D() { try { gl.texStorage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texStorage3D() { try { gl.texStorage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage2D() { try { gl.texImage2D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } function texImage3D() { try { gl.texImage3D.apply( gl, arguments ); } catch ( error ) { console.error( 'THREE.WebGLState:', error ); } } // function scissor( scissor ) { if ( currentScissor.equals( scissor ) === false ) { gl.scissor( scissor.x, scissor.y, scissor.z, scissor.w ); currentScissor.copy( scissor ); } } function viewport( viewport ) { if ( currentViewport.equals( viewport ) === false ) { gl.viewport( viewport.x, viewport.y, viewport.z, viewport.w ); currentViewport.copy( viewport ); } } function updateUBOMapping( uniformsGroup, program ) { let mapping = uboProgramMap.get( program ); if ( mapping === undefined ) { mapping = new WeakMap(); uboProgramMap.set( program, mapping ); } let blockIndex = mapping.get( uniformsGroup ); if ( blockIndex === undefined ) { blockIndex = gl.getUniformBlockIndex( program, uniformsGroup.name ); mapping.set( uniformsGroup, blockIndex ); } } function uniformBlockBinding( uniformsGroup, program ) { const mapping = uboProgramMap.get( program ); const blockIndex = mapping.get( uniformsGroup ); if ( uboBindings.get( program ) !== blockIndex ) { // bind shader specific block index to global block point gl.uniformBlockBinding( program, blockIndex, uniformsGroup.__bindingPointIndex ); uboBindings.set( program, blockIndex ); } } // function reset() { // reset state gl.disable( gl.BLEND ); gl.disable( gl.CULL_FACE ); gl.disable( gl.DEPTH_TEST ); gl.disable( gl.POLYGON_OFFSET_FILL ); gl.disable( gl.SCISSOR_TEST ); gl.disable( gl.STENCIL_TEST ); gl.disable( gl.SAMPLE_ALPHA_TO_COVERAGE ); gl.blendEquation( gl.FUNC_ADD ); gl.blendFunc( gl.ONE, gl.ZERO ); gl.blendFuncSeparate( gl.ONE, gl.ZERO, gl.ONE, gl.ZERO ); gl.blendColor( 0, 0, 0, 0 ); gl.colorMask( true, true, true, true ); gl.clearColor( 0, 0, 0, 0 ); gl.depthMask( true ); gl.depthFunc( gl.LESS ); gl.clearDepth( 1 ); gl.stencilMask( 0xffffffff ); gl.stencilFunc( gl.ALWAYS, 0, 0xffffffff ); gl.stencilOp( gl.KEEP, gl.KEEP, gl.KEEP ); gl.clearStencil( 0 ); gl.cullFace( gl.BACK ); gl.frontFace( gl.CCW ); gl.polygonOffset( 0, 0 ); gl.activeTexture( gl.TEXTURE0 ); gl.bindFramebuffer( gl.FRAMEBUFFER, null ); gl.bindFramebuffer( gl.DRAW_FRAMEBUFFER, null ); gl.bindFramebuffer( gl.READ_FRAMEBUFFER, null ); gl.useProgram( null ); gl.lineWidth( 1 ); gl.scissor( 0, 0, gl.canvas.width, gl.canvas.height ); gl.viewport( 0, 0, gl.canvas.width, gl.canvas.height ); // reset internals enabledCapabilities = {}; currentTextureSlot = null; currentBoundTextures = {}; currentBoundFramebuffers = {}; currentDrawbuffers = new WeakMap(); defaultDrawbuffers = []; currentProgram = null; currentBlendingEnabled = false; currentBlending = null; currentBlendEquation = null; currentBlendSrc = null; currentBlendDst = null; currentBlendEquationAlpha = null; currentBlendSrcAlpha = null; currentBlendDstAlpha = null; currentBlendColor = new Color( 0, 0, 0 ); currentBlendAlpha = 0; currentPremultipledAlpha = false; currentFlipSided = null; currentCullFace = null; currentLineWidth = null; currentPolygonOffsetFactor = null; currentPolygonOffsetUnits = null; currentScissor.set( 0, 0, gl.canvas.width, gl.canvas.height ); currentViewport.set( 0, 0, gl.canvas.width, gl.canvas.height ); colorBuffer.reset(); depthBuffer.reset(); stencilBuffer.reset(); } return { buffers: { color: colorBuffer, depth: depthBuffer, stencil: stencilBuffer }, enable: enable, disable: disable, bindFramebuffer: bindFramebuffer, drawBuffers: drawBuffers, useProgram: useProgram, setBlending: setBlending, setMaterial: setMaterial, setFlipSided: setFlipSided, setCullFace: setCullFace, setLineWidth: setLineWidth, setPolygonOffset: setPolygonOffset, setScissorTest: setScissorTest, activeTexture: activeTexture, bindTexture: bindTexture, unbindTexture: unbindTexture, compressedTexImage2D: compressedTexImage2D, compressedTexImage3D: compressedTexImage3D, texImage2D: texImage2D, texImage3D: texImage3D, updateUBOMapping: updateUBOMapping, uniformBlockBinding: uniformBlockBinding, texStorage2D: texStorage2D, texStorage3D: texStorage3D, texSubImage2D: texSubImage2D, texSubImage3D: texSubImage3D, compressedTexSubImage2D: compressedTexSubImage2D, compressedTexSubImage3D: compressedTexSubImage3D, scissor: scissor, viewport: viewport, reset: reset }; } function contain( texture, aspect ) { const imageAspect = ( texture.image && texture.image.width ) ? texture.image.width / texture.image.height : 1; if ( imageAspect > aspect ) { texture.repeat.x = 1; texture.repeat.y = imageAspect / aspect; texture.offset.x = 0; texture.offset.y = ( 1 - texture.repeat.y ) / 2; } else { texture.repeat.x = aspect / imageAspect; texture.repeat.y = 1; texture.offset.x = ( 1 - texture.repeat.x ) / 2; texture.offset.y = 0; } return texture; } function cover( texture, aspect ) { const imageAspect = ( texture.image && texture.image.width ) ? texture.image.width / texture.image.height : 1; if ( imageAspect > aspect ) { texture.repeat.x = aspect / imageAspect; texture.repeat.y = 1; texture.offset.x = ( 1 - texture.repeat.x ) / 2; texture.offset.y = 0; } else { texture.repeat.x = 1; texture.repeat.y = imageAspect / aspect; texture.offset.x = 0; texture.offset.y = ( 1 - texture.repeat.y ) / 2; } return texture; } function fill( texture ) { texture.repeat.x = 1; texture.repeat.y = 1; texture.offset.x = 0; texture.offset.y = 0; return texture; } /** * Given the width, height, format, and type of a texture. Determines how many * bytes must be used to represent the texture. */ function getByteLength( width, height, format, type ) { const typeByteLength = getTextureTypeByteLength( type ); switch ( format ) { // https://registry.khronos.org/OpenGL-Refpages/es3.0/html/glTexImage2D.xhtml case AlphaFormat: return width * height; case LuminanceFormat: return width * height; case LuminanceAlphaFormat: return width * height * 2; case RedFormat: return ( ( width * height ) / typeByteLength.components ) * typeByteLength.byteLength; case RedIntegerFormat: return ( ( width * height ) / typeByteLength.components ) * typeByteLength.byteLength; case RGFormat: return ( ( width * height * 2 ) / typeByteLength.components ) * typeByteLength.byteLength; case RGIntegerFormat: return ( ( width * height * 2 ) / typeByteLength.components ) * typeByteLength.byteLength; case RGBFormat: return ( ( width * height * 3 ) / typeByteLength.components ) * typeByteLength.byteLength; case RGBAFormat: return ( ( width * height * 4 ) / typeByteLength.components ) * typeByteLength.byteLength; case RGBAIntegerFormat: return ( ( width * height * 4 ) / typeByteLength.components ) * typeByteLength.byteLength; // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_s3tc_srgb/ case RGB_S3TC_DXT1_Format: case RGBA_S3TC_DXT1_Format: return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 8; case RGBA_S3TC_DXT3_Format: case RGBA_S3TC_DXT5_Format: return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 16; // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_pvrtc/ case RGB_PVRTC_2BPPV1_Format: case RGBA_PVRTC_2BPPV1_Format: return ( Math.max( width, 16 ) * Math.max( height, 8 ) ) / 4; case RGB_PVRTC_4BPPV1_Format: case RGBA_PVRTC_4BPPV1_Format: return ( Math.max( width, 8 ) * Math.max( height, 8 ) ) / 2; // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_etc/ case RGB_ETC1_Format: case RGB_ETC2_Format: return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 8; case RGBA_ETC2_EAC_Format: return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 16; // https://registry.khronos.org/webgl/extensions/WEBGL_compressed_texture_astc/ case RGBA_ASTC_4x4_Format: return Math.floor( ( width + 3 ) / 4 ) * Math.floor( ( height + 3 ) / 4 ) * 16; case RGBA_ASTC_5x4_Format: return Math.floor( ( width + 4 ) / 5 ) * Math.floor( ( height + 3 ) / 4 ) * 16; case RGBA_ASTC_5x5_Format: return Math.floor( ( width + 4 ) / 5 ) * Math.floor( ( height + 4 ) / 5 ) * 16; case RGBA_ASTC_6x5_Format: return Math.floor( ( width + 5 ) / 6 ) * Math.floor( ( height + 4 ) / 5 ) * 16; case RGBA_ASTC_6x6_Format: return Math.floor( ( width + 5 ) / 6 ) * Math.floor( ( height + 5 ) / 6 ) * 16; case RGBA_ASTC_8x5_Format: return Math.floor( ( width + 7 ) / 8 ) * Math.floor( ( height + 4 ) / 5 ) * 16; case RGBA_ASTC_8x6_Format: return Math.floor( ( width + 7 ) / 8 ) * Math.floor( ( height + 5 ) / 6 ) * 16; case RGBA_ASTC_8x8_Format: return Math.floor( ( width + 7 ) / 8 ) * Math.floor( ( height + 7 ) / 8 ) * 16; case RGBA_ASTC_10x5_Format: return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 4 ) / 5 ) * 16; case RGBA_ASTC_10x6_Format: return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 5 ) / 6 ) * 16; case RGBA_ASTC_10x8_Format: return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 7 ) / 8 ) * 16; case RGBA_ASTC_10x10_Format: return Math.floor( ( width + 9 ) / 10 ) * Math.floor( ( height + 9 ) / 10 ) * 16; case RGBA_ASTC_12x10_Format: return Math.floor( ( width + 11 ) / 12 ) * Math.floor( ( height + 9 ) / 10 ) * 16; case RGBA_ASTC_12x12_Format: return Math.floor( ( width + 11 ) / 12 ) * Math.floor( ( height + 11 ) / 12 ) * 16; // https://registry.khronos.org/webgl/extensions/EXT_texture_compression_bptc/ case RGBA_BPTC_Format: case RGB_BPTC_SIGNED_Format: case RGB_BPTC_UNSIGNED_Format: return Math.ceil( width / 4 ) * Math.ceil( height / 4 ) * 16; // https://registry.khronos.org/webgl/extensions/EXT_texture_compression_rgtc/ case RED_RGTC1_Format: case SIGNED_RED_RGTC1_Format: return Math.ceil( width / 4 ) * Math.ceil( height / 4 ) * 8; case RED_GREEN_RGTC2_Format: case SIGNED_RED_GREEN_RGTC2_Format: return Math.ceil( width / 4 ) * Math.ceil( height / 4 ) * 16; } throw new Error( `Unable to determine texture byte length for ${format} format.`, ); } function getTextureTypeByteLength( type ) { switch ( type ) { case UnsignedByteType: case ByteType: return { byteLength: 1, components: 1 }; case UnsignedShortType: case ShortType: case HalfFloatType: return { byteLength: 2, components: 1 }; case UnsignedShort4444Type: case UnsignedShort5551Type: return { byteLength: 2, components: 4 }; case UnsignedIntType: case IntType: case FloatType: return { byteLength: 4, components: 1 }; case UnsignedInt5999Type: return { byteLength: 4, components: 3 }; } throw new Error( `Unknown texture type ${type}.` ); } const TextureUtils = { contain, cover, fill, getByteLength }; function WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ) { const multisampledRTTExt = extensions.has( 'WEBGL_multisampled_render_to_texture' ) ? extensions.get( 'WEBGL_multisampled_render_to_texture' ) : null; const supportsInvalidateFramebuffer = typeof navigator === 'undefined' ? false : /OculusBrowser/g.test( navigator.userAgent ); const _imageDimensions = new Vector2(); const _videoTextures = new WeakMap(); let _canvas; const _sources = new WeakMap(); // maps WebglTexture objects to instances of Source // cordova iOS (as of 5.0) still uses UIWebView, which provides OffscreenCanvas, // also OffscreenCanvas.getContext("webgl"), but not OffscreenCanvas.getContext("2d")! // Some implementations may only implement OffscreenCanvas partially (e.g. lacking 2d). let useOffscreenCanvas = false; try { useOffscreenCanvas = typeof OffscreenCanvas !== 'undefined' // eslint-disable-next-line compat/compat && ( new OffscreenCanvas( 1, 1 ).getContext( '2d' ) ) !== null; } catch ( err ) { // Ignore any errors } function createCanvas( width, height ) { // Use OffscreenCanvas when available. Specially needed in web workers return useOffscreenCanvas ? // eslint-disable-next-line compat/compat new OffscreenCanvas( width, height ) : createElementNS( 'canvas' ); } function resizeImage( image, needsNewCanvas, maxSize ) { let scale = 1; const dimensions = getDimensions( image ); // handle case if texture exceeds max size if ( dimensions.width > maxSize || dimensions.height > maxSize ) { scale = maxSize / Math.max( dimensions.width, dimensions.height ); } // only perform resize if necessary if ( scale < 1 ) { // only perform resize for certain image types if ( ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) || ( typeof HTMLCanvasElement !== 'undefined' && image instanceof HTMLCanvasElement ) || ( typeof ImageBitmap !== 'undefined' && image instanceof ImageBitmap ) || ( typeof VideoFrame !== 'undefined' && image instanceof VideoFrame ) ) { const width = Math.floor( scale * dimensions.width ); const height = Math.floor( scale * dimensions.height ); if ( _canvas === undefined ) _canvas = createCanvas( width, height ); // cube textures can't reuse the same canvas const canvas = needsNewCanvas ? createCanvas( width, height ) : _canvas; canvas.width = width; canvas.height = height; const context = canvas.getContext( '2d' ); context.drawImage( image, 0, 0, width, height ); console.warn( 'THREE.WebGLRenderer: Texture has been resized from (' + dimensions.width + 'x' + dimensions.height + ') to (' + width + 'x' + height + ').' ); return canvas; } else { if ( 'data' in image ) { console.warn( 'THREE.WebGLRenderer: Image in DataTexture is too big (' + dimensions.width + 'x' + dimensions.height + ').' ); } return image; } } return image; } function textureNeedsGenerateMipmaps( texture ) { return texture.generateMipmaps && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter; } function generateMipmap( target ) { _gl.generateMipmap( target ); } function getInternalFormat( internalFormatName, glFormat, glType, colorSpace, forceLinearTransfer = false ) { if ( internalFormatName !== null ) { if ( _gl[ internalFormatName ] !== undefined ) return _gl[ internalFormatName ]; console.warn( 'THREE.WebGLRenderer: Attempt to use non-existing WebGL internal format \'' + internalFormatName + '\'' ); } let internalFormat = glFormat; if ( glFormat === _gl.RED ) { if ( glType === _gl.FLOAT ) internalFormat = _gl.R32F; if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.R16F; if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.R8; } if ( glFormat === _gl.RED_INTEGER ) { if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.R8UI; if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.R16UI; if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.R32UI; if ( glType === _gl.BYTE ) internalFormat = _gl.R8I; if ( glType === _gl.SHORT ) internalFormat = _gl.R16I; if ( glType === _gl.INT ) internalFormat = _gl.R32I; } if ( glFormat === _gl.RG ) { if ( glType === _gl.FLOAT ) internalFormat = _gl.RG32F; if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.RG16F; if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RG8; } if ( glFormat === _gl.RG_INTEGER ) { if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RG8UI; if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.RG16UI; if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.RG32UI; if ( glType === _gl.BYTE ) internalFormat = _gl.RG8I; if ( glType === _gl.SHORT ) internalFormat = _gl.RG16I; if ( glType === _gl.INT ) internalFormat = _gl.RG32I; } if ( glFormat === _gl.RGB_INTEGER ) { if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RGB8UI; if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.RGB16UI; if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.RGB32UI; if ( glType === _gl.BYTE ) internalFormat = _gl.RGB8I; if ( glType === _gl.SHORT ) internalFormat = _gl.RGB16I; if ( glType === _gl.INT ) internalFormat = _gl.RGB32I; } if ( glFormat === _gl.RGBA_INTEGER ) { if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = _gl.RGBA8UI; if ( glType === _gl.UNSIGNED_SHORT ) internalFormat = _gl.RGBA16UI; if ( glType === _gl.UNSIGNED_INT ) internalFormat = _gl.RGBA32UI; if ( glType === _gl.BYTE ) internalFormat = _gl.RGBA8I; if ( glType === _gl.SHORT ) internalFormat = _gl.RGBA16I; if ( glType === _gl.INT ) internalFormat = _gl.RGBA32I; } if ( glFormat === _gl.RGB ) { if ( glType === _gl.UNSIGNED_INT_5_9_9_9_REV ) internalFormat = _gl.RGB9_E5; } if ( glFormat === _gl.RGBA ) { const transfer = forceLinearTransfer ? LinearTransfer : ColorManagement.getTransfer( colorSpace ); if ( glType === _gl.FLOAT ) internalFormat = _gl.RGBA32F; if ( glType === _gl.HALF_FLOAT ) internalFormat = _gl.RGBA16F; if ( glType === _gl.UNSIGNED_BYTE ) internalFormat = ( transfer === SRGBTransfer ) ? _gl.SRGB8_ALPHA8 : _gl.RGBA8; if ( glType === _gl.UNSIGNED_SHORT_4_4_4_4 ) internalFormat = _gl.RGBA4; if ( glType === _gl.UNSIGNED_SHORT_5_5_5_1 ) internalFormat = _gl.RGB5_A1; } if ( internalFormat === _gl.R16F || internalFormat === _gl.R32F || internalFormat === _gl.RG16F || internalFormat === _gl.RG32F || internalFormat === _gl.RGBA16F || internalFormat === _gl.RGBA32F ) { extensions.get( 'EXT_color_buffer_float' ); } return internalFormat; } function getInternalDepthFormat( useStencil, depthType ) { let glInternalFormat; if ( useStencil ) { if ( depthType === null || depthType === UnsignedIntType || depthType === UnsignedInt248Type ) { glInternalFormat = _gl.DEPTH24_STENCIL8; } else if ( depthType === FloatType ) { glInternalFormat = _gl.DEPTH32F_STENCIL8; } else if ( depthType === UnsignedShortType ) { glInternalFormat = _gl.DEPTH24_STENCIL8; console.warn( 'DepthTexture: 16 bit depth attachment is not supported with stencil. Using 24-bit attachment.' ); } } else { if ( depthType === null || depthType === UnsignedIntType || depthType === UnsignedInt248Type ) { glInternalFormat = _gl.DEPTH_COMPONENT24; } else if ( depthType === FloatType ) { glInternalFormat = _gl.DEPTH_COMPONENT32F; } else if ( depthType === UnsignedShortType ) { glInternalFormat = _gl.DEPTH_COMPONENT16; } } return glInternalFormat; } function getMipLevels( texture, image ) { if ( textureNeedsGenerateMipmaps( texture ) === true || ( texture.isFramebufferTexture && texture.minFilter !== NearestFilter && texture.minFilter !== LinearFilter ) ) { return Math.log2( Math.max( image.width, image.height ) ) + 1; } else if ( texture.mipmaps !== undefined && texture.mipmaps.length > 0 ) { // user-defined mipmaps return texture.mipmaps.length; } else if ( texture.isCompressedTexture && Array.isArray( texture.image ) ) { return image.mipmaps.length; } else { // texture without mipmaps (only base level) return 1; } } // function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); deallocateTexture( texture ); if ( texture.isVideoTexture ) { _videoTextures.delete( texture ); } } function onRenderTargetDispose( event ) { const renderTarget = event.target; renderTarget.removeEventListener( 'dispose', onRenderTargetDispose ); deallocateRenderTarget( renderTarget ); } // function deallocateTexture( texture ) { const textureProperties = properties.get( texture ); if ( textureProperties.__webglInit === undefined ) return; // check if it's necessary to remove the WebGLTexture object const source = texture.source; const webglTextures = _sources.get( source ); if ( webglTextures ) { const webglTexture = webglTextures[ textureProperties.__cacheKey ]; webglTexture.usedTimes --; // the WebGLTexture object is not used anymore, remove it if ( webglTexture.usedTimes === 0 ) { deleteTexture( texture ); } // remove the weak map entry if no WebGLTexture uses the source anymore if ( Object.keys( webglTextures ).length === 0 ) { _sources.delete( source ); } } properties.remove( texture ); } function deleteTexture( texture ) { const textureProperties = properties.get( texture ); _gl.deleteTexture( textureProperties.__webglTexture ); const source = texture.source; const webglTextures = _sources.get( source ); delete webglTextures[ textureProperties.__cacheKey ]; info.memory.textures --; } function deallocateRenderTarget( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); if ( renderTarget.depthTexture ) { renderTarget.depthTexture.dispose(); } if ( renderTarget.isWebGLCubeRenderTarget ) { for ( let i = 0; i < 6; i ++ ) { if ( Array.isArray( renderTargetProperties.__webglFramebuffer[ i ] ) ) { for ( let level = 0; level < renderTargetProperties.__webglFramebuffer[ i ].length; level ++ ) _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ][ level ] ); } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ i ] ); } if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer[ i ] ); } } else { if ( Array.isArray( renderTargetProperties.__webglFramebuffer ) ) { for ( let level = 0; level < renderTargetProperties.__webglFramebuffer.length; level ++ ) _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer[ level ] ); } else { _gl.deleteFramebuffer( renderTargetProperties.__webglFramebuffer ); } if ( renderTargetProperties.__webglDepthbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthbuffer ); if ( renderTargetProperties.__webglMultisampledFramebuffer ) _gl.deleteFramebuffer( renderTargetProperties.__webglMultisampledFramebuffer ); if ( renderTargetProperties.__webglColorRenderbuffer ) { for ( let i = 0; i < renderTargetProperties.__webglColorRenderbuffer.length; i ++ ) { if ( renderTargetProperties.__webglColorRenderbuffer[ i ] ) _gl.deleteRenderbuffer( renderTargetProperties.__webglColorRenderbuffer[ i ] ); } } if ( renderTargetProperties.__webglDepthRenderbuffer ) _gl.deleteRenderbuffer( renderTargetProperties.__webglDepthRenderbuffer ); } const textures = renderTarget.textures; for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachmentProperties = properties.get( textures[ i ] ); if ( attachmentProperties.__webglTexture ) { _gl.deleteTexture( attachmentProperties.__webglTexture ); info.memory.textures --; } properties.remove( textures[ i ] ); } properties.remove( renderTarget ); } // let textureUnits = 0; function resetTextureUnits() { textureUnits = 0; } function allocateTextureUnit() { const textureUnit = textureUnits; if ( textureUnit >= capabilities.maxTextures ) { console.warn( 'THREE.WebGLTextures: Trying to use ' + textureUnit + ' texture units while this GPU supports only ' + capabilities.maxTextures ); } textureUnits += 1; return textureUnit; } function getTextureCacheKey( texture ) { const array = []; array.push( texture.wrapS ); array.push( texture.wrapT ); array.push( texture.wrapR || 0 ); array.push( texture.magFilter ); array.push( texture.minFilter ); array.push( texture.anisotropy ); array.push( texture.internalFormat ); array.push( texture.format ); array.push( texture.type ); array.push( texture.generateMipmaps ); array.push( texture.premultiplyAlpha ); array.push( texture.flipY ); array.push( texture.unpackAlignment ); array.push( texture.colorSpace ); return array.join(); } // function setTexture2D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.isVideoTexture ) updateVideoTexture( texture ); if ( texture.isRenderTargetTexture === false && texture.version > 0 && textureProperties.__version !== texture.version ) { const image = texture.image; if ( image === null ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but no image data found.' ); } else if ( image.complete === false ) { console.warn( 'THREE.WebGLRenderer: Texture marked for update but image is incomplete' ); } else { uploadTexture( textureProperties, texture, slot ); return; } } state.bindTexture( _gl.TEXTURE_2D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } function setTexture2DArray( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.bindTexture( _gl.TEXTURE_2D_ARRAY, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } function setTexture3D( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadTexture( textureProperties, texture, slot ); return; } state.bindTexture( _gl.TEXTURE_3D, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } function setTextureCube( texture, slot ) { const textureProperties = properties.get( texture ); if ( texture.version > 0 && textureProperties.__version !== texture.version ) { uploadCubeTexture( textureProperties, texture, slot ); return; } state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); } const wrappingToGL = { [ RepeatWrapping ]: _gl.REPEAT, [ ClampToEdgeWrapping ]: _gl.CLAMP_TO_EDGE, [ MirroredRepeatWrapping ]: _gl.MIRRORED_REPEAT }; const filterToGL = { [ NearestFilter ]: _gl.NEAREST, [ NearestMipmapNearestFilter ]: _gl.NEAREST_MIPMAP_NEAREST, [ NearestMipmapLinearFilter ]: _gl.NEAREST_MIPMAP_LINEAR, [ LinearFilter ]: _gl.LINEAR, [ LinearMipmapNearestFilter ]: _gl.LINEAR_MIPMAP_NEAREST, [ LinearMipmapLinearFilter ]: _gl.LINEAR_MIPMAP_LINEAR }; const compareToGL = { [ NeverCompare ]: _gl.NEVER, [ AlwaysCompare ]: _gl.ALWAYS, [ LessCompare ]: _gl.LESS, [ LessEqualCompare ]: _gl.LEQUAL, [ EqualCompare ]: _gl.EQUAL, [ GreaterEqualCompare ]: _gl.GEQUAL, [ GreaterCompare ]: _gl.GREATER, [ NotEqualCompare ]: _gl.NOTEQUAL }; function setTextureParameters( textureType, texture ) { if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false && ( texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter || texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter ) ) { console.warn( 'THREE.WebGLRenderer: Unable to use linear filtering with floating point textures. OES_texture_float_linear not supported on this device.' ); } _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_S, wrappingToGL[ texture.wrapS ] ); _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_T, wrappingToGL[ texture.wrapT ] ); if ( textureType === _gl.TEXTURE_3D || textureType === _gl.TEXTURE_2D_ARRAY ) { _gl.texParameteri( textureType, _gl.TEXTURE_WRAP_R, wrappingToGL[ texture.wrapR ] ); } _gl.texParameteri( textureType, _gl.TEXTURE_MAG_FILTER, filterToGL[ texture.magFilter ] ); _gl.texParameteri( textureType, _gl.TEXTURE_MIN_FILTER, filterToGL[ texture.minFilter ] ); if ( texture.compareFunction ) { _gl.texParameteri( textureType, _gl.TEXTURE_COMPARE_MODE, _gl.COMPARE_REF_TO_TEXTURE ); _gl.texParameteri( textureType, _gl.TEXTURE_COMPARE_FUNC, compareToGL[ texture.compareFunction ] ); } if ( extensions.has( 'EXT_texture_filter_anisotropic' ) === true ) { if ( texture.magFilter === NearestFilter ) return; if ( texture.minFilter !== NearestMipmapLinearFilter && texture.minFilter !== LinearMipmapLinearFilter ) return; if ( texture.type === FloatType && extensions.has( 'OES_texture_float_linear' ) === false ) return; // verify extension if ( texture.anisotropy > 1 || properties.get( texture ).__currentAnisotropy ) { const extension = extensions.get( 'EXT_texture_filter_anisotropic' ); _gl.texParameterf( textureType, extension.TEXTURE_MAX_ANISOTROPY_EXT, Math.min( texture.anisotropy, capabilities.getMaxAnisotropy() ) ); properties.get( texture ).__currentAnisotropy = texture.anisotropy; } } } function initTexture( textureProperties, texture ) { let forceUpload = false; if ( textureProperties.__webglInit === undefined ) { textureProperties.__webglInit = true; texture.addEventListener( 'dispose', onTextureDispose ); } // create Source <-> WebGLTextures mapping if necessary const source = texture.source; let webglTextures = _sources.get( source ); if ( webglTextures === undefined ) { webglTextures = {}; _sources.set( source, webglTextures ); } // check if there is already a WebGLTexture object for the given texture parameters const textureCacheKey = getTextureCacheKey( texture ); if ( textureCacheKey !== textureProperties.__cacheKey ) { // if not, create a new instance of WebGLTexture if ( webglTextures[ textureCacheKey ] === undefined ) { // create new entry webglTextures[ textureCacheKey ] = { texture: _gl.createTexture(), usedTimes: 0 }; info.memory.textures ++; // when a new instance of WebGLTexture was created, a texture upload is required // even if the image contents are identical forceUpload = true; } webglTextures[ textureCacheKey ].usedTimes ++; // every time the texture cache key changes, it's necessary to check if an instance of // WebGLTexture can be deleted in order to avoid a memory leak. const webglTexture = webglTextures[ textureProperties.__cacheKey ]; if ( webglTexture !== undefined ) { webglTextures[ textureProperties.__cacheKey ].usedTimes --; if ( webglTexture.usedTimes === 0 ) { deleteTexture( texture ); } } // store references to cache key and WebGLTexture object textureProperties.__cacheKey = textureCacheKey; textureProperties.__webglTexture = webglTextures[ textureCacheKey ].texture; } return forceUpload; } function uploadTexture( textureProperties, texture, slot ) { let textureType = _gl.TEXTURE_2D; if ( texture.isDataArrayTexture || texture.isCompressedArrayTexture ) textureType = _gl.TEXTURE_2D_ARRAY; if ( texture.isData3DTexture ) textureType = _gl.TEXTURE_3D; const forceUpload = initTexture( textureProperties, texture ); const source = texture.source; state.bindTexture( textureType, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); const sourceProperties = properties.get( source ); if ( source.version !== sourceProperties.__version || forceUpload === true ) { state.activeTexture( _gl.TEXTURE0 + slot ); const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); _gl.pixelStorei( _gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); let image = resizeImage( texture.image, false, capabilities.maxTextureSize ); image = verifyColorSpace( texture, image ); const glFormat = utils.convert( texture.format, texture.colorSpace ); const glType = utils.convert( texture.type ); let glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, texture.isVideoTexture ); setTextureParameters( textureType, texture ); let mipmap; const mipmaps = texture.mipmaps; const useTexStorage = ( texture.isVideoTexture !== true ); const allocateMemory = ( sourceProperties.__version === undefined ) || ( forceUpload === true ); const dataReady = source.dataReady; const levels = getMipLevels( texture, image ); if ( texture.isDepthTexture ) { glInternalFormat = getInternalDepthFormat( texture.format === DepthStencilFormat, texture.type ); // if ( allocateMemory ) { if ( useTexStorage ) { state.texStorage2D( _gl.TEXTURE_2D, 1, glInternalFormat, image.width, image.height ); } else { state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, null ); } } } else if ( texture.isDataTexture ) { // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } texture.generateMipmaps = false; } else { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height ); } if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, 0, 0, 0, image.width, image.height, glFormat, glType, image.data ); } } else { state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, image.width, image.height, 0, glFormat, glType, image.data ); } } } else if ( texture.isCompressedTexture ) { if ( texture.isCompressedArrayTexture ) { if ( useTexStorage && allocateMemory ) { state.texStorage3D( _gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height, image.depth ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { if ( dataReady ) { if ( texture.layerUpdates.size > 0 ) { const layerByteLength = getByteLength( mipmap.width, mipmap.height, texture.format, texture.type ); for ( const layerIndex of texture.layerUpdates ) { const layerData = mipmap.data.subarray( layerIndex * layerByteLength / mipmap.data.BYTES_PER_ELEMENT, ( layerIndex + 1 ) * layerByteLength / mipmap.data.BYTES_PER_ELEMENT ); state.compressedTexSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, layerIndex, mipmap.width, mipmap.height, 1, glFormat, layerData, 0, 0 ); } texture.clearLayerUpdates(); } else { state.compressedTexSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, mipmap.data, 0, 0 ); } } } else { state.compressedTexImage3D( _gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, mipmap.data, 0, 0 ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, i, 0, 0, 0, mipmap.width, mipmap.height, image.depth, glFormat, glType, mipmap.data ); } } else { state.texImage3D( _gl.TEXTURE_2D_ARRAY, i, glInternalFormat, mipmap.width, mipmap.height, image.depth, 0, glFormat, glType, mipmap.data ); } } } } else { if ( useTexStorage && allocateMemory ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, mipmaps[ 0 ].width, mipmaps[ 0 ].height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { if ( dataReady ) { state.compressedTexSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); } } else { state.compressedTexImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .uploadTexture()' ); } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } } else if ( texture.isDataArrayTexture ) { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage3D( _gl.TEXTURE_2D_ARRAY, levels, glInternalFormat, image.width, image.height, image.depth ); } if ( dataReady ) { if ( texture.layerUpdates.size > 0 ) { const layerByteLength = getByteLength( image.width, image.height, texture.format, texture.type ); for ( const layerIndex of texture.layerUpdates ) { const layerData = image.data.subarray( layerIndex * layerByteLength / image.data.BYTES_PER_ELEMENT, ( layerIndex + 1 ) * layerByteLength / image.data.BYTES_PER_ELEMENT ); state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, 0, 0, 0, layerIndex, image.width, image.height, 1, glFormat, glType, layerData ); } texture.clearLayerUpdates(); } else { state.texSubImage3D( _gl.TEXTURE_2D_ARRAY, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); } } } else { state.texImage3D( _gl.TEXTURE_2D_ARRAY, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); } } else if ( texture.isData3DTexture ) { if ( useTexStorage ) { if ( allocateMemory ) { state.texStorage3D( _gl.TEXTURE_3D, levels, glInternalFormat, image.width, image.height, image.depth ); } if ( dataReady ) { state.texSubImage3D( _gl.TEXTURE_3D, 0, 0, 0, 0, image.width, image.height, image.depth, glFormat, glType, image.data ); } } else { state.texImage3D( _gl.TEXTURE_3D, 0, glInternalFormat, image.width, image.height, image.depth, 0, glFormat, glType, image.data ); } } else if ( texture.isFramebufferTexture ) { if ( allocateMemory ) { if ( useTexStorage ) { state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, image.width, image.height ); } else { let width = image.width, height = image.height; for ( let i = 0; i < levels; i ++ ) { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, width, height, 0, glFormat, glType, null ); width >>= 1; height >>= 1; } } } } else { // regular Texture (image, video, canvas) // use manually created mipmaps if available // if there are no manual mipmaps // set 0 level mipmap and then use GL to generate other mipmap levels if ( mipmaps.length > 0 ) { if ( useTexStorage && allocateMemory ) { const dimensions = getDimensions( mipmaps[ 0 ] ); state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height ); } for ( let i = 0, il = mipmaps.length; i < il; i ++ ) { mipmap = mipmaps[ i ]; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, i, 0, 0, glFormat, glType, mipmap ); } } else { state.texImage2D( _gl.TEXTURE_2D, i, glInternalFormat, glFormat, glType, mipmap ); } } texture.generateMipmaps = false; } else { if ( useTexStorage ) { if ( allocateMemory ) { const dimensions = getDimensions( image ); state.texStorage2D( _gl.TEXTURE_2D, levels, glInternalFormat, dimensions.width, dimensions.height ); } if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_2D, 0, 0, 0, glFormat, glType, image ); } } else { state.texImage2D( _gl.TEXTURE_2D, 0, glInternalFormat, glFormat, glType, image ); } } } if ( textureNeedsGenerateMipmaps( texture ) ) { generateMipmap( textureType ); } sourceProperties.__version = source.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } textureProperties.__version = texture.version; } function uploadCubeTexture( textureProperties, texture, slot ) { if ( texture.image.length !== 6 ) return; const forceUpload = initTexture( textureProperties, texture ); const source = texture.source; state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture, _gl.TEXTURE0 + slot ); const sourceProperties = properties.get( source ); if ( source.version !== sourceProperties.__version || forceUpload === true ) { state.activeTexture( _gl.TEXTURE0 + slot ); const workingPrimaries = ColorManagement.getPrimaries( ColorManagement.workingColorSpace ); const texturePrimaries = texture.colorSpace === NoColorSpace ? null : ColorManagement.getPrimaries( texture.colorSpace ); const unpackConversion = texture.colorSpace === NoColorSpace || workingPrimaries === texturePrimaries ? _gl.NONE : _gl.BROWSER_DEFAULT_WEBGL; _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, texture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, texture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, texture.unpackAlignment ); _gl.pixelStorei( _gl.UNPACK_COLORSPACE_CONVERSION_WEBGL, unpackConversion ); const isCompressed = ( texture.isCompressedTexture || texture.image[ 0 ].isCompressedTexture ); const isDataTexture = ( texture.image[ 0 ] && texture.image[ 0 ].isDataTexture ); const cubeImage = []; for ( let i = 0; i < 6; i ++ ) { if ( ! isCompressed && ! isDataTexture ) { cubeImage[ i ] = resizeImage( texture.image[ i ], true, capabilities.maxCubemapSize ); } else { cubeImage[ i ] = isDataTexture ? texture.image[ i ].image : texture.image[ i ]; } cubeImage[ i ] = verifyColorSpace( texture, cubeImage[ i ] ); } const image = cubeImage[ 0 ], glFormat = utils.convert( texture.format, texture.colorSpace ), glType = utils.convert( texture.type ), glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); const useTexStorage = ( texture.isVideoTexture !== true ); const allocateMemory = ( sourceProperties.__version === undefined ) || ( forceUpload === true ); const dataReady = source.dataReady; let levels = getMipLevels( texture, image ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture ); let mipmaps; if ( isCompressed ) { if ( useTexStorage && allocateMemory ) { state.texStorage2D( _gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, image.width, image.height ); } for ( let i = 0; i < 6; i ++ ) { mipmaps = cubeImage[ i ].mipmaps; for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; if ( texture.format !== RGBAFormat ) { if ( glFormat !== null ) { if ( useTexStorage ) { if ( dataReady ) { state.compressedTexSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, mipmap.data ); } } else { state.compressedTexImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, mipmap.data ); } } else { console.warn( 'THREE.WebGLRenderer: Attempt to load unsupported compressed texture format in .setTextureCube()' ); } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, 0, 0, mipmap.width, mipmap.height, glFormat, glType, mipmap.data ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j, glInternalFormat, mipmap.width, mipmap.height, 0, glFormat, glType, mipmap.data ); } } } } } else { mipmaps = texture.mipmaps; if ( useTexStorage && allocateMemory ) { // TODO: Uniformly handle mipmap definitions // Normal textures and compressed cube textures define base level + mips with their mipmap array // Uncompressed cube textures use their mipmap array only for mips (no base level) if ( mipmaps.length > 0 ) levels ++; const dimensions = getDimensions( cubeImage[ 0 ] ); state.texStorage2D( _gl.TEXTURE_CUBE_MAP, levels, glInternalFormat, dimensions.width, dimensions.height ); } for ( let i = 0; i < 6; i ++ ) { if ( isDataTexture ) { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, cubeImage[ i ].width, cubeImage[ i ].height, glFormat, glType, cubeImage[ i ].data ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, cubeImage[ i ].width, cubeImage[ i ].height, 0, glFormat, glType, cubeImage[ i ].data ); } for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; const mipmapImage = mipmap.image[ i ].image; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, mipmapImage.width, mipmapImage.height, glFormat, glType, mipmapImage.data ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, mipmapImage.width, mipmapImage.height, 0, glFormat, glType, mipmapImage.data ); } } } else { if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, 0, 0, glFormat, glType, cubeImage[ i ] ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, glInternalFormat, glFormat, glType, cubeImage[ i ] ); } for ( let j = 0; j < mipmaps.length; j ++ ) { const mipmap = mipmaps[ j ]; if ( useTexStorage ) { if ( dataReady ) { state.texSubImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, 0, 0, glFormat, glType, mipmap.image[ i ] ); } } else { state.texImage2D( _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, j + 1, glInternalFormat, glFormat, glType, mipmap.image[ i ] ); } } } } } if ( textureNeedsGenerateMipmaps( texture ) ) { // We assume images for cube map have the same size. generateMipmap( _gl.TEXTURE_CUBE_MAP ); } sourceProperties.__version = source.version; if ( texture.onUpdate ) texture.onUpdate( texture ); } textureProperties.__version = texture.version; } // Render targets // Setup storage for target texture and bind it to correct framebuffer function setupFrameBufferTexture( framebuffer, renderTarget, texture, attachment, textureTarget, level ) { const glFormat = utils.convert( texture.format, texture.colorSpace ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); const renderTargetProperties = properties.get( renderTarget ); if ( ! renderTargetProperties.__hasExternalTextures ) { const width = Math.max( 1, renderTarget.width >> level ); const height = Math.max( 1, renderTarget.height >> level ); if ( textureTarget === _gl.TEXTURE_3D || textureTarget === _gl.TEXTURE_2D_ARRAY ) { state.texImage3D( textureTarget, level, glInternalFormat, width, height, renderTarget.depth, 0, glFormat, glType, null ); } else { state.texImage2D( textureTarget, level, glInternalFormat, width, height, 0, glFormat, glType, null ); } } state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( texture ).__webglTexture, 0, getRenderTargetSamples( renderTarget ) ); } else if ( textureTarget === _gl.TEXTURE_2D || ( textureTarget >= _gl.TEXTURE_CUBE_MAP_POSITIVE_X && textureTarget <= _gl.TEXTURE_CUBE_MAP_NEGATIVE_Z ) ) { // see #24753 _gl.framebufferTexture2D( _gl.FRAMEBUFFER, attachment, textureTarget, properties.get( texture ).__webglTexture, level ); } state.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // Setup storage for internal depth/stencil buffers and bind to correct framebuffer function setupRenderBufferStorage( renderbuffer, renderTarget, isMultisample ) { _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); if ( renderTarget.depthBuffer ) { // retrieve the depth attachment types const depthTexture = renderTarget.depthTexture; const depthType = depthTexture && depthTexture.isDepthTexture ? depthTexture.type : null; const glInternalFormat = getInternalDepthFormat( renderTarget.stencilBuffer, depthType ); const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; // set up the attachment const samples = getRenderTargetSamples( renderTarget ); const isUseMultisampledRTT = useMultisampledRTT( renderTarget ); if ( isUseMultisampledRTT ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else if ( isMultisample ) { _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height ); } _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer ); } else { const textures = renderTarget.textures; for ( let i = 0; i < textures.length; i ++ ) { const texture = textures[ i ]; const glFormat = utils.convert( texture.format, texture.colorSpace ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace ); const samples = getRenderTargetSamples( renderTarget ); if ( isMultisample && useMultisampledRTT( renderTarget ) === false ) { _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.renderbufferStorageMultisampleEXT( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); } else { _gl.renderbufferStorage( _gl.RENDERBUFFER, glInternalFormat, renderTarget.width, renderTarget.height ); } } } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); } // Setup resources for a Depth Texture for a FBO (needs an extension) function setupDepthTexture( framebuffer, renderTarget ) { const isCube = ( renderTarget && renderTarget.isWebGLCubeRenderTarget ); if ( isCube ) throw new Error( 'Depth Texture with cube render targets is not supported' ); state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( ! ( renderTarget.depthTexture && renderTarget.depthTexture.isDepthTexture ) ) { throw new Error( 'renderTarget.depthTexture must be an instance of THREE.DepthTexture' ); } // upload an empty depth texture with framebuffer size if ( ! properties.get( renderTarget.depthTexture ).__webglTexture || renderTarget.depthTexture.image.width !== renderTarget.width || renderTarget.depthTexture.image.height !== renderTarget.height ) { renderTarget.depthTexture.image.width = renderTarget.width; renderTarget.depthTexture.image.height = renderTarget.height; renderTarget.depthTexture.needsUpdate = true; } setTexture2D( renderTarget.depthTexture, 0 ); const webglDepthTexture = properties.get( renderTarget.depthTexture ).__webglTexture; const samples = getRenderTargetSamples( renderTarget ); if ( renderTarget.depthTexture.format === DepthFormat ) { if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples ); } else { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } } else if ( renderTarget.depthTexture.format === DepthStencilFormat ) { if ( useMultisampledRTT( renderTarget ) ) { multisampledRTTExt.framebufferTexture2DMultisampleEXT( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0, samples ); } else { _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.DEPTH_STENCIL_ATTACHMENT, _gl.TEXTURE_2D, webglDepthTexture, 0 ); } } else { throw new Error( 'Unknown depthTexture format' ); } } // Setup GL resources for a non-texture depth buffer function setupDepthRenderbuffer( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); // if the bound depth texture has changed if ( renderTargetProperties.__boundDepthTexture !== renderTarget.depthTexture ) { // fire the dispose event to get rid of stored state associated with the previously bound depth buffer const depthTexture = renderTarget.depthTexture; if ( renderTargetProperties.__depthDisposeCallback ) { renderTargetProperties.__depthDisposeCallback(); } // set up dispose listeners to track when the currently attached buffer is implicitly unbound if ( depthTexture ) { const disposeEvent = () => { delete renderTargetProperties.__boundDepthTexture; delete renderTargetProperties.__depthDisposeCallback; depthTexture.removeEventListener( 'dispose', disposeEvent ); }; depthTexture.addEventListener( 'dispose', disposeEvent ); renderTargetProperties.__depthDisposeCallback = disposeEvent; } renderTargetProperties.__boundDepthTexture = depthTexture; } if ( renderTarget.depthTexture && ! renderTargetProperties.__autoAllocateDepthBuffer ) { if ( isCube ) throw new Error( 'target.depthTexture not supported in Cube render targets' ); setupDepthTexture( renderTargetProperties.__webglFramebuffer, renderTarget ); } else { if ( isCube ) { renderTargetProperties.__webglDepthbuffer = []; for ( let i = 0; i < 6; i ++ ) { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer[ i ] ); if ( renderTargetProperties.__webglDepthbuffer[ i ] === undefined ) { renderTargetProperties.__webglDepthbuffer[ i ] = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer[ i ], renderTarget, false ); } else { // attach buffer if it's been created already const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const renderbuffer = renderTargetProperties.__webglDepthbuffer[ i ]; _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer ); } } } else { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); if ( renderTargetProperties.__webglDepthbuffer === undefined ) { renderTargetProperties.__webglDepthbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthbuffer, renderTarget, false ); } else { // attach buffer if it's been created already const glAttachmentType = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const renderbuffer = renderTargetProperties.__webglDepthbuffer; _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderbuffer ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, glAttachmentType, _gl.RENDERBUFFER, renderbuffer ); } } } state.bindFramebuffer( _gl.FRAMEBUFFER, null ); } // rebind framebuffer with external textures function rebindTextures( renderTarget, colorTexture, depthTexture ) { const renderTargetProperties = properties.get( renderTarget ); if ( colorTexture !== undefined ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, renderTarget.texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, 0 ); } if ( depthTexture !== undefined ) { setupDepthRenderbuffer( renderTarget ); } } // Set up GL resources for the render target function setupRenderTarget( renderTarget ) { const texture = renderTarget.texture; const renderTargetProperties = properties.get( renderTarget ); const textureProperties = properties.get( texture ); renderTarget.addEventListener( 'dispose', onRenderTargetDispose ); const textures = renderTarget.textures; const isCube = ( renderTarget.isWebGLCubeRenderTarget === true ); const isMultipleRenderTargets = ( textures.length > 1 ); if ( ! isMultipleRenderTargets ) { if ( textureProperties.__webglTexture === undefined ) { textureProperties.__webglTexture = _gl.createTexture(); } textureProperties.__version = texture.version; info.memory.textures ++; } // Setup framebuffer if ( isCube ) { renderTargetProperties.__webglFramebuffer = []; for ( let i = 0; i < 6; i ++ ) { if ( texture.mipmaps && texture.mipmaps.length > 0 ) { renderTargetProperties.__webglFramebuffer[ i ] = []; for ( let level = 0; level < texture.mipmaps.length; level ++ ) { renderTargetProperties.__webglFramebuffer[ i ][ level ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer[ i ] = _gl.createFramebuffer(); } } } else { if ( texture.mipmaps && texture.mipmaps.length > 0 ) { renderTargetProperties.__webglFramebuffer = []; for ( let level = 0; level < texture.mipmaps.length; level ++ ) { renderTargetProperties.__webglFramebuffer[ level ] = _gl.createFramebuffer(); } } else { renderTargetProperties.__webglFramebuffer = _gl.createFramebuffer(); } if ( isMultipleRenderTargets ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachmentProperties = properties.get( textures[ i ] ); if ( attachmentProperties.__webglTexture === undefined ) { attachmentProperties.__webglTexture = _gl.createTexture(); info.memory.textures ++; } } } if ( ( renderTarget.samples > 0 ) && useMultisampledRTT( renderTarget ) === false ) { renderTargetProperties.__webglMultisampledFramebuffer = _gl.createFramebuffer(); renderTargetProperties.__webglColorRenderbuffer = []; state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); for ( let i = 0; i < textures.length; i ++ ) { const texture = textures[ i ]; renderTargetProperties.__webglColorRenderbuffer[ i ] = _gl.createRenderbuffer(); _gl.bindRenderbuffer( _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); const glFormat = utils.convert( texture.format, texture.colorSpace ); const glType = utils.convert( texture.type ); const glInternalFormat = getInternalFormat( texture.internalFormat, glFormat, glType, texture.colorSpace, renderTarget.isXRRenderTarget === true ); const samples = getRenderTargetSamples( renderTarget ); _gl.renderbufferStorageMultisample( _gl.RENDERBUFFER, samples, glInternalFormat, renderTarget.width, renderTarget.height ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); } _gl.bindRenderbuffer( _gl.RENDERBUFFER, null ); if ( renderTarget.depthBuffer ) { renderTargetProperties.__webglDepthRenderbuffer = _gl.createRenderbuffer(); setupRenderBufferStorage( renderTargetProperties.__webglDepthRenderbuffer, renderTarget, true ); } state.bindFramebuffer( _gl.FRAMEBUFFER, null ); } } // Setup color buffer if ( isCube ) { state.bindTexture( _gl.TEXTURE_CUBE_MAP, textureProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_CUBE_MAP, texture ); for ( let i = 0; i < 6; i ++ ) { if ( texture.mipmaps && texture.mipmaps.length > 0 ) { for ( let level = 0; level < texture.mipmaps.length; level ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ][ level ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, level ); } } else { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ i ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + i, 0 ); } } if ( textureNeedsGenerateMipmaps( texture ) ) { generateMipmap( _gl.TEXTURE_CUBE_MAP ); } state.unbindTexture(); } else if ( isMultipleRenderTargets ) { for ( let i = 0, il = textures.length; i < il; i ++ ) { const attachment = textures[ i ]; const attachmentProperties = properties.get( attachment ); state.bindTexture( _gl.TEXTURE_2D, attachmentProperties.__webglTexture ); setTextureParameters( _gl.TEXTURE_2D, attachment ); setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, attachment, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, 0 ); if ( textureNeedsGenerateMipmaps( attachment ) ) { generateMipmap( _gl.TEXTURE_2D ); } } state.unbindTexture(); } else { let glTextureType = _gl.TEXTURE_2D; if ( renderTarget.isWebGL3DRenderTarget || renderTarget.isWebGLArrayRenderTarget ) { glTextureType = renderTarget.isWebGL3DRenderTarget ? _gl.TEXTURE_3D : _gl.TEXTURE_2D_ARRAY; } state.bindTexture( glTextureType, textureProperties.__webglTexture ); setTextureParameters( glTextureType, texture ); if ( texture.mipmaps && texture.mipmaps.length > 0 ) { for ( let level = 0; level < texture.mipmaps.length; level ++ ) { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer[ level ], renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, level ); } } else { setupFrameBufferTexture( renderTargetProperties.__webglFramebuffer, renderTarget, texture, _gl.COLOR_ATTACHMENT0, glTextureType, 0 ); } if ( textureNeedsGenerateMipmaps( texture ) ) { generateMipmap( glTextureType ); } state.unbindTexture(); } // Setup depth and stencil buffers if ( renderTarget.depthBuffer ) { setupDepthRenderbuffer( renderTarget ); } } function updateRenderTargetMipmap( renderTarget ) { const textures = renderTarget.textures; for ( let i = 0, il = textures.length; i < il; i ++ ) { const texture = textures[ i ]; if ( textureNeedsGenerateMipmaps( texture ) ) { const target = renderTarget.isWebGLCubeRenderTarget ? _gl.TEXTURE_CUBE_MAP : _gl.TEXTURE_2D; const webglTexture = properties.get( texture ).__webglTexture; state.bindTexture( target, webglTexture ); generateMipmap( target ); state.unbindTexture(); } } } const invalidationArrayRead = []; const invalidationArrayDraw = []; function updateMultisampleRenderTarget( renderTarget ) { if ( renderTarget.samples > 0 ) { if ( useMultisampledRTT( renderTarget ) === false ) { const textures = renderTarget.textures; const width = renderTarget.width; const height = renderTarget.height; let mask = _gl.COLOR_BUFFER_BIT; const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; const renderTargetProperties = properties.get( renderTarget ); const isMultipleRenderTargets = ( textures.length > 1 ); // If MRT we need to remove FBO attachments if ( isMultipleRenderTargets ) { for ( let i = 0; i < textures.length; i ++ ) { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, null ); state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, null, 0 ); } } state.bindFramebuffer( _gl.READ_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); for ( let i = 0; i < textures.length; i ++ ) { if ( renderTarget.resolveDepthBuffer ) { if ( renderTarget.depthBuffer ) mask |= _gl.DEPTH_BUFFER_BIT; // resolving stencil is slow with a D3D backend. disable it for all transmission render targets (see #27799) if ( renderTarget.stencilBuffer && renderTarget.resolveStencilBuffer ) mask |= _gl.STENCIL_BUFFER_BIT; } if ( isMultipleRenderTargets ) { _gl.framebufferRenderbuffer( _gl.READ_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); const webglTexture = properties.get( textures[ i ] ).__webglTexture; _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_2D, webglTexture, 0 ); } _gl.blitFramebuffer( 0, 0, width, height, 0, 0, width, height, mask, _gl.NEAREST ); if ( supportsInvalidateFramebuffer === true ) { invalidationArrayRead.length = 0; invalidationArrayDraw.length = 0; invalidationArrayRead.push( _gl.COLOR_ATTACHMENT0 + i ); if ( renderTarget.depthBuffer && renderTarget.resolveDepthBuffer === false ) { invalidationArrayRead.push( depthStyle ); invalidationArrayDraw.push( depthStyle ); _gl.invalidateFramebuffer( _gl.DRAW_FRAMEBUFFER, invalidationArrayDraw ); } _gl.invalidateFramebuffer( _gl.READ_FRAMEBUFFER, invalidationArrayRead ); } } state.bindFramebuffer( _gl.READ_FRAMEBUFFER, null ); state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, null ); // If MRT since pre-blit we removed the FBO we need to reconstruct the attachments if ( isMultipleRenderTargets ) { for ( let i = 0; i < textures.length; i ++ ) { state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); _gl.framebufferRenderbuffer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.RENDERBUFFER, renderTargetProperties.__webglColorRenderbuffer[ i ] ); const webglTexture = properties.get( textures[ i ] ).__webglTexture; state.bindFramebuffer( _gl.FRAMEBUFFER, renderTargetProperties.__webglFramebuffer ); _gl.framebufferTexture2D( _gl.DRAW_FRAMEBUFFER, _gl.COLOR_ATTACHMENT0 + i, _gl.TEXTURE_2D, webglTexture, 0 ); } } state.bindFramebuffer( _gl.DRAW_FRAMEBUFFER, renderTargetProperties.__webglMultisampledFramebuffer ); } else { if ( renderTarget.depthBuffer && renderTarget.resolveDepthBuffer === false && supportsInvalidateFramebuffer ) { const depthStyle = renderTarget.stencilBuffer ? _gl.DEPTH_STENCIL_ATTACHMENT : _gl.DEPTH_ATTACHMENT; _gl.invalidateFramebuffer( _gl.DRAW_FRAMEBUFFER, [ depthStyle ] ); } } } } function getRenderTargetSamples( renderTarget ) { return Math.min( capabilities.maxSamples, renderTarget.samples ); } function useMultisampledRTT( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); return renderTarget.samples > 0 && extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true && renderTargetProperties.__useRenderToTexture !== false; } function updateVideoTexture( texture ) { const frame = info.render.frame; // Check the last frame we updated the VideoTexture if ( _videoTextures.get( texture ) !== frame ) { _videoTextures.set( texture, frame ); texture.update(); } } function verifyColorSpace( texture, image ) { const colorSpace = texture.colorSpace; const format = texture.format; const type = texture.type; if ( texture.isCompressedTexture === true || texture.isVideoTexture === true ) return image; if ( colorSpace !== LinearSRGBColorSpace && colorSpace !== NoColorSpace ) { // sRGB if ( ColorManagement.getTransfer( colorSpace ) === SRGBTransfer ) { // in WebGL 2 uncompressed textures can only be sRGB encoded if they have the RGBA8 format if ( format !== RGBAFormat || type !== UnsignedByteType ) { console.warn( 'THREE.WebGLTextures: sRGB encoded textures have to use RGBAFormat and UnsignedByteType.' ); } } else { console.error( 'THREE.WebGLTextures: Unsupported texture color space:', colorSpace ); } } return image; } function getDimensions( image ) { if ( typeof HTMLImageElement !== 'undefined' && image instanceof HTMLImageElement ) { // if intrinsic data are not available, fallback to width/height _imageDimensions.width = image.naturalWidth || image.width; _imageDimensions.height = image.naturalHeight || image.height; } else if ( typeof VideoFrame !== 'undefined' && image instanceof VideoFrame ) { _imageDimensions.width = image.displayWidth; _imageDimensions.height = image.displayHeight; } else { _imageDimensions.width = image.width; _imageDimensions.height = image.height; } return _imageDimensions; } // this.allocateTextureUnit = allocateTextureUnit; this.resetTextureUnits = resetTextureUnits; this.setTexture2D = setTexture2D; this.setTexture2DArray = setTexture2DArray; this.setTexture3D = setTexture3D; this.setTextureCube = setTextureCube; this.rebindTextures = rebindTextures; this.setupRenderTarget = setupRenderTarget; this.updateRenderTargetMipmap = updateRenderTargetMipmap; this.updateMultisampleRenderTarget = updateMultisampleRenderTarget; this.setupDepthRenderbuffer = setupDepthRenderbuffer; this.setupFrameBufferTexture = setupFrameBufferTexture; this.useMultisampledRTT = useMultisampledRTT; } function WebGLUtils( gl, extensions ) { function convert( p, colorSpace = NoColorSpace ) { let extension; const transfer = ColorManagement.getTransfer( colorSpace ); if ( p === UnsignedByteType ) return gl.UNSIGNED_BYTE; if ( p === UnsignedShort4444Type ) return gl.UNSIGNED_SHORT_4_4_4_4; if ( p === UnsignedShort5551Type ) return gl.UNSIGNED_SHORT_5_5_5_1; if ( p === UnsignedInt5999Type ) return gl.UNSIGNED_INT_5_9_9_9_REV; if ( p === ByteType ) return gl.BYTE; if ( p === ShortType ) return gl.SHORT; if ( p === UnsignedShortType ) return gl.UNSIGNED_SHORT; if ( p === IntType ) return gl.INT; if ( p === UnsignedIntType ) return gl.UNSIGNED_INT; if ( p === FloatType ) return gl.FLOAT; if ( p === HalfFloatType ) return gl.HALF_FLOAT; if ( p === AlphaFormat ) return gl.ALPHA; if ( p === RGBFormat ) return gl.RGB; if ( p === RGBAFormat ) return gl.RGBA; if ( p === LuminanceFormat ) return gl.LUMINANCE; if ( p === LuminanceAlphaFormat ) return gl.LUMINANCE_ALPHA; if ( p === DepthFormat ) return gl.DEPTH_COMPONENT; if ( p === DepthStencilFormat ) return gl.DEPTH_STENCIL; // WebGL2 formats. if ( p === RedFormat ) return gl.RED; if ( p === RedIntegerFormat ) return gl.RED_INTEGER; if ( p === RGFormat ) return gl.RG; if ( p === RGIntegerFormat ) return gl.RG_INTEGER; if ( p === RGBAIntegerFormat ) return gl.RGBA_INTEGER; // S3TC if ( p === RGB_S3TC_DXT1_Format || p === RGBA_S3TC_DXT1_Format || p === RGBA_S3TC_DXT3_Format || p === RGBA_S3TC_DXT5_Format ) { if ( transfer === SRGBTransfer ) { extension = extensions.get( 'WEBGL_compressed_texture_s3tc_srgb' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT; } else { return null; } } else { extension = extensions.get( 'WEBGL_compressed_texture_s3tc' ); if ( extension !== null ) { if ( p === RGB_S3TC_DXT1_Format ) return extension.COMPRESSED_RGB_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT1_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT1_EXT; if ( p === RGBA_S3TC_DXT3_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT3_EXT; if ( p === RGBA_S3TC_DXT5_Format ) return extension.COMPRESSED_RGBA_S3TC_DXT5_EXT; } else { return null; } } } // PVRTC if ( p === RGB_PVRTC_4BPPV1_Format || p === RGB_PVRTC_2BPPV1_Format || p === RGBA_PVRTC_4BPPV1_Format || p === RGBA_PVRTC_2BPPV1_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_pvrtc' ); if ( extension !== null ) { if ( p === RGB_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_4BPPV1_IMG; if ( p === RGB_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGB_PVRTC_2BPPV1_IMG; if ( p === RGBA_PVRTC_4BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; if ( p === RGBA_PVRTC_2BPPV1_Format ) return extension.COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; } else { return null; } } // ETC if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format || p === RGBA_ETC2_EAC_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_etc' ); if ( extension !== null ) { if ( p === RGB_ETC1_Format || p === RGB_ETC2_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ETC2 : extension.COMPRESSED_RGB8_ETC2; if ( p === RGBA_ETC2_EAC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ETC2_EAC : extension.COMPRESSED_RGBA8_ETC2_EAC; } else { return null; } } // ASTC if ( p === RGBA_ASTC_4x4_Format || p === RGBA_ASTC_5x4_Format || p === RGBA_ASTC_5x5_Format || p === RGBA_ASTC_6x5_Format || p === RGBA_ASTC_6x6_Format || p === RGBA_ASTC_8x5_Format || p === RGBA_ASTC_8x6_Format || p === RGBA_ASTC_8x8_Format || p === RGBA_ASTC_10x5_Format || p === RGBA_ASTC_10x6_Format || p === RGBA_ASTC_10x8_Format || p === RGBA_ASTC_10x10_Format || p === RGBA_ASTC_12x10_Format || p === RGBA_ASTC_12x12_Format ) { extension = extensions.get( 'WEBGL_compressed_texture_astc' ); if ( extension !== null ) { if ( p === RGBA_ASTC_4x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR : extension.COMPRESSED_RGBA_ASTC_4x4_KHR; if ( p === RGBA_ASTC_5x4_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x4_KHR : extension.COMPRESSED_RGBA_ASTC_5x4_KHR; if ( p === RGBA_ASTC_5x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_5x5_KHR : extension.COMPRESSED_RGBA_ASTC_5x5_KHR; if ( p === RGBA_ASTC_6x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x5_KHR : extension.COMPRESSED_RGBA_ASTC_6x5_KHR; if ( p === RGBA_ASTC_6x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_6x6_KHR : extension.COMPRESSED_RGBA_ASTC_6x6_KHR; if ( p === RGBA_ASTC_8x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x5_KHR : extension.COMPRESSED_RGBA_ASTC_8x5_KHR; if ( p === RGBA_ASTC_8x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x6_KHR : extension.COMPRESSED_RGBA_ASTC_8x6_KHR; if ( p === RGBA_ASTC_8x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_8x8_KHR : extension.COMPRESSED_RGBA_ASTC_8x8_KHR; if ( p === RGBA_ASTC_10x5_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x5_KHR : extension.COMPRESSED_RGBA_ASTC_10x5_KHR; if ( p === RGBA_ASTC_10x6_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x6_KHR : extension.COMPRESSED_RGBA_ASTC_10x6_KHR; if ( p === RGBA_ASTC_10x8_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x8_KHR : extension.COMPRESSED_RGBA_ASTC_10x8_KHR; if ( p === RGBA_ASTC_10x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_10x10_KHR : extension.COMPRESSED_RGBA_ASTC_10x10_KHR; if ( p === RGBA_ASTC_12x10_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x10_KHR : extension.COMPRESSED_RGBA_ASTC_12x10_KHR; if ( p === RGBA_ASTC_12x12_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR : extension.COMPRESSED_RGBA_ASTC_12x12_KHR; } else { return null; } } // BPTC if ( p === RGBA_BPTC_Format || p === RGB_BPTC_SIGNED_Format || p === RGB_BPTC_UNSIGNED_Format ) { extension = extensions.get( 'EXT_texture_compression_bptc' ); if ( extension !== null ) { if ( p === RGBA_BPTC_Format ) return ( transfer === SRGBTransfer ) ? extension.COMPRESSED_SRGB_ALPHA_BPTC_UNORM_EXT : extension.COMPRESSED_RGBA_BPTC_UNORM_EXT; if ( p === RGB_BPTC_SIGNED_Format ) return extension.COMPRESSED_RGB_BPTC_SIGNED_FLOAT_EXT; if ( p === RGB_BPTC_UNSIGNED_Format ) return extension.COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_EXT; } else { return null; } } // RGTC if ( p === RED_RGTC1_Format || p === SIGNED_RED_RGTC1_Format || p === RED_GREEN_RGTC2_Format || p === SIGNED_RED_GREEN_RGTC2_Format ) { extension = extensions.get( 'EXT_texture_compression_rgtc' ); if ( extension !== null ) { if ( p === RGBA_BPTC_Format ) return extension.COMPRESSED_RED_RGTC1_EXT; if ( p === SIGNED_RED_RGTC1_Format ) return extension.COMPRESSED_SIGNED_RED_RGTC1_EXT; if ( p === RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_RED_GREEN_RGTC2_EXT; if ( p === SIGNED_RED_GREEN_RGTC2_Format ) return extension.COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT; } else { return null; } } // if ( p === UnsignedInt248Type ) return gl.UNSIGNED_INT_24_8; // if "p" can't be resolved, assume the user defines a WebGL constant as a string (fallback/workaround for packed RGB formats) return ( gl[ p ] !== undefined ) ? gl[ p ] : null; } return { convert: convert }; } class ArrayCamera extends PerspectiveCamera { constructor( array = [] ) { super(); this.isArrayCamera = true; this.cameras = array; } } class Group extends Object3D { constructor() { super(); this.isGroup = true; this.type = 'Group'; } } const _moveEvent = { type: 'move' }; class WebXRController { constructor() { this._targetRay = null; this._grip = null; this._hand = null; } getHandSpace() { if ( this._hand === null ) { this._hand = new Group(); this._hand.matrixAutoUpdate = false; this._hand.visible = false; this._hand.joints = {}; this._hand.inputState = { pinching: false }; } return this._hand; } getTargetRaySpace() { if ( this._targetRay === null ) { this._targetRay = new Group(); this._targetRay.matrixAutoUpdate = false; this._targetRay.visible = false; this._targetRay.hasLinearVelocity = false; this._targetRay.linearVelocity = new Vector3(); this._targetRay.hasAngularVelocity = false; this._targetRay.angularVelocity = new Vector3(); } return this._targetRay; } getGripSpace() { if ( this._grip === null ) { this._grip = new Group(); this._grip.matrixAutoUpdate = false; this._grip.visible = false; this._grip.hasLinearVelocity = false; this._grip.linearVelocity = new Vector3(); this._grip.hasAngularVelocity = false; this._grip.angularVelocity = new Vector3(); } return this._grip; } dispatchEvent( event ) { if ( this._targetRay !== null ) { this._targetRay.dispatchEvent( event ); } if ( this._grip !== null ) { this._grip.dispatchEvent( event ); } if ( this._hand !== null ) { this._hand.dispatchEvent( event ); } return this; } connect( inputSource ) { if ( inputSource && inputSource.hand ) { const hand = this._hand; if ( hand ) { for ( const inputjoint of inputSource.hand.values() ) { // Initialize hand with joints when connected this._getHandJoint( hand, inputjoint ); } } } this.dispatchEvent( { type: 'connected', data: inputSource } ); return this; } disconnect( inputSource ) { this.dispatchEvent( { type: 'disconnected', data: inputSource } ); if ( this._targetRay !== null ) { this._targetRay.visible = false; } if ( this._grip !== null ) { this._grip.visible = false; } if ( this._hand !== null ) { this._hand.visible = false; } return this; } update( inputSource, frame, referenceSpace ) { let inputPose = null; let gripPose = null; let handPose = null; const targetRay = this._targetRay; const grip = this._grip; const hand = this._hand; if ( inputSource && frame.session.visibilityState !== 'visible-blurred' ) { if ( hand && inputSource.hand ) { handPose = true; for ( const inputjoint of inputSource.hand.values() ) { // Update the joints groups with the XRJoint poses const jointPose = frame.getJointPose( inputjoint, referenceSpace ); // The transform of this joint will be updated with the joint pose on each frame const joint = this._getHandJoint( hand, inputjoint ); if ( jointPose !== null ) { joint.matrix.fromArray( jointPose.transform.matrix ); joint.matrix.decompose( joint.position, joint.rotation, joint.scale ); joint.matrixWorldNeedsUpdate = true; joint.jointRadius = jointPose.radius; } joint.visible = jointPose !== null; } // Custom events // Check pinchz const indexTip = hand.joints[ 'index-finger-tip' ]; const thumbTip = hand.joints[ 'thumb-tip' ]; const distance = indexTip.position.distanceTo( thumbTip.position ); const distanceToPinch = 0.02; const threshold = 0.005; if ( hand.inputState.pinching && distance > distanceToPinch + threshold ) { hand.inputState.pinching = false; this.dispatchEvent( { type: 'pinchend', handedness: inputSource.handedness, target: this } ); } else if ( ! hand.inputState.pinching && distance <= distanceToPinch - threshold ) { hand.inputState.pinching = true; this.dispatchEvent( { type: 'pinchstart', handedness: inputSource.handedness, target: this } ); } } else { if ( grip !== null && inputSource.gripSpace ) { gripPose = frame.getPose( inputSource.gripSpace, referenceSpace ); if ( gripPose !== null ) { grip.matrix.fromArray( gripPose.transform.matrix ); grip.matrix.decompose( grip.position, grip.rotation, grip.scale ); grip.matrixWorldNeedsUpdate = true; if ( gripPose.linearVelocity ) { grip.hasLinearVelocity = true; grip.linearVelocity.copy( gripPose.linearVelocity ); } else { grip.hasLinearVelocity = false; } if ( gripPose.angularVelocity ) { grip.hasAngularVelocity = true; grip.angularVelocity.copy( gripPose.angularVelocity ); } else { grip.hasAngularVelocity = false; } } } } if ( targetRay !== null ) { inputPose = frame.getPose( inputSource.targetRaySpace, referenceSpace ); // Some runtimes (namely Vive Cosmos with Vive OpenXR Runtime) have only grip space and ray space is equal to it if ( inputPose === null && gripPose !== null ) { inputPose = gripPose; } if ( inputPose !== null ) { targetRay.matrix.fromArray( inputPose.transform.matrix ); targetRay.matrix.decompose( targetRay.position, targetRay.rotation, targetRay.scale ); targetRay.matrixWorldNeedsUpdate = true; if ( inputPose.linearVelocity ) { targetRay.hasLinearVelocity = true; targetRay.linearVelocity.copy( inputPose.linearVelocity ); } else { targetRay.hasLinearVelocity = false; } if ( inputPose.angularVelocity ) { targetRay.hasAngularVelocity = true; targetRay.angularVelocity.copy( inputPose.angularVelocity ); } else { targetRay.hasAngularVelocity = false; } this.dispatchEvent( _moveEvent ); } } } if ( targetRay !== null ) { targetRay.visible = ( inputPose !== null ); } if ( grip !== null ) { grip.visible = ( gripPose !== null ); } if ( hand !== null ) { hand.visible = ( handPose !== null ); } return this; } // private method _getHandJoint( hand, inputjoint ) { if ( hand.joints[ inputjoint.jointName ] === undefined ) { const joint = new Group(); joint.matrixAutoUpdate = false; joint.visible = false; hand.joints[ inputjoint.jointName ] = joint; hand.add( joint ); } return hand.joints[ inputjoint.jointName ]; } } const _occlusion_vertex = ` void main() { gl_Position = vec4( position, 1.0 ); }`; const _occlusion_fragment = ` uniform sampler2DArray depthColor; uniform float depthWidth; uniform float depthHeight; void main() { vec2 coord = vec2( gl_FragCoord.x / depthWidth, gl_FragCoord.y / depthHeight ); if ( coord.x >= 1.0 ) { gl_FragDepth = texture( depthColor, vec3( coord.x - 1.0, coord.y, 1 ) ).r; } else { gl_FragDepth = texture( depthColor, vec3( coord.x, coord.y, 0 ) ).r; } }`; class WebXRDepthSensing { constructor() { this.texture = null; this.mesh = null; this.depthNear = 0; this.depthFar = 0; } init( renderer, depthData, renderState ) { if ( this.texture === null ) { const texture = new Texture(); const texProps = renderer.properties.get( texture ); texProps.__webglTexture = depthData.texture; if ( ( depthData.depthNear != renderState.depthNear ) || ( depthData.depthFar != renderState.depthFar ) ) { this.depthNear = depthData.depthNear; this.depthFar = depthData.depthFar; } this.texture = texture; } } getMesh( cameraXR ) { if ( this.texture !== null ) { if ( this.mesh === null ) { const viewport = cameraXR.cameras[ 0 ].viewport; const material = new ShaderMaterial( { vertexShader: _occlusion_vertex, fragmentShader: _occlusion_fragment, uniforms: { depthColor: { value: this.texture }, depthWidth: { value: viewport.z }, depthHeight: { value: viewport.w } } } ); this.mesh = new Mesh( new PlaneGeometry( 20, 20 ), material ); } } return this.mesh; } reset() { this.texture = null; this.mesh = null; } getDepthTexture() { return this.texture; } } class WebXRManager extends EventDispatcher { constructor( renderer, gl ) { super(); const scope = this; let session = null; let framebufferScaleFactor = 1.0; let referenceSpace = null; let referenceSpaceType = 'local-floor'; // Set default foveation to maximum. let foveation = 1.0; let customReferenceSpace = null; let pose = null; let glBinding = null; let glProjLayer = null; let glBaseLayer = null; let xrFrame = null; const depthSensing = new WebXRDepthSensing(); const attributes = gl.getContextAttributes(); let initialRenderTarget = null; let newRenderTarget = null; const controllers = []; const controllerInputSources = []; const currentSize = new Vector2(); let currentPixelRatio = null; // const cameraL = new PerspectiveCamera(); cameraL.layers.enable( 1 ); cameraL.viewport = new Vector4(); const cameraR = new PerspectiveCamera(); cameraR.layers.enable( 2 ); cameraR.viewport = new Vector4(); const cameras = [ cameraL, cameraR ]; const cameraXR = new ArrayCamera(); cameraXR.layers.enable( 1 ); cameraXR.layers.enable( 2 ); let _currentDepthNear = null; let _currentDepthFar = null; // this.cameraAutoUpdate = true; this.enabled = false; this.isPresenting = false; this.controllerAutoUpdate = true; this.getController = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getTargetRaySpace(); }; this.getControllerGrip = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getGripSpace(); }; this.getHand = function ( index ) { let controller = controllers[ index ]; if ( controller === undefined ) { controller = new WebXRController(); controllers[ index ] = controller; } return controller.getHandSpace(); }; // function onSessionEvent( event ) { const controllerIndex = controllerInputSources.indexOf( event.inputSource ); if ( controllerIndex === -1 ) { return; } const controller = controllers[ controllerIndex ]; if ( controller !== undefined ) { controller.update( event.inputSource, event.frame, customReferenceSpace || referenceSpace ); controller.dispatchEvent( { type: event.type, data: event.inputSource } ); } } function onSessionEnd() { session.removeEventListener( 'select', onSessionEvent ); session.removeEventListener( 'selectstart', onSessionEvent ); session.removeEventListener( 'selectend', onSessionEvent ); session.removeEventListener( 'squeeze', onSessionEvent ); session.removeEventListener( 'squeezestart', onSessionEvent ); session.removeEventListener( 'squeezeend', onSessionEvent ); session.removeEventListener( 'end', onSessionEnd ); session.removeEventListener( 'inputsourceschange', onInputSourcesChange ); for ( let i = 0; i < controllers.length; i ++ ) { const inputSource = controllerInputSources[ i ]; if ( inputSource === null ) continue; controllerInputSources[ i ] = null; if ( controllers[ i ] ) controllers[ i ].disconnect( inputSource ); } _currentDepthNear = null; _currentDepthFar = null; depthSensing.reset(); // restore framebuffer/rendering state renderer.setRenderTarget( initialRenderTarget ); glBaseLayer = null; glProjLayer = null; glBinding = null; session = null; newRenderTarget = null; // animation.stop(); scope.isPresenting = false; renderer.setPixelRatio( currentPixelRatio ); renderer.setSize( currentSize.width, currentSize.height, false ); scope.dispatchEvent( { type: 'sessionend' } ); } this.setFramebufferScaleFactor = function ( value ) { framebufferScaleFactor = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change framebuffer scale while presenting.' ); } }; this.setReferenceSpaceType = function ( value ) { referenceSpaceType = value; if ( scope.isPresenting === true ) { console.warn( 'THREE.WebXRManager: Cannot change reference space type while presenting.' ); } }; this.getReferenceSpace = function () { return customReferenceSpace || referenceSpace; }; this.setReferenceSpace = function ( space ) { customReferenceSpace = space; }; this.getBaseLayer = function () { return glProjLayer !== null ? glProjLayer : glBaseLayer; }; this.getBinding = function () { return glBinding; }; this.getFrame = function () { return xrFrame; }; this.getSession = function () { return session; }; this.setSession = async function ( value ) { session = value; if ( session !== null ) { initialRenderTarget = renderer.getRenderTarget(); session.addEventListener( 'select', onSessionEvent ); session.addEventListener( 'selectstart', onSessionEvent ); session.addEventListener( 'selectend', onSessionEvent ); session.addEventListener( 'squeeze', onSessionEvent ); session.addEventListener( 'squeezestart', onSessionEvent ); session.addEventListener( 'squeezeend', onSessionEvent ); session.addEventListener( 'end', onSessionEnd ); session.addEventListener( 'inputsourceschange', onInputSourcesChange ); if ( attributes.xrCompatible !== true ) { await gl.makeXRCompatible(); } currentPixelRatio = renderer.getPixelRatio(); renderer.getSize( currentSize ); // Check that the browser implements the necessary APIs to use an // XRProjectionLayer rather than an XRWebGLLayer const useLayers = typeof XRWebGLBinding !== 'undefined' && 'createProjectionLayer' in XRWebGLBinding.prototype; if ( ! useLayers ) { const layerInit = { antialias: attributes.antialias, alpha: true, depth: attributes.depth, stencil: attributes.stencil, framebufferScaleFactor: framebufferScaleFactor }; glBaseLayer = new XRWebGLLayer( session, gl, layerInit ); session.updateRenderState( { baseLayer: glBaseLayer } ); renderer.setPixelRatio( 1 ); renderer.setSize( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, false ); newRenderTarget = new WebGLRenderTarget( glBaseLayer.framebufferWidth, glBaseLayer.framebufferHeight, { format: RGBAFormat, type: UnsignedByteType, colorSpace: renderer.outputColorSpace, stencilBuffer: attributes.stencil } ); } else { let depthFormat = null; let depthType = null; let glDepthFormat = null; if ( attributes.depth ) { glDepthFormat = attributes.stencil ? gl.DEPTH24_STENCIL8 : gl.DEPTH_COMPONENT24; depthFormat = attributes.stencil ? DepthStencilFormat : DepthFormat; depthType = attributes.stencil ? UnsignedInt248Type : UnsignedIntType; } const projectionlayerInit = { colorFormat: gl.RGBA8, depthFormat: glDepthFormat, scaleFactor: framebufferScaleFactor }; glBinding = new XRWebGLBinding( session, gl ); glProjLayer = glBinding.createProjectionLayer( projectionlayerInit ); session.updateRenderState( { layers: [ glProjLayer ] } ); renderer.setPixelRatio( 1 ); renderer.setSize( glProjLayer.textureWidth, glProjLayer.textureHeight, false ); newRenderTarget = new WebGLRenderTarget( glProjLayer.textureWidth, glProjLayer.textureHeight, { format: RGBAFormat, type: UnsignedByteType, depthTexture: new DepthTexture( glProjLayer.textureWidth, glProjLayer.textureHeight, depthType, undefined, undefined, undefined, undefined, undefined, undefined, depthFormat ), stencilBuffer: attributes.stencil, colorSpace: renderer.outputColorSpace, samples: attributes.antialias ? 4 : 0, resolveDepthBuffer: ( glProjLayer.ignoreDepthValues === false ) } ); } newRenderTarget.isXRRenderTarget = true; // TODO Remove this when possible, see #23278 this.setFoveation( foveation ); customReferenceSpace = null; referenceSpace = await session.requestReferenceSpace( referenceSpaceType ); animation.setContext( session ); animation.start(); scope.isPresenting = true; scope.dispatchEvent( { type: 'sessionstart' } ); } }; this.getEnvironmentBlendMode = function () { if ( session !== null ) { return session.environmentBlendMode; } }; this.getDepthTexture = function () { return depthSensing.getDepthTexture(); }; function onInputSourcesChange( event ) { // Notify disconnected for ( let i = 0; i < event.removed.length; i ++ ) { const inputSource = event.removed[ i ]; const index = controllerInputSources.indexOf( inputSource ); if ( index >= 0 ) { controllerInputSources[ index ] = null; if ( controllers[ index ] ) controllers[ index ].disconnect( inputSource ); } } // Notify connected for ( let i = 0; i < event.added.length; i ++ ) { const inputSource = event.added[ i ]; let controllerIndex = controllerInputSources.indexOf( inputSource ); if ( controllerIndex === -1 ) { // Assign input source a controller that currently has no input source for ( let i = 0; i < controllers.length; i ++ ) { if ( i >= controllerInputSources.length ) { controllerInputSources.push( inputSource ); controllerIndex = i; break; } else if ( controllerInputSources[ i ] === null ) { controllerInputSources[ i ] = inputSource; controllerIndex = i; break; } } // If all controllers do currently receive input we ignore new ones if ( controllerIndex === -1 ) break; } const controller = controllers[ controllerIndex ]; if ( controller ) { controller.connect( inputSource ); } } } // const cameraLPos = new Vector3(); const cameraRPos = new Vector3(); /** * Assumes 2 cameras that are parallel and share an X-axis, and that * the cameras' projection and world matrices have already been set. * And that near and far planes are identical for both cameras. * Visualization of this technique: https://computergraphics.stackexchange.com/a/4765 */ function setProjectionFromUnion( camera, cameraL, cameraR ) { cameraLPos.setFromMatrixPosition( cameraL.matrixWorld ); cameraRPos.setFromMatrixPosition( cameraR.matrixWorld ); const ipd = cameraLPos.distanceTo( cameraRPos ); const projL = cameraL.projectionMatrix.elements; const projR = cameraR.projectionMatrix.elements; // VR systems will have identical far and near planes, and // most likely identical top and bottom frustum extents. // Use the left camera for these values. const near = projL[ 14 ] / ( projL[ 10 ] - 1 ); const far = projL[ 14 ] / ( projL[ 10 ] + 1 ); const topFov = ( projL[ 9 ] + 1 ) / projL[ 5 ]; const bottomFov = ( projL[ 9 ] - 1 ) / projL[ 5 ]; const leftFov = ( projL[ 8 ] - 1 ) / projL[ 0 ]; const rightFov = ( projR[ 8 ] + 1 ) / projR[ 0 ]; const left = near * leftFov; const right = near * rightFov; // Calculate the new camera's position offset from the // left camera. xOffset should be roughly half `ipd`. const zOffset = ipd / ( - leftFov + rightFov ); const xOffset = zOffset * - leftFov; // TODO: Better way to apply this offset? cameraL.matrixWorld.decompose( camera.position, camera.quaternion, camera.scale ); camera.translateX( xOffset ); camera.translateZ( zOffset ); camera.matrixWorld.compose( camera.position, camera.quaternion, camera.scale ); camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); // Check if the projection uses an infinite far plane. if ( projL[ 10 ] === -1 ) { // Use the projection matrix from the left eye. // The camera offset is sufficient to include the view volumes // of both eyes (assuming symmetric projections). camera.projectionMatrix.copy( cameraL.projectionMatrix ); camera.projectionMatrixInverse.copy( cameraL.projectionMatrixInverse ); } else { // Find the union of the frustum values of the cameras and scale // the values so that the near plane's position does not change in world space, // although must now be relative to the new union camera. const near2 = near + zOffset; const far2 = far + zOffset; const left2 = left - xOffset; const right2 = right + ( ipd - xOffset ); const top2 = topFov * far / far2 * near2; const bottom2 = bottomFov * far / far2 * near2; camera.projectionMatrix.makePerspective( left2, right2, top2, bottom2, near2, far2 ); camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); } } function updateCamera( camera, parent ) { if ( parent === null ) { camera.matrixWorld.copy( camera.matrix ); } else { camera.matrixWorld.multiplyMatrices( parent.matrixWorld, camera.matrix ); } camera.matrixWorldInverse.copy( camera.matrixWorld ).invert(); } this.updateCamera = function ( camera ) { if ( session === null ) return; let depthNear = camera.near; let depthFar = camera.far; if ( depthSensing.texture !== null ) { if ( depthSensing.depthNear > 0 ) depthNear = depthSensing.depthNear; if ( depthSensing.depthFar > 0 ) depthFar = depthSensing.depthFar; } cameraXR.near = cameraR.near = cameraL.near = depthNear; cameraXR.far = cameraR.far = cameraL.far = depthFar; if ( _currentDepthNear !== cameraXR.near || _currentDepthFar !== cameraXR.far ) { // Note that the new renderState won't apply until the next frame. See #18320 session.updateRenderState( { depthNear: cameraXR.near, depthFar: cameraXR.far } ); _currentDepthNear = cameraXR.near; _currentDepthFar = cameraXR.far; } const parent = camera.parent; const cameras = cameraXR.cameras; updateCamera( cameraXR, parent ); for ( let i = 0; i < cameras.length; i ++ ) { updateCamera( cameras[ i ], parent ); } // update projection matrix for proper view frustum culling if ( cameras.length === 2 ) { setProjectionFromUnion( cameraXR, cameraL, cameraR ); } else { // assume single camera setup (AR) cameraXR.projectionMatrix.copy( cameraL.projectionMatrix ); } // update user camera and its children updateUserCamera( camera, cameraXR, parent ); }; function updateUserCamera( camera, cameraXR, parent ) { if ( parent === null ) { camera.matrix.copy( cameraXR.matrixWorld ); } else { camera.matrix.copy( parent.matrixWorld ); camera.matrix.invert(); camera.matrix.multiply( cameraXR.matrixWorld ); } camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); camera.updateMatrixWorld( true ); camera.projectionMatrix.copy( cameraXR.projectionMatrix ); camera.projectionMatrixInverse.copy( cameraXR.projectionMatrixInverse ); if ( camera.isPerspectiveCamera ) { camera.fov = RAD2DEG * 2 * Math.atan( 1 / camera.projectionMatrix.elements[ 5 ] ); camera.zoom = 1; } } this.getCamera = function () { return cameraXR; }; this.getFoveation = function () { if ( glProjLayer === null && glBaseLayer === null ) { return undefined; } return foveation; }; this.setFoveation = function ( value ) { // 0 = no foveation = full resolution // 1 = maximum foveation = the edges render at lower resolution foveation = value; if ( glProjLayer !== null ) { glProjLayer.fixedFoveation = value; } if ( glBaseLayer !== null && glBaseLayer.fixedFoveation !== undefined ) { glBaseLayer.fixedFoveation = value; } }; this.hasDepthSensing = function () { return depthSensing.texture !== null; }; this.getDepthSensingMesh = function () { return depthSensing.getMesh( cameraXR ); }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time, frame ) { pose = frame.getViewerPose( customReferenceSpace || referenceSpace ); xrFrame = frame; if ( pose !== null ) { const views = pose.views; if ( glBaseLayer !== null ) { renderer.setRenderTargetFramebuffer( newRenderTarget, glBaseLayer.framebuffer ); renderer.setRenderTarget( newRenderTarget ); } let cameraXRNeedsUpdate = false; // check if it's necessary to rebuild cameraXR's camera list if ( views.length !== cameraXR.cameras.length ) { cameraXR.cameras.length = 0; cameraXRNeedsUpdate = true; } for ( let i = 0; i < views.length; i ++ ) { const view = views[ i ]; let viewport = null; if ( glBaseLayer !== null ) { viewport = glBaseLayer.getViewport( view ); } else { const glSubImage = glBinding.getViewSubImage( glProjLayer, view ); viewport = glSubImage.viewport; // For side-by-side projection, we only produce a single texture for both eyes. if ( i === 0 ) { renderer.setRenderTargetTextures( newRenderTarget, glSubImage.colorTexture, glProjLayer.ignoreDepthValues ? undefined : glSubImage.depthStencilTexture ); renderer.setRenderTarget( newRenderTarget ); } } let camera = cameras[ i ]; if ( camera === undefined ) { camera = new PerspectiveCamera(); camera.layers.enable( i ); camera.viewport = new Vector4(); cameras[ i ] = camera; } camera.matrix.fromArray( view.transform.matrix ); camera.matrix.decompose( camera.position, camera.quaternion, camera.scale ); camera.projectionMatrix.fromArray( view.projectionMatrix ); camera.projectionMatrixInverse.copy( camera.projectionMatrix ).invert(); camera.viewport.set( viewport.x, viewport.y, viewport.width, viewport.height ); if ( i === 0 ) { cameraXR.matrix.copy( camera.matrix ); cameraXR.matrix.decompose( cameraXR.position, cameraXR.quaternion, cameraXR.scale ); } if ( cameraXRNeedsUpdate === true ) { cameraXR.cameras.push( camera ); } } // const enabledFeatures = session.enabledFeatures; if ( enabledFeatures && enabledFeatures.includes( 'depth-sensing' ) ) { const depthData = glBinding.getDepthInformation( views[ 0 ] ); if ( depthData && depthData.isValid && depthData.texture ) { depthSensing.init( renderer, depthData, session.renderState ); } } } // if ( scope.controllerAutoUpdate ) { for ( let i = 0; i < controllers.length; i ++ ) { const inputSource = controllerInputSources[ i ]; const controller = controllers[ i ]; if ( inputSource !== null && controller !== undefined ) { controller.update( inputSource, frame, customReferenceSpace || referenceSpace ); } } } if ( onAnimationFrameCallback ) onAnimationFrameCallback( time, frame ); if ( frame.detectedPlanes ) { scope.dispatchEvent( { type: 'planesdetected', data: frame } ); } xrFrame = null; } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; }; this.dispose = function () {}; } } const _e1 = /*@__PURE__*/ new Euler(); const _m1 = /*@__PURE__*/ new Matrix4(); function WebGLMaterials( renderer, properties ) { function refreshTransformUniform( map, uniform ) { if ( map.matrixAutoUpdate === true ) { map.updateMatrix(); } uniform.value.copy( map.matrix ); } function refreshFogUniforms( uniforms, fog ) { fog.color.getRGB( uniforms.fogColor.value, getUnlitUniformColorSpace( renderer ) ); if ( fog.isFog ) { uniforms.fogNear.value = fog.near; uniforms.fogFar.value = fog.far; } else if ( fog.isFogExp2 ) { uniforms.fogDensity.value = fog.density; } } function refreshMaterialUniforms( uniforms, material, pixelRatio, height, transmissionRenderTarget ) { if ( material.isMeshBasicMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshLambertMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshToonMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsToon( uniforms, material ); } else if ( material.isMeshPhongMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsPhong( uniforms, material ); } else if ( material.isMeshStandardMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsStandard( uniforms, material ); if ( material.isMeshPhysicalMaterial ) { refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ); } } else if ( material.isMeshMatcapMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsMatcap( uniforms, material ); } else if ( material.isMeshDepthMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isMeshDistanceMaterial ) { refreshUniformsCommon( uniforms, material ); refreshUniformsDistance( uniforms, material ); } else if ( material.isMeshNormalMaterial ) { refreshUniformsCommon( uniforms, material ); } else if ( material.isLineBasicMaterial ) { refreshUniformsLine( uniforms, material ); if ( material.isLineDashedMaterial ) { refreshUniformsDash( uniforms, material ); } } else if ( material.isPointsMaterial ) { refreshUniformsPoints( uniforms, material, pixelRatio, height ); } else if ( material.isSpriteMaterial ) { refreshUniformsSprites( uniforms, material ); } else if ( material.isShadowMaterial ) { uniforms.color.value.copy( material.color ); uniforms.opacity.value = material.opacity; } else if ( material.isShaderMaterial ) { material.uniformsNeedUpdate = false; // #15581 } } function refreshUniformsCommon( uniforms, material ) { uniforms.opacity.value = material.opacity; if ( material.color ) { uniforms.diffuse.value.copy( material.color ); } if ( material.emissive ) { uniforms.emissive.value.copy( material.emissive ).multiplyScalar( material.emissiveIntensity ); } if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.mapTransform ); } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); } if ( material.bumpMap ) { uniforms.bumpMap.value = material.bumpMap; refreshTransformUniform( material.bumpMap, uniforms.bumpMapTransform ); uniforms.bumpScale.value = material.bumpScale; if ( material.side === BackSide ) { uniforms.bumpScale.value *= -1; } } if ( material.normalMap ) { uniforms.normalMap.value = material.normalMap; refreshTransformUniform( material.normalMap, uniforms.normalMapTransform ); uniforms.normalScale.value.copy( material.normalScale ); if ( material.side === BackSide ) { uniforms.normalScale.value.negate(); } } if ( material.displacementMap ) { uniforms.displacementMap.value = material.displacementMap; refreshTransformUniform( material.displacementMap, uniforms.displacementMapTransform ); uniforms.displacementScale.value = material.displacementScale; uniforms.displacementBias.value = material.displacementBias; } if ( material.emissiveMap ) { uniforms.emissiveMap.value = material.emissiveMap; refreshTransformUniform( material.emissiveMap, uniforms.emissiveMapTransform ); } if ( material.specularMap ) { uniforms.specularMap.value = material.specularMap; refreshTransformUniform( material.specularMap, uniforms.specularMapTransform ); } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } const materialProperties = properties.get( material ); const envMap = materialProperties.envMap; const envMapRotation = materialProperties.envMapRotation; if ( envMap ) { uniforms.envMap.value = envMap; _e1.copy( envMapRotation ); // accommodate left-handed frame _e1.x *= -1; _e1.y *= -1; _e1.z *= -1; if ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) { // environment maps which are not cube render targets or PMREMs follow a different convention _e1.y *= -1; _e1.z *= -1; } uniforms.envMapRotation.value.setFromMatrix4( _m1.makeRotationFromEuler( _e1 ) ); uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? -1 : 1; uniforms.reflectivity.value = material.reflectivity; uniforms.ior.value = material.ior; uniforms.refractionRatio.value = material.refractionRatio; } if ( material.lightMap ) { uniforms.lightMap.value = material.lightMap; uniforms.lightMapIntensity.value = material.lightMapIntensity; refreshTransformUniform( material.lightMap, uniforms.lightMapTransform ); } if ( material.aoMap ) { uniforms.aoMap.value = material.aoMap; uniforms.aoMapIntensity.value = material.aoMapIntensity; refreshTransformUniform( material.aoMap, uniforms.aoMapTransform ); } } function refreshUniformsLine( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.mapTransform ); } } function refreshUniformsDash( uniforms, material ) { uniforms.dashSize.value = material.dashSize; uniforms.totalSize.value = material.dashSize + material.gapSize; uniforms.scale.value = material.scale; } function refreshUniformsPoints( uniforms, material, pixelRatio, height ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.size.value = material.size * pixelRatio; uniforms.scale.value = height * 0.5; if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.uvTransform ); } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } } function refreshUniformsSprites( uniforms, material ) { uniforms.diffuse.value.copy( material.color ); uniforms.opacity.value = material.opacity; uniforms.rotation.value = material.rotation; if ( material.map ) { uniforms.map.value = material.map; refreshTransformUniform( material.map, uniforms.mapTransform ); } if ( material.alphaMap ) { uniforms.alphaMap.value = material.alphaMap; refreshTransformUniform( material.alphaMap, uniforms.alphaMapTransform ); } if ( material.alphaTest > 0 ) { uniforms.alphaTest.value = material.alphaTest; } } function refreshUniformsPhong( uniforms, material ) { uniforms.specular.value.copy( material.specular ); uniforms.shininess.value = Math.max( material.shininess, 1e-4 ); // to prevent pow( 0.0, 0.0 ) } function refreshUniformsToon( uniforms, material ) { if ( material.gradientMap ) { uniforms.gradientMap.value = material.gradientMap; } } function refreshUniformsStandard( uniforms, material ) { uniforms.metalness.value = material.metalness; if ( material.metalnessMap ) { uniforms.metalnessMap.value = material.metalnessMap; refreshTransformUniform( material.metalnessMap, uniforms.metalnessMapTransform ); } uniforms.roughness.value = material.roughness; if ( material.roughnessMap ) { uniforms.roughnessMap.value = material.roughnessMap; refreshTransformUniform( material.roughnessMap, uniforms.roughnessMapTransform ); } if ( material.envMap ) { //uniforms.envMap.value = material.envMap; // part of uniforms common uniforms.envMapIntensity.value = material.envMapIntensity; } } function refreshUniformsPhysical( uniforms, material, transmissionRenderTarget ) { uniforms.ior.value = material.ior; // also part of uniforms common if ( material.sheen > 0 ) { uniforms.sheenColor.value.copy( material.sheenColor ).multiplyScalar( material.sheen ); uniforms.sheenRoughness.value = material.sheenRoughness; if ( material.sheenColorMap ) { uniforms.sheenColorMap.value = material.sheenColorMap; refreshTransformUniform( material.sheenColorMap, uniforms.sheenColorMapTransform ); } if ( material.sheenRoughnessMap ) { uniforms.sheenRoughnessMap.value = material.sheenRoughnessMap; refreshTransformUniform( material.sheenRoughnessMap, uniforms.sheenRoughnessMapTransform ); } } if ( material.clearcoat > 0 ) { uniforms.clearcoat.value = material.clearcoat; uniforms.clearcoatRoughness.value = material.clearcoatRoughness; if ( material.clearcoatMap ) { uniforms.clearcoatMap.value = material.clearcoatMap; refreshTransformUniform( material.clearcoatMap, uniforms.clearcoatMapTransform ); } if ( material.clearcoatRoughnessMap ) { uniforms.clearcoatRoughnessMap.value = material.clearcoatRoughnessMap; refreshTransformUniform( material.clearcoatRoughnessMap, uniforms.clearcoatRoughnessMapTransform ); } if ( material.clearcoatNormalMap ) { uniforms.clearcoatNormalMap.value = material.clearcoatNormalMap; refreshTransformUniform( material.clearcoatNormalMap, uniforms.clearcoatNormalMapTransform ); uniforms.clearcoatNormalScale.value.copy( material.clearcoatNormalScale ); if ( material.side === BackSide ) { uniforms.clearcoatNormalScale.value.negate(); } } } if ( material.dispersion > 0 ) { uniforms.dispersion.value = material.dispersion; } if ( material.iridescence > 0 ) { uniforms.iridescence.value = material.iridescence; uniforms.iridescenceIOR.value = material.iridescenceIOR; uniforms.iridescenceThicknessMinimum.value = material.iridescenceThicknessRange[ 0 ]; uniforms.iridescenceThicknessMaximum.value = material.iridescenceThicknessRange[ 1 ]; if ( material.iridescenceMap ) { uniforms.iridescenceMap.value = material.iridescenceMap; refreshTransformUniform( material.iridescenceMap, uniforms.iridescenceMapTransform ); } if ( material.iridescenceThicknessMap ) { uniforms.iridescenceThicknessMap.value = material.iridescenceThicknessMap; refreshTransformUniform( material.iridescenceThicknessMap, uniforms.iridescenceThicknessMapTransform ); } } if ( material.transmission > 0 ) { uniforms.transmission.value = material.transmission; uniforms.transmissionSamplerMap.value = transmissionRenderTarget.texture; uniforms.transmissionSamplerSize.value.set( transmissionRenderTarget.width, transmissionRenderTarget.height ); if ( material.transmissionMap ) { uniforms.transmissionMap.value = material.transmissionMap; refreshTransformUniform( material.transmissionMap, uniforms.transmissionMapTransform ); } uniforms.thickness.value = material.thickness; if ( material.thicknessMap ) { uniforms.thicknessMap.value = material.thicknessMap; refreshTransformUniform( material.thicknessMap, uniforms.thicknessMapTransform ); } uniforms.attenuationDistance.value = material.attenuationDistance; uniforms.attenuationColor.value.copy( material.attenuationColor ); } if ( material.anisotropy > 0 ) { uniforms.anisotropyVector.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) ); if ( material.anisotropyMap ) { uniforms.anisotropyMap.value = material.anisotropyMap; refreshTransformUniform( material.anisotropyMap, uniforms.anisotropyMapTransform ); } } uniforms.specularIntensity.value = material.specularIntensity; uniforms.specularColor.value.copy( material.specularColor ); if ( material.specularColorMap ) { uniforms.specularColorMap.value = material.specularColorMap; refreshTransformUniform( material.specularColorMap, uniforms.specularColorMapTransform ); } if ( material.specularIntensityMap ) { uniforms.specularIntensityMap.value = material.specularIntensityMap; refreshTransformUniform( material.specularIntensityMap, uniforms.specularIntensityMapTransform ); } } function refreshUniformsMatcap( uniforms, material ) { if ( material.matcap ) { uniforms.matcap.value = material.matcap; } } function refreshUniformsDistance( uniforms, material ) { const light = properties.get( material ).light; uniforms.referencePosition.value.setFromMatrixPosition( light.matrixWorld ); uniforms.nearDistance.value = light.shadow.camera.near; uniforms.farDistance.value = light.shadow.camera.far; } return { refreshFogUniforms: refreshFogUniforms, refreshMaterialUniforms: refreshMaterialUniforms }; } function WebGLUniformsGroups( gl, info, capabilities, state ) { let buffers = {}; let updateList = {}; let allocatedBindingPoints = []; const maxBindingPoints = gl.getParameter( gl.MAX_UNIFORM_BUFFER_BINDINGS ); // binding points are global whereas block indices are per shader program function bind( uniformsGroup, program ) { const webglProgram = program.program; state.uniformBlockBinding( uniformsGroup, webglProgram ); } function update( uniformsGroup, program ) { let buffer = buffers[ uniformsGroup.id ]; if ( buffer === undefined ) { prepareUniformsGroup( uniformsGroup ); buffer = createBuffer( uniformsGroup ); buffers[ uniformsGroup.id ] = buffer; uniformsGroup.addEventListener( 'dispose', onUniformsGroupsDispose ); } // ensure to update the binding points/block indices mapping for this program const webglProgram = program.program; state.updateUBOMapping( uniformsGroup, webglProgram ); // update UBO once per frame const frame = info.render.frame; if ( updateList[ uniformsGroup.id ] !== frame ) { updateBufferData( uniformsGroup ); updateList[ uniformsGroup.id ] = frame; } } function createBuffer( uniformsGroup ) { // the setup of an UBO is independent of a particular shader program but global const bindingPointIndex = allocateBindingPointIndex(); uniformsGroup.__bindingPointIndex = bindingPointIndex; const buffer = gl.createBuffer(); const size = uniformsGroup.__size; const usage = uniformsGroup.usage; gl.bindBuffer( gl.UNIFORM_BUFFER, buffer ); gl.bufferData( gl.UNIFORM_BUFFER, size, usage ); gl.bindBuffer( gl.UNIFORM_BUFFER, null ); gl.bindBufferBase( gl.UNIFORM_BUFFER, bindingPointIndex, buffer ); return buffer; } function allocateBindingPointIndex() { for ( let i = 0; i < maxBindingPoints; i ++ ) { if ( allocatedBindingPoints.indexOf( i ) === -1 ) { allocatedBindingPoints.push( i ); return i; } } console.error( 'THREE.WebGLRenderer: Maximum number of simultaneously usable uniforms groups reached.' ); return 0; } function updateBufferData( uniformsGroup ) { const buffer = buffers[ uniformsGroup.id ]; const uniforms = uniformsGroup.uniforms; const cache = uniformsGroup.__cache; gl.bindBuffer( gl.UNIFORM_BUFFER, buffer ); for ( let i = 0, il = uniforms.length; i < il; i ++ ) { const uniformArray = Array.isArray( uniforms[ i ] ) ? uniforms[ i ] : [ uniforms[ i ] ]; for ( let j = 0, jl = uniformArray.length; j < jl; j ++ ) { const uniform = uniformArray[ j ]; if ( hasUniformChanged( uniform, i, j, cache ) === true ) { const offset = uniform.__offset; const values = Array.isArray( uniform.value ) ? uniform.value : [ uniform.value ]; let arrayOffset = 0; for ( let k = 0; k < values.length; k ++ ) { const value = values[ k ]; const info = getUniformSize( value ); // TODO add integer and struct support if ( typeof value === 'number' || typeof value === 'boolean' ) { uniform.__data[ 0 ] = value; gl.bufferSubData( gl.UNIFORM_BUFFER, offset + arrayOffset, uniform.__data ); } else if ( value.isMatrix3 ) { // manually converting 3x3 to 3x4 uniform.__data[ 0 ] = value.elements[ 0 ]; uniform.__data[ 1 ] = value.elements[ 1 ]; uniform.__data[ 2 ] = value.elements[ 2 ]; uniform.__data[ 3 ] = 0; uniform.__data[ 4 ] = value.elements[ 3 ]; uniform.__data[ 5 ] = value.elements[ 4 ]; uniform.__data[ 6 ] = value.elements[ 5 ]; uniform.__data[ 7 ] = 0; uniform.__data[ 8 ] = value.elements[ 6 ]; uniform.__data[ 9 ] = value.elements[ 7 ]; uniform.__data[ 10 ] = value.elements[ 8 ]; uniform.__data[ 11 ] = 0; } else { value.toArray( uniform.__data, arrayOffset ); arrayOffset += info.storage / Float32Array.BYTES_PER_ELEMENT; } } gl.bufferSubData( gl.UNIFORM_BUFFER, offset, uniform.__data ); } } } gl.bindBuffer( gl.UNIFORM_BUFFER, null ); } function hasUniformChanged( uniform, index, indexArray, cache ) { const value = uniform.value; const indexString = index + '_' + indexArray; if ( cache[ indexString ] === undefined ) { // cache entry does not exist so far if ( typeof value === 'number' || typeof value === 'boolean' ) { cache[ indexString ] = value; } else { cache[ indexString ] = value.clone(); } return true; } else { const cachedObject = cache[ indexString ]; // compare current value with cached entry if ( typeof value === 'number' || typeof value === 'boolean' ) { if ( cachedObject !== value ) { cache[ indexString ] = value; return true; } } else { if ( cachedObject.equals( value ) === false ) { cachedObject.copy( value ); return true; } } } return false; } function prepareUniformsGroup( uniformsGroup ) { // determine total buffer size according to the STD140 layout // Hint: STD140 is the only supported layout in WebGL 2 const uniforms = uniformsGroup.uniforms; let offset = 0; // global buffer offset in bytes const chunkSize = 16; // size of a chunk in bytes for ( let i = 0, l = uniforms.length; i < l; i ++ ) { const uniformArray = Array.isArray( uniforms[ i ] ) ? uniforms[ i ] : [ uniforms[ i ] ]; for ( let j = 0, jl = uniformArray.length; j < jl; j ++ ) { const uniform = uniformArray[ j ]; const values = Array.isArray( uniform.value ) ? uniform.value : [ uniform.value ]; for ( let k = 0, kl = values.length; k < kl; k ++ ) { const value = values[ k ]; const info = getUniformSize( value ); const chunkOffset = offset % chunkSize; // offset in the current chunk const chunkPadding = chunkOffset % info.boundary; // required padding to match boundary const chunkStart = chunkOffset + chunkPadding; // the start position in the current chunk for the data offset += chunkPadding; // Check for chunk overflow if ( chunkStart !== 0 && ( chunkSize - chunkStart ) < info.storage ) { // Add padding and adjust offset offset += ( chunkSize - chunkStart ); } // the following two properties will be used for partial buffer updates uniform.__data = new Float32Array( info.storage / Float32Array.BYTES_PER_ELEMENT ); uniform.__offset = offset; // Update the global offset offset += info.storage; } } } // ensure correct final padding const chunkOffset = offset % chunkSize; if ( chunkOffset > 0 ) offset += ( chunkSize - chunkOffset ); // uniformsGroup.__size = offset; uniformsGroup.__cache = {}; return this; } function getUniformSize( value ) { const info = { boundary: 0, // bytes storage: 0 // bytes }; // determine sizes according to STD140 if ( typeof value === 'number' || typeof value === 'boolean' ) { // float/int/bool info.boundary = 4; info.storage = 4; } else if ( value.isVector2 ) { // vec2 info.boundary = 8; info.storage = 8; } else if ( value.isVector3 || value.isColor ) { // vec3 info.boundary = 16; info.storage = 12; // evil: vec3 must start on a 16-byte boundary but it only consumes 12 bytes } else if ( value.isVector4 ) { // vec4 info.boundary = 16; info.storage = 16; } else if ( value.isMatrix3 ) { // mat3 (in STD140 a 3x3 matrix is represented as 3x4) info.boundary = 48; info.storage = 48; } else if ( value.isMatrix4 ) { // mat4 info.boundary = 64; info.storage = 64; } else if ( value.isTexture ) { console.warn( 'THREE.WebGLRenderer: Texture samplers can not be part of an uniforms group.' ); } else { console.warn( 'THREE.WebGLRenderer: Unsupported uniform value type.', value ); } return info; } function onUniformsGroupsDispose( event ) { const uniformsGroup = event.target; uniformsGroup.removeEventListener( 'dispose', onUniformsGroupsDispose ); const index = allocatedBindingPoints.indexOf( uniformsGroup.__bindingPointIndex ); allocatedBindingPoints.splice( index, 1 ); gl.deleteBuffer( buffers[ uniformsGroup.id ] ); delete buffers[ uniformsGroup.id ]; delete updateList[ uniformsGroup.id ]; } function dispose() { for ( const id in buffers ) { gl.deleteBuffer( buffers[ id ] ); } allocatedBindingPoints = []; buffers = {}; updateList = {}; } return { bind: bind, update: update, dispose: dispose }; } class WebGLRenderer { constructor( parameters = {} ) { const { canvas = createCanvasElement(), context = null, depth = true, stencil = false, alpha = false, antialias = false, premultipliedAlpha = true, preserveDrawingBuffer = false, powerPreference = 'default', failIfMajorPerformanceCaveat = false, } = parameters; this.isWebGLRenderer = true; let _alpha; if ( context !== null ) { if ( typeof WebGLRenderingContext !== 'undefined' && context instanceof WebGLRenderingContext ) { throw new Error( 'THREE.WebGLRenderer: WebGL 1 is not supported since r163.' ); } _alpha = context.getContextAttributes().alpha; } else { _alpha = alpha; } const uintClearColor = new Uint32Array( 4 ); const intClearColor = new Int32Array( 4 ); let currentRenderList = null; let currentRenderState = null; // render() can be called from within a callback triggered by another render. // We track this so that the nested render call gets its list and state isolated from the parent render call. const renderListStack = []; const renderStateStack = []; // public properties this.domElement = canvas; // Debug configuration container this.debug = { /** * Enables error checking and reporting when shader programs are being compiled * @type {boolean} */ checkShaderErrors: true, /** * Callback for custom error reporting. * @type {?Function} */ onShaderError: null }; // clearing this.autoClear = true; this.autoClearColor = true; this.autoClearDepth = true; this.autoClearStencil = true; // scene graph this.sortObjects = true; // user-defined clipping this.clippingPlanes = []; this.localClippingEnabled = false; // physically based shading this._outputColorSpace = SRGBColorSpace; // tone mapping this.toneMapping = NoToneMapping; this.toneMappingExposure = 1.0; // internal properties const _this = this; let _isContextLost = false; // internal state cache let _currentActiveCubeFace = 0; let _currentActiveMipmapLevel = 0; let _currentRenderTarget = null; let _currentMaterialId = -1; let _currentCamera = null; const _currentViewport = new Vector4(); const _currentScissor = new Vector4(); let _currentScissorTest = null; const _currentClearColor = new Color( 0x000000 ); let _currentClearAlpha = 0; // let _width = canvas.width; let _height = canvas.height; let _pixelRatio = 1; let _opaqueSort = null; let _transparentSort = null; const _viewport = new Vector4( 0, 0, _width, _height ); const _scissor = new Vector4( 0, 0, _width, _height ); let _scissorTest = false; // frustum const _frustum = new Frustum(); // clipping let _clippingEnabled = false; let _localClippingEnabled = false; // camera matrices cache const _currentProjectionMatrix = new Matrix4(); const _projScreenMatrix = new Matrix4(); const _vector3 = new Vector3(); const _vector4 = new Vector4(); const _emptyScene = { background: null, fog: null, environment: null, overrideMaterial: null, isScene: true }; let _renderBackground = false; function getTargetPixelRatio() { return _currentRenderTarget === null ? _pixelRatio : 1; } // initialize let _gl = context; function getContext( contextName, contextAttributes ) { return canvas.getContext( contextName, contextAttributes ); } try { const contextAttributes = { alpha: true, depth, stencil, antialias, premultipliedAlpha, preserveDrawingBuffer, powerPreference, failIfMajorPerformanceCaveat, }; // OffscreenCanvas does not have setAttribute, see #22811 if ( 'setAttribute' in canvas ) canvas.setAttribute( 'data-engine', `three.js r${REVISION}` ); // event listeners must be registered before WebGL context is created, see #12753 canvas.addEventListener( 'webglcontextlost', onContextLost, false ); canvas.addEventListener( 'webglcontextrestored', onContextRestore, false ); canvas.addEventListener( 'webglcontextcreationerror', onContextCreationError, false ); if ( _gl === null ) { const contextName = 'webgl2'; _gl = getContext( contextName, contextAttributes ); if ( _gl === null ) { if ( getContext( contextName ) ) { throw new Error( 'Error creating WebGL context with your selected attributes.' ); } else { throw new Error( 'Error creating WebGL context.' ); } } } } catch ( error ) { console.error( 'THREE.WebGLRenderer: ' + error.message ); throw error; } let extensions, capabilities, state, info; let properties, textures, cubemaps, cubeuvmaps, attributes, geometries, objects; let programCache, materials, renderLists, renderStates, clipping, shadowMap; let background, morphtargets, bufferRenderer, indexedBufferRenderer; let utils, bindingStates, uniformsGroups; function initGLContext() { extensions = new WebGLExtensions( _gl ); extensions.init(); utils = new WebGLUtils( _gl, extensions ); capabilities = new WebGLCapabilities( _gl, extensions, parameters, utils ); state = new WebGLState( _gl ); if ( capabilities.reverseDepthBuffer ) state.buffers.depth.setReversed( true ); info = new WebGLInfo( _gl ); properties = new WebGLProperties(); textures = new WebGLTextures( _gl, extensions, state, properties, capabilities, utils, info ); cubemaps = new WebGLCubeMaps( _this ); cubeuvmaps = new WebGLCubeUVMaps( _this ); attributes = new WebGLAttributes( _gl ); bindingStates = new WebGLBindingStates( _gl, attributes ); geometries = new WebGLGeometries( _gl, attributes, info, bindingStates ); objects = new WebGLObjects( _gl, geometries, attributes, info ); morphtargets = new WebGLMorphtargets( _gl, capabilities, textures ); clipping = new WebGLClipping( properties ); programCache = new WebGLPrograms( _this, cubemaps, cubeuvmaps, extensions, capabilities, bindingStates, clipping ); materials = new WebGLMaterials( _this, properties ); renderLists = new WebGLRenderLists(); renderStates = new WebGLRenderStates( extensions ); background = new WebGLBackground( _this, cubemaps, cubeuvmaps, state, objects, _alpha, premultipliedAlpha ); shadowMap = new WebGLShadowMap( _this, objects, capabilities ); uniformsGroups = new WebGLUniformsGroups( _gl, info, capabilities, state ); bufferRenderer = new WebGLBufferRenderer( _gl, extensions, info ); indexedBufferRenderer = new WebGLIndexedBufferRenderer( _gl, extensions, info ); info.programs = programCache.programs; _this.capabilities = capabilities; _this.extensions = extensions; _this.properties = properties; _this.renderLists = renderLists; _this.shadowMap = shadowMap; _this.state = state; _this.info = info; } initGLContext(); // xr const xr = new WebXRManager( _this, _gl ); this.xr = xr; // API this.getContext = function () { return _gl; }; this.getContextAttributes = function () { return _gl.getContextAttributes(); }; this.forceContextLoss = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.loseContext(); }; this.forceContextRestore = function () { const extension = extensions.get( 'WEBGL_lose_context' ); if ( extension ) extension.restoreContext(); }; this.getPixelRatio = function () { return _pixelRatio; }; this.setPixelRatio = function ( value ) { if ( value === undefined ) return; _pixelRatio = value; this.setSize( _width, _height, false ); }; this.getSize = function ( target ) { return target.set( _width, _height ); }; this.setSize = function ( width, height, updateStyle = true ) { if ( xr.isPresenting ) { console.warn( 'THREE.WebGLRenderer: Can\'t change size while VR device is presenting.' ); return; } _width = width; _height = height; canvas.width = Math.floor( width * _pixelRatio ); canvas.height = Math.floor( height * _pixelRatio ); if ( updateStyle === true ) { canvas.style.width = width + 'px'; canvas.style.height = height + 'px'; } this.setViewport( 0, 0, width, height ); }; this.getDrawingBufferSize = function ( target ) { return target.set( _width * _pixelRatio, _height * _pixelRatio ).floor(); }; this.setDrawingBufferSize = function ( width, height, pixelRatio ) { _width = width; _height = height; _pixelRatio = pixelRatio; canvas.width = Math.floor( width * pixelRatio ); canvas.height = Math.floor( height * pixelRatio ); this.setViewport( 0, 0, width, height ); }; this.getCurrentViewport = function ( target ) { return target.copy( _currentViewport ); }; this.getViewport = function ( target ) { return target.copy( _viewport ); }; this.setViewport = function ( x, y, width, height ) { if ( x.isVector4 ) { _viewport.set( x.x, x.y, x.z, x.w ); } else { _viewport.set( x, y, width, height ); } state.viewport( _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).round() ); }; this.getScissor = function ( target ) { return target.copy( _scissor ); }; this.setScissor = function ( x, y, width, height ) { if ( x.isVector4 ) { _scissor.set( x.x, x.y, x.z, x.w ); } else { _scissor.set( x, y, width, height ); } state.scissor( _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).round() ); }; this.getScissorTest = function () { return _scissorTest; }; this.setScissorTest = function ( boolean ) { state.setScissorTest( _scissorTest = boolean ); }; this.setOpaqueSort = function ( method ) { _opaqueSort = method; }; this.setTransparentSort = function ( method ) { _transparentSort = method; }; // Clearing this.getClearColor = function ( target ) { return target.copy( background.getClearColor() ); }; this.setClearColor = function () { background.setClearColor.apply( background, arguments ); }; this.getClearAlpha = function () { return background.getClearAlpha(); }; this.setClearAlpha = function () { background.setClearAlpha.apply( background, arguments ); }; this.clear = function ( color = true, depth = true, stencil = true ) { let bits = 0; if ( color ) { // check if we're trying to clear an integer target let isIntegerFormat = false; if ( _currentRenderTarget !== null ) { const targetFormat = _currentRenderTarget.texture.format; isIntegerFormat = targetFormat === RGBAIntegerFormat || targetFormat === RGIntegerFormat || targetFormat === RedIntegerFormat; } // use the appropriate clear functions to clear the target if it's a signed // or unsigned integer target if ( isIntegerFormat ) { const targetType = _currentRenderTarget.texture.type; const isUnsignedType = targetType === UnsignedByteType || targetType === UnsignedIntType || targetType === UnsignedShortType || targetType === UnsignedInt248Type || targetType === UnsignedShort4444Type || targetType === UnsignedShort5551Type; const clearColor = background.getClearColor(); const a = background.getClearAlpha(); const r = clearColor.r; const g = clearColor.g; const b = clearColor.b; if ( isUnsignedType ) { uintClearColor[ 0 ] = r; uintClearColor[ 1 ] = g; uintClearColor[ 2 ] = b; uintClearColor[ 3 ] = a; _gl.clearBufferuiv( _gl.COLOR, 0, uintClearColor ); } else { intClearColor[ 0 ] = r; intClearColor[ 1 ] = g; intClearColor[ 2 ] = b; intClearColor[ 3 ] = a; _gl.clearBufferiv( _gl.COLOR, 0, intClearColor ); } } else { bits |= _gl.COLOR_BUFFER_BIT; } } if ( depth ) { bits |= _gl.DEPTH_BUFFER_BIT; _gl.clearDepth( this.capabilities.reverseDepthBuffer ? 0 : 1 ); } if ( stencil ) { bits |= _gl.STENCIL_BUFFER_BIT; this.state.buffers.stencil.setMask( 0xffffffff ); } _gl.clear( bits ); }; this.clearColor = function () { this.clear( true, false, false ); }; this.clearDepth = function () { this.clear( false, true, false ); }; this.clearStencil = function () { this.clear( false, false, true ); }; // this.dispose = function () { canvas.removeEventListener( 'webglcontextlost', onContextLost, false ); canvas.removeEventListener( 'webglcontextrestored', onContextRestore, false ); canvas.removeEventListener( 'webglcontextcreationerror', onContextCreationError, false ); renderLists.dispose(); renderStates.dispose(); properties.dispose(); cubemaps.dispose(); cubeuvmaps.dispose(); objects.dispose(); bindingStates.dispose(); uniformsGroups.dispose(); programCache.dispose(); xr.dispose(); xr.removeEventListener( 'sessionstart', onXRSessionStart ); xr.removeEventListener( 'sessionend', onXRSessionEnd ); animation.stop(); }; // Events function onContextLost( event ) { event.preventDefault(); console.log( 'THREE.WebGLRenderer: Context Lost.' ); _isContextLost = true; } function onContextRestore( /* event */ ) { console.log( 'THREE.WebGLRenderer: Context Restored.' ); _isContextLost = false; const infoAutoReset = info.autoReset; const shadowMapEnabled = shadowMap.enabled; const shadowMapAutoUpdate = shadowMap.autoUpdate; const shadowMapNeedsUpdate = shadowMap.needsUpdate; const shadowMapType = shadowMap.type; initGLContext(); info.autoReset = infoAutoReset; shadowMap.enabled = shadowMapEnabled; shadowMap.autoUpdate = shadowMapAutoUpdate; shadowMap.needsUpdate = shadowMapNeedsUpdate; shadowMap.type = shadowMapType; } function onContextCreationError( event ) { console.error( 'THREE.WebGLRenderer: A WebGL context could not be created. Reason: ', event.statusMessage ); } function onMaterialDispose( event ) { const material = event.target; material.removeEventListener( 'dispose', onMaterialDispose ); deallocateMaterial( material ); } // Buffer deallocation function deallocateMaterial( material ) { releaseMaterialProgramReferences( material ); properties.remove( material ); } function releaseMaterialProgramReferences( material ) { const programs = properties.get( material ).programs; if ( programs !== undefined ) { programs.forEach( function ( program ) { programCache.releaseProgram( program ); } ); if ( material.isShaderMaterial ) { programCache.releaseShaderCache( material ); } } } // Buffer rendering this.renderBufferDirect = function ( camera, scene, geometry, material, object, group ) { if ( scene === null ) scene = _emptyScene; // renderBufferDirect second parameter used to be fog (could be null) const frontFaceCW = ( object.isMesh && object.matrixWorld.determinant() < 0 ); const program = setProgram( camera, scene, geometry, material, object ); state.setMaterial( material, frontFaceCW ); // let index = geometry.index; let rangeFactor = 1; if ( material.wireframe === true ) { index = geometries.getWireframeAttribute( geometry ); if ( index === undefined ) return; rangeFactor = 2; } // const drawRange = geometry.drawRange; const position = geometry.attributes.position; let drawStart = drawRange.start * rangeFactor; let drawEnd = ( drawRange.start + drawRange.count ) * rangeFactor; if ( group !== null ) { drawStart = Math.max( drawStart, group.start * rangeFactor ); drawEnd = Math.min( drawEnd, ( group.start + group.count ) * rangeFactor ); } if ( index !== null ) { drawStart = Math.max( drawStart, 0 ); drawEnd = Math.min( drawEnd, index.count ); } else if ( position !== undefined && position !== null ) { drawStart = Math.max( drawStart, 0 ); drawEnd = Math.min( drawEnd, position.count ); } const drawCount = drawEnd - drawStart; if ( drawCount < 0 || drawCount === Infinity ) return; // bindingStates.setup( object, material, program, geometry, index ); let attribute; let renderer = bufferRenderer; if ( index !== null ) { attribute = attributes.get( index ); renderer = indexedBufferRenderer; renderer.setIndex( attribute ); } // if ( object.isMesh ) { if ( material.wireframe === true ) { state.setLineWidth( material.wireframeLinewidth * getTargetPixelRatio() ); renderer.setMode( _gl.LINES ); } else { renderer.setMode( _gl.TRIANGLES ); } } else if ( object.isLine ) { let lineWidth = material.linewidth; if ( lineWidth === undefined ) lineWidth = 1; // Not using Line*Material state.setLineWidth( lineWidth * getTargetPixelRatio() ); if ( object.isLineSegments ) { renderer.setMode( _gl.LINES ); } else if ( object.isLineLoop ) { renderer.setMode( _gl.LINE_LOOP ); } else { renderer.setMode( _gl.LINE_STRIP ); } } else if ( object.isPoints ) { renderer.setMode( _gl.POINTS ); } else if ( object.isSprite ) { renderer.setMode( _gl.TRIANGLES ); } if ( object.isBatchedMesh ) { if ( object._multiDrawInstances !== null ) { renderer.renderMultiDrawInstances( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount, object._multiDrawInstances ); } else { if ( ! extensions.get( 'WEBGL_multi_draw' ) ) { const starts = object._multiDrawStarts; const counts = object._multiDrawCounts; const drawCount = object._multiDrawCount; const bytesPerElement = index ? attributes.get( index ).bytesPerElement : 1; const uniforms = properties.get( material ).currentProgram.getUniforms(); for ( let i = 0; i < drawCount; i ++ ) { uniforms.setValue( _gl, '_gl_DrawID', i ); renderer.render( starts[ i ] / bytesPerElement, counts[ i ] ); } } else { renderer.renderMultiDraw( object._multiDrawStarts, object._multiDrawCounts, object._multiDrawCount ); } } } else if ( object.isInstancedMesh ) { renderer.renderInstances( drawStart, drawCount, object.count ); } else if ( geometry.isInstancedBufferGeometry ) { const maxInstanceCount = geometry._maxInstanceCount !== undefined ? geometry._maxInstanceCount : Infinity; const instanceCount = Math.min( geometry.instanceCount, maxInstanceCount ); renderer.renderInstances( drawStart, drawCount, instanceCount ); } else { renderer.render( drawStart, drawCount ); } }; // Compile function prepareMaterial( material, scene, object ) { if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { material.side = BackSide; material.needsUpdate = true; getProgram( material, scene, object ); material.side = FrontSide; material.needsUpdate = true; getProgram( material, scene, object ); material.side = DoubleSide; } else { getProgram( material, scene, object ); } } this.compile = function ( scene, camera, targetScene = null ) { if ( targetScene === null ) targetScene = scene; currentRenderState = renderStates.get( targetScene ); currentRenderState.init( camera ); renderStateStack.push( currentRenderState ); // gather lights from both the target scene and the new object that will be added to the scene. targetScene.traverseVisible( function ( object ) { if ( object.isLight && object.layers.test( camera.layers ) ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } } ); if ( scene !== targetScene ) { scene.traverseVisible( function ( object ) { if ( object.isLight && object.layers.test( camera.layers ) ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } } ); } currentRenderState.setupLights(); // Only initialize materials in the new scene, not the targetScene. const materials = new Set(); scene.traverse( function ( object ) { if ( ! ( object.isMesh || object.isPoints || object.isLine || object.isSprite ) ) { return; } const material = object.material; if ( material ) { if ( Array.isArray( material ) ) { for ( let i = 0; i < material.length; i ++ ) { const material2 = material[ i ]; prepareMaterial( material2, targetScene, object ); materials.add( material2 ); } } else { prepareMaterial( material, targetScene, object ); materials.add( material ); } } } ); renderStateStack.pop(); currentRenderState = null; return materials; }; // compileAsync this.compileAsync = function ( scene, camera, targetScene = null ) { const materials = this.compile( scene, camera, targetScene ); // Wait for all the materials in the new object to indicate that they're // ready to be used before resolving the promise. return new Promise( ( resolve ) => { function checkMaterialsReady() { materials.forEach( function ( material ) { const materialProperties = properties.get( material ); const program = materialProperties.currentProgram; if ( program.isReady() ) { // remove any programs that report they're ready to use from the list materials.delete( material ); } } ); // once the list of compiling materials is empty, call the callback if ( materials.size === 0 ) { resolve( scene ); return; } // if some materials are still not ready, wait a bit and check again setTimeout( checkMaterialsReady, 10 ); } if ( extensions.get( 'KHR_parallel_shader_compile' ) !== null ) { // If we can check the compilation status of the materials without // blocking then do so right away. checkMaterialsReady(); } else { // Otherwise start by waiting a bit to give the materials we just // initialized a chance to finish. setTimeout( checkMaterialsReady, 10 ); } } ); }; // Animation Loop let onAnimationFrameCallback = null; function onAnimationFrame( time ) { if ( onAnimationFrameCallback ) onAnimationFrameCallback( time ); } function onXRSessionStart() { animation.stop(); } function onXRSessionEnd() { animation.start(); } const animation = new WebGLAnimation(); animation.setAnimationLoop( onAnimationFrame ); if ( typeof self !== 'undefined' ) animation.setContext( self ); this.setAnimationLoop = function ( callback ) { onAnimationFrameCallback = callback; xr.setAnimationLoop( callback ); ( callback === null ) ? animation.stop() : animation.start(); }; xr.addEventListener( 'sessionstart', onXRSessionStart ); xr.addEventListener( 'sessionend', onXRSessionEnd ); // Rendering this.render = function ( scene, camera ) { if ( camera !== undefined && camera.isCamera !== true ) { console.error( 'THREE.WebGLRenderer.render: camera is not an instance of THREE.Camera.' ); return; } if ( _isContextLost === true ) return; // update scene graph if ( scene.matrixWorldAutoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices and frustum if ( camera.parent === null && camera.matrixWorldAutoUpdate === true ) camera.updateMatrixWorld(); if ( xr.enabled === true && xr.isPresenting === true ) { if ( xr.cameraAutoUpdate === true ) xr.updateCamera( camera ); camera = xr.getCamera(); // use XR camera for rendering } // if ( scene.isScene === true ) scene.onBeforeRender( _this, scene, camera, _currentRenderTarget ); currentRenderState = renderStates.get( scene, renderStateStack.length ); currentRenderState.init( camera ); renderStateStack.push( currentRenderState ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); _frustum.setFromProjectionMatrix( _projScreenMatrix ); _localClippingEnabled = this.localClippingEnabled; _clippingEnabled = clipping.init( this.clippingPlanes, _localClippingEnabled ); currentRenderList = renderLists.get( scene, renderListStack.length ); currentRenderList.init(); renderListStack.push( currentRenderList ); if ( xr.enabled === true && xr.isPresenting === true ) { const depthSensingMesh = _this.xr.getDepthSensingMesh(); if ( depthSensingMesh !== null ) { projectObject( depthSensingMesh, camera, - Infinity, _this.sortObjects ); } } projectObject( scene, camera, 0, _this.sortObjects ); currentRenderList.finish(); if ( _this.sortObjects === true ) { currentRenderList.sort( _opaqueSort, _transparentSort ); } _renderBackground = xr.enabled === false || xr.isPresenting === false || xr.hasDepthSensing() === false; if ( _renderBackground ) { background.addToRenderList( currentRenderList, scene ); } // this.info.render.frame ++; if ( _clippingEnabled === true ) clipping.beginShadows(); const shadowsArray = currentRenderState.state.shadowsArray; shadowMap.render( shadowsArray, scene, camera ); if ( _clippingEnabled === true ) clipping.endShadows(); // if ( this.info.autoReset === true ) this.info.reset(); // render scene const opaqueObjects = currentRenderList.opaque; const transmissiveObjects = currentRenderList.transmissive; currentRenderState.setupLights(); if ( camera.isArrayCamera ) { const cameras = camera.cameras; if ( transmissiveObjects.length > 0 ) { for ( let i = 0, l = cameras.length; i < l; i ++ ) { const camera2 = cameras[ i ]; renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera2 ); } } if ( _renderBackground ) background.render( scene ); for ( let i = 0, l = cameras.length; i < l; i ++ ) { const camera2 = cameras[ i ]; renderScene( currentRenderList, scene, camera2, camera2.viewport ); } } else { if ( transmissiveObjects.length > 0 ) renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ); if ( _renderBackground ) background.render( scene ); renderScene( currentRenderList, scene, camera ); } // if ( _currentRenderTarget !== null ) { // resolve multisample renderbuffers to a single-sample texture if necessary textures.updateMultisampleRenderTarget( _currentRenderTarget ); // Generate mipmap if we're using any kind of mipmap filtering textures.updateRenderTargetMipmap( _currentRenderTarget ); } // if ( scene.isScene === true ) scene.onAfterRender( _this, scene, camera ); // _gl.finish(); bindingStates.resetDefaultState(); _currentMaterialId = -1; _currentCamera = null; renderStateStack.pop(); if ( renderStateStack.length > 0 ) { currentRenderState = renderStateStack[ renderStateStack.length - 1 ]; if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, currentRenderState.state.camera ); } else { currentRenderState = null; } renderListStack.pop(); if ( renderListStack.length > 0 ) { currentRenderList = renderListStack[ renderListStack.length - 1 ]; } else { currentRenderList = null; } }; function projectObject( object, camera, groupOrder, sortObjects ) { if ( object.visible === false ) return; const visible = object.layers.test( camera.layers ); if ( visible ) { if ( object.isGroup ) { groupOrder = object.renderOrder; } else if ( object.isLOD ) { if ( object.autoUpdate === true ) object.update( camera ); } else if ( object.isLight ) { currentRenderState.pushLight( object ); if ( object.castShadow ) { currentRenderState.pushShadow( object ); } } else if ( object.isSprite ) { if ( ! object.frustumCulled || _frustum.intersectsSprite( object ) ) { if ( sortObjects ) { _vector4.setFromMatrixPosition( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } const geometry = objects.update( object ); const material = object.material; if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null ); } } } else if ( object.isMesh || object.isLine || object.isPoints ) { if ( ! object.frustumCulled || _frustum.intersectsObject( object ) ) { const geometry = objects.update( object ); const material = object.material; if ( sortObjects ) { if ( object.boundingSphere !== undefined ) { if ( object.boundingSphere === null ) object.computeBoundingSphere(); _vector4.copy( object.boundingSphere.center ); } else { if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _vector4.copy( geometry.boundingSphere.center ); } _vector4 .applyMatrix4( object.matrixWorld ) .applyMatrix4( _projScreenMatrix ); } if ( Array.isArray( material ) ) { const groups = geometry.groups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; const groupMaterial = material[ group.materialIndex ]; if ( groupMaterial && groupMaterial.visible ) { currentRenderList.push( object, geometry, groupMaterial, groupOrder, _vector4.z, group ); } } } else if ( material.visible ) { currentRenderList.push( object, geometry, material, groupOrder, _vector4.z, null ); } } } } const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { projectObject( children[ i ], camera, groupOrder, sortObjects ); } } function renderScene( currentRenderList, scene, camera, viewport ) { const opaqueObjects = currentRenderList.opaque; const transmissiveObjects = currentRenderList.transmissive; const transparentObjects = currentRenderList.transparent; currentRenderState.setupLightsView( camera ); if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera ); if ( viewport ) state.viewport( _currentViewport.copy( viewport ) ); if ( opaqueObjects.length > 0 ) renderObjects( opaqueObjects, scene, camera ); if ( transmissiveObjects.length > 0 ) renderObjects( transmissiveObjects, scene, camera ); if ( transparentObjects.length > 0 ) renderObjects( transparentObjects, scene, camera ); // Ensure depth buffer writing is enabled so it can be cleared on next render state.buffers.depth.setTest( true ); state.buffers.depth.setMask( true ); state.buffers.color.setMask( true ); state.setPolygonOffset( false ); } function renderTransmissionPass( opaqueObjects, transmissiveObjects, scene, camera ) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; if ( overrideMaterial !== null ) { return; } if ( currentRenderState.state.transmissionRenderTarget[ camera.id ] === undefined ) { currentRenderState.state.transmissionRenderTarget[ camera.id ] = new WebGLRenderTarget( 1, 1, { generateMipmaps: true, type: ( extensions.has( 'EXT_color_buffer_half_float' ) || extensions.has( 'EXT_color_buffer_float' ) ) ? HalfFloatType : UnsignedByteType, minFilter: LinearMipmapLinearFilter, samples: 4, stencilBuffer: stencil, resolveDepthBuffer: false, resolveStencilBuffer: false, colorSpace: ColorManagement.workingColorSpace, } ); // debug /* const geometry = new PlaneGeometry(); const material = new MeshBasicMaterial( { map: _transmissionRenderTarget.texture } ); const mesh = new Mesh( geometry, material ); scene.add( mesh ); */ } const transmissionRenderTarget = currentRenderState.state.transmissionRenderTarget[ camera.id ]; const activeViewport = camera.viewport || _currentViewport; transmissionRenderTarget.setSize( activeViewport.z, activeViewport.w ); // const currentRenderTarget = _this.getRenderTarget(); _this.setRenderTarget( transmissionRenderTarget ); _this.getClearColor( _currentClearColor ); _currentClearAlpha = _this.getClearAlpha(); if ( _currentClearAlpha < 1 ) _this.setClearColor( 0xffffff, 0.5 ); _this.clear(); if ( _renderBackground ) background.render( scene ); // Turn off the features which can affect the frag color for opaque objects pass. // Otherwise they are applied twice in opaque objects pass and transmission objects pass. const currentToneMapping = _this.toneMapping; _this.toneMapping = NoToneMapping; // Remove viewport from camera to avoid nested render calls resetting viewport to it (e.g Reflector). // Transmission render pass requires viewport to match the transmissionRenderTarget. const currentCameraViewport = camera.viewport; if ( camera.viewport !== undefined ) camera.viewport = undefined; currentRenderState.setupLightsView( camera ); if ( _clippingEnabled === true ) clipping.setGlobalState( _this.clippingPlanes, camera ); renderObjects( opaqueObjects, scene, camera ); textures.updateMultisampleRenderTarget( transmissionRenderTarget ); textures.updateRenderTargetMipmap( transmissionRenderTarget ); if ( extensions.has( 'WEBGL_multisampled_render_to_texture' ) === false ) { // see #28131 let renderTargetNeedsUpdate = false; for ( let i = 0, l = transmissiveObjects.length; i < l; i ++ ) { const renderItem = transmissiveObjects[ i ]; const object = renderItem.object; const geometry = renderItem.geometry; const material = renderItem.material; const group = renderItem.group; if ( material.side === DoubleSide && object.layers.test( camera.layers ) ) { const currentSide = material.side; material.side = BackSide; material.needsUpdate = true; renderObject( object, scene, camera, geometry, material, group ); material.side = currentSide; material.needsUpdate = true; renderTargetNeedsUpdate = true; } } if ( renderTargetNeedsUpdate === true ) { textures.updateMultisampleRenderTarget( transmissionRenderTarget ); textures.updateRenderTargetMipmap( transmissionRenderTarget ); } } _this.setRenderTarget( currentRenderTarget ); _this.setClearColor( _currentClearColor, _currentClearAlpha ); if ( currentCameraViewport !== undefined ) camera.viewport = currentCameraViewport; _this.toneMapping = currentToneMapping; } function renderObjects( renderList, scene, camera ) { const overrideMaterial = scene.isScene === true ? scene.overrideMaterial : null; for ( let i = 0, l = renderList.length; i < l; i ++ ) { const renderItem = renderList[ i ]; const object = renderItem.object; const geometry = renderItem.geometry; const material = overrideMaterial === null ? renderItem.material : overrideMaterial; const group = renderItem.group; if ( object.layers.test( camera.layers ) ) { renderObject( object, scene, camera, geometry, material, group ); } } } function renderObject( object, scene, camera, geometry, material, group ) { object.onBeforeRender( _this, scene, camera, geometry, material, group ); object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); material.onBeforeRender( _this, scene, camera, geometry, object, group ); if ( material.transparent === true && material.side === DoubleSide && material.forceSinglePass === false ) { material.side = BackSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = FrontSide; material.needsUpdate = true; _this.renderBufferDirect( camera, scene, geometry, material, object, group ); material.side = DoubleSide; } else { _this.renderBufferDirect( camera, scene, geometry, material, object, group ); } object.onAfterRender( _this, scene, camera, geometry, material, group ); } function getProgram( material, scene, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; const shadowsArray = currentRenderState.state.shadowsArray; const lightsStateVersion = lights.state.version; const parameters = programCache.getParameters( material, lights.state, shadowsArray, scene, object ); const programCacheKey = programCache.getProgramCacheKey( parameters ); let programs = materialProperties.programs; // always update environment and fog - changing these trigger an getProgram call, but it's possible that the program doesn't change materialProperties.environment = material.isMeshStandardMaterial ? scene.environment : null; materialProperties.fog = scene.fog; materialProperties.envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || materialProperties.environment ); materialProperties.envMapRotation = ( materialProperties.environment !== null && material.envMap === null ) ? scene.environmentRotation : material.envMapRotation; if ( programs === undefined ) { // new material material.addEventListener( 'dispose', onMaterialDispose ); programs = new Map(); materialProperties.programs = programs; } let program = programs.get( programCacheKey ); if ( program !== undefined ) { // early out if program and light state is identical if ( materialProperties.currentProgram === program && materialProperties.lightsStateVersion === lightsStateVersion ) { updateCommonMaterialProperties( material, parameters ); return program; } } else { parameters.uniforms = programCache.getUniforms( material ); material.onBuild( object, parameters, _this ); material.onBeforeCompile( parameters, _this ); program = programCache.acquireProgram( parameters, programCacheKey ); programs.set( programCacheKey, program ); materialProperties.uniforms = parameters.uniforms; } const uniforms = materialProperties.uniforms; if ( ( ! material.isShaderMaterial && ! material.isRawShaderMaterial ) || material.clipping === true ) { uniforms.clippingPlanes = clipping.uniform; } updateCommonMaterialProperties( material, parameters ); // store the light setup it was created for materialProperties.needsLights = materialNeedsLights( material ); materialProperties.lightsStateVersion = lightsStateVersion; if ( materialProperties.needsLights ) { // wire up the material to this renderer's lighting state uniforms.ambientLightColor.value = lights.state.ambient; uniforms.lightProbe.value = lights.state.probe; uniforms.directionalLights.value = lights.state.directional; uniforms.directionalLightShadows.value = lights.state.directionalShadow; uniforms.spotLights.value = lights.state.spot; uniforms.spotLightShadows.value = lights.state.spotShadow; uniforms.rectAreaLights.value = lights.state.rectArea; uniforms.ltc_1.value = lights.state.rectAreaLTC1; uniforms.ltc_2.value = lights.state.rectAreaLTC2; uniforms.pointLights.value = lights.state.point; uniforms.pointLightShadows.value = lights.state.pointShadow; uniforms.hemisphereLights.value = lights.state.hemi; uniforms.directionalShadowMap.value = lights.state.directionalShadowMap; uniforms.directionalShadowMatrix.value = lights.state.directionalShadowMatrix; uniforms.spotShadowMap.value = lights.state.spotShadowMap; uniforms.spotLightMatrix.value = lights.state.spotLightMatrix; uniforms.spotLightMap.value = lights.state.spotLightMap; uniforms.pointShadowMap.value = lights.state.pointShadowMap; uniforms.pointShadowMatrix.value = lights.state.pointShadowMatrix; // TODO (abelnation): add area lights shadow info to uniforms } materialProperties.currentProgram = program; materialProperties.uniformsList = null; return program; } function getUniformList( materialProperties ) { if ( materialProperties.uniformsList === null ) { const progUniforms = materialProperties.currentProgram.getUniforms(); materialProperties.uniformsList = WebGLUniforms.seqWithValue( progUniforms.seq, materialProperties.uniforms ); } return materialProperties.uniformsList; } function updateCommonMaterialProperties( material, parameters ) { const materialProperties = properties.get( material ); materialProperties.outputColorSpace = parameters.outputColorSpace; materialProperties.batching = parameters.batching; materialProperties.batchingColor = parameters.batchingColor; materialProperties.instancing = parameters.instancing; materialProperties.instancingColor = parameters.instancingColor; materialProperties.instancingMorph = parameters.instancingMorph; materialProperties.skinning = parameters.skinning; materialProperties.morphTargets = parameters.morphTargets; materialProperties.morphNormals = parameters.morphNormals; materialProperties.morphColors = parameters.morphColors; materialProperties.morphTargetsCount = parameters.morphTargetsCount; materialProperties.numClippingPlanes = parameters.numClippingPlanes; materialProperties.numIntersection = parameters.numClipIntersection; materialProperties.vertexAlphas = parameters.vertexAlphas; materialProperties.vertexTangents = parameters.vertexTangents; materialProperties.toneMapping = parameters.toneMapping; } function setProgram( camera, scene, geometry, material, object ) { if ( scene.isScene !== true ) scene = _emptyScene; // scene could be a Mesh, Line, Points, ... textures.resetTextureUnits(); const fog = scene.fog; const environment = material.isMeshStandardMaterial ? scene.environment : null; const colorSpace = ( _currentRenderTarget === null ) ? _this.outputColorSpace : ( _currentRenderTarget.isXRRenderTarget === true ? _currentRenderTarget.texture.colorSpace : LinearSRGBColorSpace ); const envMap = ( material.isMeshStandardMaterial ? cubeuvmaps : cubemaps ).get( material.envMap || environment ); const vertexAlphas = material.vertexColors === true && !! geometry.attributes.color && geometry.attributes.color.itemSize === 4; const vertexTangents = !! geometry.attributes.tangent && ( !! material.normalMap || material.anisotropy > 0 ); const morphTargets = !! geometry.morphAttributes.position; const morphNormals = !! geometry.morphAttributes.normal; const morphColors = !! geometry.morphAttributes.color; let toneMapping = NoToneMapping; if ( material.toneMapped ) { if ( _currentRenderTarget === null || _currentRenderTarget.isXRRenderTarget === true ) { toneMapping = _this.toneMapping; } } const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; const materialProperties = properties.get( material ); const lights = currentRenderState.state.lights; if ( _clippingEnabled === true ) { if ( _localClippingEnabled === true || camera !== _currentCamera ) { const useCache = camera === _currentCamera && material.id === _currentMaterialId; // we might want to call this function with some ClippingGroup // object instead of the material, once it becomes feasible // (#8465, #8379) clipping.setState( material, camera, useCache ); } } // let needsProgramChange = false; if ( material.version === materialProperties.__version ) { if ( materialProperties.needsLights && ( materialProperties.lightsStateVersion !== lights.state.version ) ) { needsProgramChange = true; } else if ( materialProperties.outputColorSpace !== colorSpace ) { needsProgramChange = true; } else if ( object.isBatchedMesh && materialProperties.batching === false ) { needsProgramChange = true; } else if ( ! object.isBatchedMesh && materialProperties.batching === true ) { needsProgramChange = true; } else if ( object.isBatchedMesh && materialProperties.batchingColor === true && object.colorTexture === null ) { needsProgramChange = true; } else if ( object.isBatchedMesh && materialProperties.batchingColor === false && object.colorTexture !== null ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancing === false ) { needsProgramChange = true; } else if ( ! object.isInstancedMesh && materialProperties.instancing === true ) { needsProgramChange = true; } else if ( object.isSkinnedMesh && materialProperties.skinning === false ) { needsProgramChange = true; } else if ( ! object.isSkinnedMesh && materialProperties.skinning === true ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingColor === true && object.instanceColor === null ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingColor === false && object.instanceColor !== null ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingMorph === true && object.morphTexture === null ) { needsProgramChange = true; } else if ( object.isInstancedMesh && materialProperties.instancingMorph === false && object.morphTexture !== null ) { needsProgramChange = true; } else if ( materialProperties.envMap !== envMap ) { needsProgramChange = true; } else if ( material.fog === true && materialProperties.fog !== fog ) { needsProgramChange = true; } else if ( materialProperties.numClippingPlanes !== undefined && ( materialProperties.numClippingPlanes !== clipping.numPlanes || materialProperties.numIntersection !== clipping.numIntersection ) ) { needsProgramChange = true; } else if ( materialProperties.vertexAlphas !== vertexAlphas ) { needsProgramChange = true; } else if ( materialProperties.vertexTangents !== vertexTangents ) { needsProgramChange = true; } else if ( materialProperties.morphTargets !== morphTargets ) { needsProgramChange = true; } else if ( materialProperties.morphNormals !== morphNormals ) { needsProgramChange = true; } else if ( materialProperties.morphColors !== morphColors ) { needsProgramChange = true; } else if ( materialProperties.toneMapping !== toneMapping ) { needsProgramChange = true; } else if ( materialProperties.morphTargetsCount !== morphTargetsCount ) { needsProgramChange = true; } } else { needsProgramChange = true; materialProperties.__version = material.version; } // let program = materialProperties.currentProgram; if ( needsProgramChange === true ) { program = getProgram( material, scene, object ); } let refreshProgram = false; let refreshMaterial = false; let refreshLights = false; const p_uniforms = program.getUniforms(), m_uniforms = materialProperties.uniforms; if ( state.useProgram( program.program ) ) { refreshProgram = true; refreshMaterial = true; refreshLights = true; } if ( material.id !== _currentMaterialId ) { _currentMaterialId = material.id; refreshMaterial = true; } if ( refreshProgram || _currentCamera !== camera ) { // common camera uniforms if ( capabilities.reverseDepthBuffer ) { _currentProjectionMatrix.copy( camera.projectionMatrix ); toNormalizedProjectionMatrix( _currentProjectionMatrix ); toReversedProjectionMatrix( _currentProjectionMatrix ); p_uniforms.setValue( _gl, 'projectionMatrix', _currentProjectionMatrix ); } else { p_uniforms.setValue( _gl, 'projectionMatrix', camera.projectionMatrix ); } p_uniforms.setValue( _gl, 'viewMatrix', camera.matrixWorldInverse ); const uCamPos = p_uniforms.map.cameraPosition; if ( uCamPos !== undefined ) { uCamPos.setValue( _gl, _vector3.setFromMatrixPosition( camera.matrixWorld ) ); } if ( capabilities.logarithmicDepthBuffer ) { p_uniforms.setValue( _gl, 'logDepthBufFC', 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); } // consider moving isOrthographic to UniformLib and WebGLMaterials, see https://github.com/mrdoob/three.js/pull/26467#issuecomment-1645185067 if ( material.isMeshPhongMaterial || material.isMeshToonMaterial || material.isMeshLambertMaterial || material.isMeshBasicMaterial || material.isMeshStandardMaterial || material.isShaderMaterial ) { p_uniforms.setValue( _gl, 'isOrthographic', camera.isOrthographicCamera === true ); } if ( _currentCamera !== camera ) { _currentCamera = camera; // lighting uniforms depend on the camera so enforce an update // now, in case this material supports lights - or later, when // the next material that does gets activated: refreshMaterial = true; // set to true on material change refreshLights = true; // remains set until update done } } // skinning and morph target uniforms must be set even if material didn't change // auto-setting of texture unit for bone and morph texture must go before other textures // otherwise textures used for skinning and morphing can take over texture units reserved for other material textures if ( object.isSkinnedMesh ) { p_uniforms.setOptional( _gl, object, 'bindMatrix' ); p_uniforms.setOptional( _gl, object, 'bindMatrixInverse' ); const skeleton = object.skeleton; if ( skeleton ) { if ( skeleton.boneTexture === null ) skeleton.computeBoneTexture(); p_uniforms.setValue( _gl, 'boneTexture', skeleton.boneTexture, textures ); } } if ( object.isBatchedMesh ) { p_uniforms.setOptional( _gl, object, 'batchingTexture' ); p_uniforms.setValue( _gl, 'batchingTexture', object._matricesTexture, textures ); p_uniforms.setOptional( _gl, object, 'batchingIdTexture' ); p_uniforms.setValue( _gl, 'batchingIdTexture', object._indirectTexture, textures ); p_uniforms.setOptional( _gl, object, 'batchingColorTexture' ); if ( object._colorsTexture !== null ) { p_uniforms.setValue( _gl, 'batchingColorTexture', object._colorsTexture, textures ); } } const morphAttributes = geometry.morphAttributes; if ( morphAttributes.position !== undefined || morphAttributes.normal !== undefined || ( morphAttributes.color !== undefined ) ) { morphtargets.update( object, geometry, program ); } if ( refreshMaterial || materialProperties.receiveShadow !== object.receiveShadow ) { materialProperties.receiveShadow = object.receiveShadow; p_uniforms.setValue( _gl, 'receiveShadow', object.receiveShadow ); } // https://github.com/mrdoob/three.js/pull/24467#issuecomment-1209031512 if ( material.isMeshGouraudMaterial && material.envMap !== null ) { m_uniforms.envMap.value = envMap; m_uniforms.flipEnvMap.value = ( envMap.isCubeTexture && envMap.isRenderTargetTexture === false ) ? -1 : 1; } if ( material.isMeshStandardMaterial && material.envMap === null && scene.environment !== null ) { m_uniforms.envMapIntensity.value = scene.environmentIntensity; } if ( refreshMaterial ) { p_uniforms.setValue( _gl, 'toneMappingExposure', _this.toneMappingExposure ); if ( materialProperties.needsLights ) { // the current material requires lighting info // note: all lighting uniforms are always set correctly // they simply reference the renderer's state for their // values // // use the current material's .needsUpdate flags to set // the GL state when required markUniformsLightsNeedsUpdate( m_uniforms, refreshLights ); } // refresh uniforms common to several materials if ( fog && material.fog === true ) { materials.refreshFogUniforms( m_uniforms, fog ); } materials.refreshMaterialUniforms( m_uniforms, material, _pixelRatio, _height, currentRenderState.state.transmissionRenderTarget[ camera.id ] ); WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures ); } if ( material.isShaderMaterial && material.uniformsNeedUpdate === true ) { WebGLUniforms.upload( _gl, getUniformList( materialProperties ), m_uniforms, textures ); material.uniformsNeedUpdate = false; } if ( material.isSpriteMaterial ) { p_uniforms.setValue( _gl, 'center', object.center ); } // common matrices p_uniforms.setValue( _gl, 'modelViewMatrix', object.modelViewMatrix ); p_uniforms.setValue( _gl, 'normalMatrix', object.normalMatrix ); p_uniforms.setValue( _gl, 'modelMatrix', object.matrixWorld ); // UBOs if ( material.isShaderMaterial || material.isRawShaderMaterial ) { const groups = material.uniformsGroups; for ( let i = 0, l = groups.length; i < l; i ++ ) { const group = groups[ i ]; uniformsGroups.update( group, program ); uniformsGroups.bind( group, program ); } } return program; } // If uniforms are marked as clean, they don't need to be loaded to the GPU. function markUniformsLightsNeedsUpdate( uniforms, value ) { uniforms.ambientLightColor.needsUpdate = value; uniforms.lightProbe.needsUpdate = value; uniforms.directionalLights.needsUpdate = value; uniforms.directionalLightShadows.needsUpdate = value; uniforms.pointLights.needsUpdate = value; uniforms.pointLightShadows.needsUpdate = value; uniforms.spotLights.needsUpdate = value; uniforms.spotLightShadows.needsUpdate = value; uniforms.rectAreaLights.needsUpdate = value; uniforms.hemisphereLights.needsUpdate = value; } function materialNeedsLights( material ) { return material.isMeshLambertMaterial || material.isMeshToonMaterial || material.isMeshPhongMaterial || material.isMeshStandardMaterial || material.isShadowMaterial || ( material.isShaderMaterial && material.lights === true ); } this.getActiveCubeFace = function () { return _currentActiveCubeFace; }; this.getActiveMipmapLevel = function () { return _currentActiveMipmapLevel; }; this.getRenderTarget = function () { return _currentRenderTarget; }; this.setRenderTargetTextures = function ( renderTarget, colorTexture, depthTexture ) { properties.get( renderTarget.texture ).__webglTexture = colorTexture; properties.get( renderTarget.depthTexture ).__webglTexture = depthTexture; const renderTargetProperties = properties.get( renderTarget ); renderTargetProperties.__hasExternalTextures = true; renderTargetProperties.__autoAllocateDepthBuffer = depthTexture === undefined; if ( ! renderTargetProperties.__autoAllocateDepthBuffer ) { // The multisample_render_to_texture extension doesn't work properly if there // are midframe flushes and an external depth buffer. Disable use of the extension. if ( extensions.has( 'WEBGL_multisampled_render_to_texture' ) === true ) { console.warn( 'THREE.WebGLRenderer: Render-to-texture extension was disabled because an external texture was provided' ); renderTargetProperties.__useRenderToTexture = false; } } }; this.setRenderTargetFramebuffer = function ( renderTarget, defaultFramebuffer ) { const renderTargetProperties = properties.get( renderTarget ); renderTargetProperties.__webglFramebuffer = defaultFramebuffer; renderTargetProperties.__useDefaultFramebuffer = defaultFramebuffer === undefined; }; this.setRenderTarget = function ( renderTarget, activeCubeFace = 0, activeMipmapLevel = 0 ) { _currentRenderTarget = renderTarget; _currentActiveCubeFace = activeCubeFace; _currentActiveMipmapLevel = activeMipmapLevel; let useDefaultFramebuffer = true; let framebuffer = null; let isCube = false; let isRenderTarget3D = false; if ( renderTarget ) { const renderTargetProperties = properties.get( renderTarget ); if ( renderTargetProperties.__useDefaultFramebuffer !== undefined ) { // We need to make sure to rebind the framebuffer. state.bindFramebuffer( _gl.FRAMEBUFFER, null ); useDefaultFramebuffer = false; } else if ( renderTargetProperties.__webglFramebuffer === undefined ) { textures.setupRenderTarget( renderTarget ); } else if ( renderTargetProperties.__hasExternalTextures ) { // Color and depth texture must be rebound in order for the swapchain to update. textures.rebindTextures( renderTarget, properties.get( renderTarget.texture ).__webglTexture, properties.get( renderTarget.depthTexture ).__webglTexture ); } else if ( renderTarget.depthBuffer ) { // check if the depth texture is already bound to the frame buffer and that it's been initialized const depthTexture = renderTarget.depthTexture; if ( renderTargetProperties.__boundDepthTexture !== depthTexture ) { // check if the depth texture is compatible if ( depthTexture !== null && properties.has( depthTexture ) && ( renderTarget.width !== depthTexture.image.width || renderTarget.height !== depthTexture.image.height ) ) { throw new Error( 'WebGLRenderTarget: Attached DepthTexture is initialized to the incorrect size.' ); } // Swap the depth buffer to the currently attached one textures.setupDepthRenderbuffer( renderTarget ); } } const texture = renderTarget.texture; if ( texture.isData3DTexture || texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { isRenderTarget3D = true; } const __webglFramebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget ) { if ( Array.isArray( __webglFramebuffer[ activeCubeFace ] ) ) { framebuffer = __webglFramebuffer[ activeCubeFace ][ activeMipmapLevel ]; } else { framebuffer = __webglFramebuffer[ activeCubeFace ]; } isCube = true; } else if ( ( renderTarget.samples > 0 ) && textures.useMultisampledRTT( renderTarget ) === false ) { framebuffer = properties.get( renderTarget ).__webglMultisampledFramebuffer; } else { if ( Array.isArray( __webglFramebuffer ) ) { framebuffer = __webglFramebuffer[ activeMipmapLevel ]; } else { framebuffer = __webglFramebuffer; } } _currentViewport.copy( renderTarget.viewport ); _currentScissor.copy( renderTarget.scissor ); _currentScissorTest = renderTarget.scissorTest; } else { _currentViewport.copy( _viewport ).multiplyScalar( _pixelRatio ).floor(); _currentScissor.copy( _scissor ).multiplyScalar( _pixelRatio ).floor(); _currentScissorTest = _scissorTest; } const framebufferBound = state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); if ( framebufferBound && useDefaultFramebuffer ) { state.drawBuffers( renderTarget, framebuffer ); } state.viewport( _currentViewport ); state.scissor( _currentScissor ); state.setScissorTest( _currentScissorTest ); if ( isCube ) { const textureProperties = properties.get( renderTarget.texture ); _gl.framebufferTexture2D( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, _gl.TEXTURE_CUBE_MAP_POSITIVE_X + activeCubeFace, textureProperties.__webglTexture, activeMipmapLevel ); } else if ( isRenderTarget3D ) { const textureProperties = properties.get( renderTarget.texture ); const layer = activeCubeFace || 0; _gl.framebufferTextureLayer( _gl.FRAMEBUFFER, _gl.COLOR_ATTACHMENT0, textureProperties.__webglTexture, activeMipmapLevel || 0, layer ); } _currentMaterialId = -1; // reset current material to ensure correct uniform bindings }; this.readRenderTargetPixels = function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); return; } let framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { framebuffer = framebuffer[ activeCubeFaceIndex ]; } if ( framebuffer ) { state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); try { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if ( ! capabilities.textureFormatReadable( textureFormat ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in RGBA or implementation defined format.' ); return; } if ( ! capabilities.textureTypeReadable( textureType ) ) { console.error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not in UnsignedByteType or implementation defined type.' ); return; } // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), buffer ); } } finally { // restore framebuffer of current render target if necessary const framebuffer = ( _currentRenderTarget !== null ) ? properties.get( _currentRenderTarget ).__webglFramebuffer : null; state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); } } }; this.readRenderTargetPixelsAsync = async function ( renderTarget, x, y, width, height, buffer, activeCubeFaceIndex ) { if ( ! ( renderTarget && renderTarget.isWebGLRenderTarget ) ) { throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixels: renderTarget is not THREE.WebGLRenderTarget.' ); } let framebuffer = properties.get( renderTarget ).__webglFramebuffer; if ( renderTarget.isWebGLCubeRenderTarget && activeCubeFaceIndex !== undefined ) { framebuffer = framebuffer[ activeCubeFaceIndex ]; } if ( framebuffer ) { const texture = renderTarget.texture; const textureFormat = texture.format; const textureType = texture.type; if ( ! capabilities.textureFormatReadable( textureFormat ) ) { throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in RGBA or implementation defined format.' ); } if ( ! capabilities.textureTypeReadable( textureType ) ) { throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: renderTarget is not in UnsignedByteType or implementation defined type.' ); } // the following if statement ensures valid read requests (no out-of-bounds pixels, see #8604) if ( ( x >= 0 && x <= ( renderTarget.width - width ) ) && ( y >= 0 && y <= ( renderTarget.height - height ) ) ) { // set the active frame buffer to the one we want to read state.bindFramebuffer( _gl.FRAMEBUFFER, framebuffer ); const glBuffer = _gl.createBuffer(); _gl.bindBuffer( _gl.PIXEL_PACK_BUFFER, glBuffer ); _gl.bufferData( _gl.PIXEL_PACK_BUFFER, buffer.byteLength, _gl.STREAM_READ ); _gl.readPixels( x, y, width, height, utils.convert( textureFormat ), utils.convert( textureType ), 0 ); // reset the frame buffer to the currently set buffer before waiting const currFramebuffer = _currentRenderTarget !== null ? properties.get( _currentRenderTarget ).__webglFramebuffer : null; state.bindFramebuffer( _gl.FRAMEBUFFER, currFramebuffer ); // check if the commands have finished every 8 ms const sync = _gl.fenceSync( _gl.SYNC_GPU_COMMANDS_COMPLETE, 0 ); _gl.flush(); await probeAsync( _gl, sync, 4 ); // read the data and delete the buffer _gl.bindBuffer( _gl.PIXEL_PACK_BUFFER, glBuffer ); _gl.getBufferSubData( _gl.PIXEL_PACK_BUFFER, 0, buffer ); _gl.deleteBuffer( glBuffer ); _gl.deleteSync( sync ); return buffer; } else { throw new Error( 'THREE.WebGLRenderer.readRenderTargetPixelsAsync: requested read bounds are out of range.' ); } } }; this.copyFramebufferToTexture = function ( texture, position = null, level = 0 ) { // support previous signature with position first if ( texture.isTexture !== true ) { // @deprecated, r165 warnOnce( 'WebGLRenderer: copyFramebufferToTexture function signature has changed.' ); position = arguments[ 0 ] || null; texture = arguments[ 1 ]; } const levelScale = Math.pow( 2, - level ); const width = Math.floor( texture.image.width * levelScale ); const height = Math.floor( texture.image.height * levelScale ); const x = position !== null ? position.x : 0; const y = position !== null ? position.y : 0; textures.setTexture2D( texture, 0 ); _gl.copyTexSubImage2D( _gl.TEXTURE_2D, level, 0, 0, x, y, width, height ); state.unbindTexture(); }; this.copyTextureToTexture = function ( srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0 ) { // support previous signature with dstPosition first if ( srcTexture.isTexture !== true ) { // @deprecated, r165 warnOnce( 'WebGLRenderer: copyTextureToTexture function signature has changed.' ); dstPosition = arguments[ 0 ] || null; srcTexture = arguments[ 1 ]; dstTexture = arguments[ 2 ]; level = arguments[ 3 ] || 0; srcRegion = null; } let width, height, minX, minY; let dstX, dstY; if ( srcRegion !== null ) { width = srcRegion.max.x - srcRegion.min.x; height = srcRegion.max.y - srcRegion.min.y; minX = srcRegion.min.x; minY = srcRegion.min.y; } else { width = srcTexture.image.width; height = srcTexture.image.height; minX = 0; minY = 0; } if ( dstPosition !== null ) { dstX = dstPosition.x; dstY = dstPosition.y; } else { dstX = 0; dstY = 0; } const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); textures.setTexture2D( dstTexture, 0 ); // As another texture upload may have changed pixelStorei // parameters, make sure they are correct for the dstTexture _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment ); const currentUnpackRowLen = _gl.getParameter( _gl.UNPACK_ROW_LENGTH ); const currentUnpackImageHeight = _gl.getParameter( _gl.UNPACK_IMAGE_HEIGHT ); const currentUnpackSkipPixels = _gl.getParameter( _gl.UNPACK_SKIP_PIXELS ); const currentUnpackSkipRows = _gl.getParameter( _gl.UNPACK_SKIP_ROWS ); const currentUnpackSkipImages = _gl.getParameter( _gl.UNPACK_SKIP_IMAGES ); const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ level ] : srcTexture.image; _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, image.width ); _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, image.height ); _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, minX ); _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, minY ); if ( srcTexture.isDataTexture ) { _gl.texSubImage2D( _gl.TEXTURE_2D, level, dstX, dstY, width, height, glFormat, glType, image.data ); } else { if ( srcTexture.isCompressedTexture ) { _gl.compressedTexSubImage2D( _gl.TEXTURE_2D, level, dstX, dstY, image.width, image.height, glFormat, image.data ); } else { _gl.texSubImage2D( _gl.TEXTURE_2D, level, dstX, dstY, width, height, glFormat, glType, image ); } } _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, currentUnpackRowLen ); _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight ); _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels ); _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows ); _gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages ); // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( _gl.TEXTURE_2D ); state.unbindTexture(); }; this.copyTextureToTexture3D = function ( srcTexture, dstTexture, srcRegion = null, dstPosition = null, level = 0 ) { // support previous signature with source box first if ( srcTexture.isTexture !== true ) { // @deprecated, r165 warnOnce( 'WebGLRenderer: copyTextureToTexture3D function signature has changed.' ); srcRegion = arguments[ 0 ] || null; dstPosition = arguments[ 1 ] || null; srcTexture = arguments[ 2 ]; dstTexture = arguments[ 3 ]; level = arguments[ 4 ] || 0; } let width, height, depth, minX, minY, minZ; let dstX, dstY, dstZ; const image = srcTexture.isCompressedTexture ? srcTexture.mipmaps[ level ] : srcTexture.image; if ( srcRegion !== null ) { width = srcRegion.max.x - srcRegion.min.x; height = srcRegion.max.y - srcRegion.min.y; depth = srcRegion.max.z - srcRegion.min.z; minX = srcRegion.min.x; minY = srcRegion.min.y; minZ = srcRegion.min.z; } else { width = image.width; height = image.height; depth = image.depth; minX = 0; minY = 0; minZ = 0; } if ( dstPosition !== null ) { dstX = dstPosition.x; dstY = dstPosition.y; dstZ = dstPosition.z; } else { dstX = 0; dstY = 0; dstZ = 0; } const glFormat = utils.convert( dstTexture.format ); const glType = utils.convert( dstTexture.type ); let glTarget; if ( dstTexture.isData3DTexture ) { textures.setTexture3D( dstTexture, 0 ); glTarget = _gl.TEXTURE_3D; } else if ( dstTexture.isDataArrayTexture || dstTexture.isCompressedArrayTexture ) { textures.setTexture2DArray( dstTexture, 0 ); glTarget = _gl.TEXTURE_2D_ARRAY; } else { console.warn( 'THREE.WebGLRenderer.copyTextureToTexture3D: only supports THREE.DataTexture3D and THREE.DataTexture2DArray.' ); return; } _gl.pixelStorei( _gl.UNPACK_FLIP_Y_WEBGL, dstTexture.flipY ); _gl.pixelStorei( _gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, dstTexture.premultiplyAlpha ); _gl.pixelStorei( _gl.UNPACK_ALIGNMENT, dstTexture.unpackAlignment ); const currentUnpackRowLen = _gl.getParameter( _gl.UNPACK_ROW_LENGTH ); const currentUnpackImageHeight = _gl.getParameter( _gl.UNPACK_IMAGE_HEIGHT ); const currentUnpackSkipPixels = _gl.getParameter( _gl.UNPACK_SKIP_PIXELS ); const currentUnpackSkipRows = _gl.getParameter( _gl.UNPACK_SKIP_ROWS ); const currentUnpackSkipImages = _gl.getParameter( _gl.UNPACK_SKIP_IMAGES ); _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, image.width ); _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, image.height ); _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, minX ); _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, minY ); _gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, minZ ); if ( srcTexture.isDataTexture || srcTexture.isData3DTexture ) { _gl.texSubImage3D( glTarget, level, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image.data ); } else { if ( dstTexture.isCompressedArrayTexture ) { _gl.compressedTexSubImage3D( glTarget, level, dstX, dstY, dstZ, width, height, depth, glFormat, image.data ); } else { _gl.texSubImage3D( glTarget, level, dstX, dstY, dstZ, width, height, depth, glFormat, glType, image ); } } _gl.pixelStorei( _gl.UNPACK_ROW_LENGTH, currentUnpackRowLen ); _gl.pixelStorei( _gl.UNPACK_IMAGE_HEIGHT, currentUnpackImageHeight ); _gl.pixelStorei( _gl.UNPACK_SKIP_PIXELS, currentUnpackSkipPixels ); _gl.pixelStorei( _gl.UNPACK_SKIP_ROWS, currentUnpackSkipRows ); _gl.pixelStorei( _gl.UNPACK_SKIP_IMAGES, currentUnpackSkipImages ); // Generate mipmaps only when copying level 0 if ( level === 0 && dstTexture.generateMipmaps ) _gl.generateMipmap( glTarget ); state.unbindTexture(); }; this.initRenderTarget = function ( target ) { if ( properties.get( target ).__webglFramebuffer === undefined ) { textures.setupRenderTarget( target ); } }; this.initTexture = function ( texture ) { if ( texture.isCubeTexture ) { textures.setTextureCube( texture, 0 ); } else if ( texture.isData3DTexture ) { textures.setTexture3D( texture, 0 ); } else if ( texture.isDataArrayTexture || texture.isCompressedArrayTexture ) { textures.setTexture2DArray( texture, 0 ); } else { textures.setTexture2D( texture, 0 ); } state.unbindTexture(); }; this.resetState = function () { _currentActiveCubeFace = 0; _currentActiveMipmapLevel = 0; _currentRenderTarget = null; state.reset(); bindingStates.reset(); }; if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); } } get coordinateSystem() { return WebGLCoordinateSystem; } get outputColorSpace() { return this._outputColorSpace; } set outputColorSpace( colorSpace ) { this._outputColorSpace = colorSpace; const gl = this.getContext(); gl.drawingBufferColorSpace = colorSpace === DisplayP3ColorSpace ? 'display-p3' : 'srgb'; gl.unpackColorSpace = ColorManagement.workingColorSpace === LinearDisplayP3ColorSpace ? 'display-p3' : 'srgb'; } } class FogExp2 { constructor( color, density = 0.00025 ) { this.isFogExp2 = true; this.name = ''; this.color = new Color( color ); this.density = density; } clone() { return new FogExp2( this.color, this.density ); } toJSON( /* meta */ ) { return { type: 'FogExp2', name: this.name, color: this.color.getHex(), density: this.density }; } } class Fog { constructor( color, near = 1, far = 1000 ) { this.isFog = true; this.name = ''; this.color = new Color( color ); this.near = near; this.far = far; } clone() { return new Fog( this.color, this.near, this.far ); } toJSON( /* meta */ ) { return { type: 'Fog', name: this.name, color: this.color.getHex(), near: this.near, far: this.far }; } } class Scene extends Object3D { constructor() { super(); this.isScene = true; this.type = 'Scene'; this.background = null; this.environment = null; this.fog = null; this.backgroundBlurriness = 0; this.backgroundIntensity = 1; this.backgroundRotation = new Euler(); this.environmentIntensity = 1; this.environmentRotation = new Euler(); this.overrideMaterial = null; if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'observe', { detail: this } ) ); } } copy( source, recursive ) { super.copy( source, recursive ); if ( source.background !== null ) this.background = source.background.clone(); if ( source.environment !== null ) this.environment = source.environment.clone(); if ( source.fog !== null ) this.fog = source.fog.clone(); this.backgroundBlurriness = source.backgroundBlurriness; this.backgroundIntensity = source.backgroundIntensity; this.backgroundRotation.copy( source.backgroundRotation ); this.environmentIntensity = source.environmentIntensity; this.environmentRotation.copy( source.environmentRotation ); if ( source.overrideMaterial !== null ) this.overrideMaterial = source.overrideMaterial.clone(); this.matrixAutoUpdate = source.matrixAutoUpdate; return this; } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.fog !== null ) data.object.fog = this.fog.toJSON(); if ( this.backgroundBlurriness > 0 ) data.object.backgroundBlurriness = this.backgroundBlurriness; if ( this.backgroundIntensity !== 1 ) data.object.backgroundIntensity = this.backgroundIntensity; data.object.backgroundRotation = this.backgroundRotation.toArray(); if ( this.environmentIntensity !== 1 ) data.object.environmentIntensity = this.environmentIntensity; data.object.environmentRotation = this.environmentRotation.toArray(); return data; } } class InterleavedBuffer { constructor( array, stride ) { this.isInterleavedBuffer = true; this.array = array; this.stride = stride; this.count = array !== undefined ? array.length / stride : 0; this.usage = StaticDrawUsage; this.updateRanges = []; this.version = 0; this.uuid = generateUUID(); } onUploadCallback() {} set needsUpdate( value ) { if ( value === true ) this.version ++; } setUsage( value ) { this.usage = value; return this; } addUpdateRange( start, count ) { this.updateRanges.push( { start, count } ); } clearUpdateRanges() { this.updateRanges.length = 0; } copy( source ) { this.array = new source.array.constructor( source.array ); this.count = source.count; this.stride = source.stride; this.usage = source.usage; return this; } copyAt( index1, attribute, index2 ) { index1 *= this.stride; index2 *= attribute.stride; for ( let i = 0, l = this.stride; i < l; i ++ ) { this.array[ index1 + i ] = attribute.array[ index2 + i ]; } return this; } set( value, offset = 0 ) { this.array.set( value, offset ); return this; } clone( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = this.array.slice( 0 ).buffer; } const array = new this.array.constructor( data.arrayBuffers[ this.array.buffer._uuid ] ); const ib = new this.constructor( array, this.stride ); ib.setUsage( this.usage ); return ib; } onUpload( callback ) { this.onUploadCallback = callback; return this; } toJSON( data ) { if ( data.arrayBuffers === undefined ) { data.arrayBuffers = {}; } // generate UUID for array buffer if necessary if ( this.array.buffer._uuid === undefined ) { this.array.buffer._uuid = generateUUID(); } if ( data.arrayBuffers[ this.array.buffer._uuid ] === undefined ) { data.arrayBuffers[ this.array.buffer._uuid ] = Array.from( new Uint32Array( this.array.buffer ) ); } // return { uuid: this.uuid, buffer: this.array.buffer._uuid, type: this.array.constructor.name, stride: this.stride }; } } const _vector$6 = /*@__PURE__*/ new Vector3(); class InterleavedBufferAttribute { constructor( interleavedBuffer, itemSize, offset, normalized = false ) { this.isInterleavedBufferAttribute = true; this.name = ''; this.data = interleavedBuffer; this.itemSize = itemSize; this.offset = offset; this.normalized = normalized; } get count() { return this.data.count; } get array() { return this.data.array; } set needsUpdate( value ) { this.data.needsUpdate = value; } applyMatrix4( m ) { for ( let i = 0, l = this.data.count; i < l; i ++ ) { _vector$6.fromBufferAttribute( this, i ); _vector$6.applyMatrix4( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } applyNormalMatrix( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$6.fromBufferAttribute( this, i ); _vector$6.applyNormalMatrix( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } transformDirection( m ) { for ( let i = 0, l = this.count; i < l; i ++ ) { _vector$6.fromBufferAttribute( this, i ); _vector$6.transformDirection( m ); this.setXYZ( i, _vector$6.x, _vector$6.y, _vector$6.z ); } return this; } getComponent( index, component ) { let value = this.array[ index * this.data.stride + this.offset + component ]; if ( this.normalized ) value = denormalize( value, this.array ); return value; } setComponent( index, component, value ) { if ( this.normalized ) value = normalize$1( value, this.array ); this.data.array[ index * this.data.stride + this.offset + component ] = value; return this; } setX( index, x ) { if ( this.normalized ) x = normalize$1( x, this.array ); this.data.array[ index * this.data.stride + this.offset ] = x; return this; } setY( index, y ) { if ( this.normalized ) y = normalize$1( y, this.array ); this.data.array[ index * this.data.stride + this.offset + 1 ] = y; return this; } setZ( index, z ) { if ( this.normalized ) z = normalize$1( z, this.array ); this.data.array[ index * this.data.stride + this.offset + 2 ] = z; return this; } setW( index, w ) { if ( this.normalized ) w = normalize$1( w, this.array ); this.data.array[ index * this.data.stride + this.offset + 3 ] = w; return this; } getX( index ) { let x = this.data.array[ index * this.data.stride + this.offset ]; if ( this.normalized ) x = denormalize( x, this.array ); return x; } getY( index ) { let y = this.data.array[ index * this.data.stride + this.offset + 1 ]; if ( this.normalized ) y = denormalize( y, this.array ); return y; } getZ( index ) { let z = this.data.array[ index * this.data.stride + this.offset + 2 ]; if ( this.normalized ) z = denormalize( z, this.array ); return z; } getW( index ) { let w = this.data.array[ index * this.data.stride + this.offset + 3 ]; if ( this.normalized ) w = denormalize( w, this.array ); return w; } setXY( index, x, y ) { index = index * this.data.stride + this.offset; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); } this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; return this; } setXYZ( index, x, y, z ) { index = index * this.data.stride + this.offset; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); z = normalize$1( z, this.array ); } this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; return this; } setXYZW( index, x, y, z, w ) { index = index * this.data.stride + this.offset; if ( this.normalized ) { x = normalize$1( x, this.array ); y = normalize$1( y, this.array ); z = normalize$1( z, this.array ); w = normalize$1( w, this.array ); } this.data.array[ index + 0 ] = x; this.data.array[ index + 1 ] = y; this.data.array[ index + 2 ] = z; this.data.array[ index + 3 ] = w; return this; } clone( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.clone(): Cloning an interleaved buffer attribute will de-interleave buffer data.' ); const array = []; for ( let i = 0; i < this.count; i ++ ) { const index = i * this.data.stride + this.offset; for ( let j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } return new BufferAttribute( new this.array.constructor( array ), this.itemSize, this.normalized ); } else { if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.clone( data ); } return new InterleavedBufferAttribute( data.interleavedBuffers[ this.data.uuid ], this.itemSize, this.offset, this.normalized ); } } toJSON( data ) { if ( data === undefined ) { console.log( 'THREE.InterleavedBufferAttribute.toJSON(): Serializing an interleaved buffer attribute will de-interleave buffer data.' ); const array = []; for ( let i = 0; i < this.count; i ++ ) { const index = i * this.data.stride + this.offset; for ( let j = 0; j < this.itemSize; j ++ ) { array.push( this.data.array[ index + j ] ); } } // de-interleave data and save it as an ordinary buffer attribute for now return { itemSize: this.itemSize, type: this.array.constructor.name, array: array, normalized: this.normalized }; } else { // save as true interleaved attribute if ( data.interleavedBuffers === undefined ) { data.interleavedBuffers = {}; } if ( data.interleavedBuffers[ this.data.uuid ] === undefined ) { data.interleavedBuffers[ this.data.uuid ] = this.data.toJSON( data ); } return { isInterleavedBufferAttribute: true, itemSize: this.itemSize, data: this.data.uuid, offset: this.offset, normalized: this.normalized }; } } } class SpriteMaterial extends Material { constructor( parameters ) { super(); this.isSpriteMaterial = true; this.type = 'SpriteMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.alphaMap = null; this.rotation = 0; this.sizeAttenuation = true; this.transparent = true; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.alphaMap = source.alphaMap; this.rotation = source.rotation; this.sizeAttenuation = source.sizeAttenuation; this.fog = source.fog; return this; } } let _geometry$1; const _intersectPoint = /*@__PURE__*/ new Vector3(); const _worldScale = /*@__PURE__*/ new Vector3(); const _mvPosition = /*@__PURE__*/ new Vector3(); const _alignedPosition = /*@__PURE__*/ new Vector2(); const _rotatedPosition = /*@__PURE__*/ new Vector2(); const _viewWorldMatrix = /*@__PURE__*/ new Matrix4(); const _vA = /*@__PURE__*/ new Vector3(); const _vB = /*@__PURE__*/ new Vector3(); const _vC = /*@__PURE__*/ new Vector3(); const _uvA = /*@__PURE__*/ new Vector2(); const _uvB = /*@__PURE__*/ new Vector2(); const _uvC = /*@__PURE__*/ new Vector2(); class Sprite extends Object3D { constructor( material = new SpriteMaterial() ) { super(); this.isSprite = true; this.type = 'Sprite'; if ( _geometry$1 === undefined ) { _geometry$1 = new BufferGeometry(); const float32Array = new Float32Array( [ -0.5, -0.5, 0, 0, 0, 0.5, -0.5, 0, 1, 0, 0.5, 0.5, 0, 1, 1, -0.5, 0.5, 0, 0, 1 ] ); const interleavedBuffer = new InterleavedBuffer( float32Array, 5 ); _geometry$1.setIndex( [ 0, 1, 2, 0, 2, 3 ] ); _geometry$1.setAttribute( 'position', new InterleavedBufferAttribute( interleavedBuffer, 3, 0, false ) ); _geometry$1.setAttribute( 'uv', new InterleavedBufferAttribute( interleavedBuffer, 2, 3, false ) ); } this.geometry = _geometry$1; this.material = material; this.center = new Vector2( 0.5, 0.5 ); } raycast( raycaster, intersects ) { if ( raycaster.camera === null ) { console.error( 'THREE.Sprite: "Raycaster.camera" needs to be set in order to raycast against sprites.' ); } _worldScale.setFromMatrixScale( this.matrixWorld ); _viewWorldMatrix.copy( raycaster.camera.matrixWorld ); this.modelViewMatrix.multiplyMatrices( raycaster.camera.matrixWorldInverse, this.matrixWorld ); _mvPosition.setFromMatrixPosition( this.modelViewMatrix ); if ( raycaster.camera.isPerspectiveCamera && this.material.sizeAttenuation === false ) { _worldScale.multiplyScalar( - _mvPosition.z ); } const rotation = this.material.rotation; let sin, cos; if ( rotation !== 0 ) { cos = Math.cos( rotation ); sin = Math.sin( rotation ); } const center = this.center; transformVertex( _vA.set( -0.5, -0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); transformVertex( _vB.set( 0.5, -0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); transformVertex( _vC.set( 0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); _uvA.set( 0, 0 ); _uvB.set( 1, 0 ); _uvC.set( 1, 1 ); // check first triangle let intersect = raycaster.ray.intersectTriangle( _vA, _vB, _vC, false, _intersectPoint ); if ( intersect === null ) { // check second triangle transformVertex( _vB.set( -0.5, 0.5, 0 ), _mvPosition, center, _worldScale, sin, cos ); _uvB.set( 0, 1 ); intersect = raycaster.ray.intersectTriangle( _vA, _vC, _vB, false, _intersectPoint ); if ( intersect === null ) { return; } } const distance = raycaster.ray.origin.distanceTo( _intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, point: _intersectPoint.clone(), uv: Triangle.getInterpolation( _intersectPoint, _vA, _vB, _vC, _uvA, _uvB, _uvC, new Vector2() ), face: null, object: this } ); } copy( source, recursive ) { super.copy( source, recursive ); if ( source.center !== undefined ) this.center.copy( source.center ); this.material = source.material; return this; } } function transformVertex( vertexPosition, mvPosition, center, scale, sin, cos ) { // compute position in camera space _alignedPosition.subVectors( vertexPosition, center ).addScalar( 0.5 ).multiply( scale ); // to check if rotation is not zero if ( sin !== undefined ) { _rotatedPosition.x = ( cos * _alignedPosition.x ) - ( sin * _alignedPosition.y ); _rotatedPosition.y = ( sin * _alignedPosition.x ) + ( cos * _alignedPosition.y ); } else { _rotatedPosition.copy( _alignedPosition ); } vertexPosition.copy( mvPosition ); vertexPosition.x += _rotatedPosition.x; vertexPosition.y += _rotatedPosition.y; // transform to world space vertexPosition.applyMatrix4( _viewWorldMatrix ); } const _v1$2 = /*@__PURE__*/ new Vector3(); const _v2$1 = /*@__PURE__*/ new Vector3(); class LOD extends Object3D { constructor() { super(); this._currentLevel = 0; this.type = 'LOD'; Object.defineProperties( this, { levels: { enumerable: true, value: [] }, isLOD: { value: true, } } ); this.autoUpdate = true; } copy( source ) { super.copy( source, false ); const levels = source.levels; for ( let i = 0, l = levels.length; i < l; i ++ ) { const level = levels[ i ]; this.addLevel( level.object.clone(), level.distance, level.hysteresis ); } this.autoUpdate = source.autoUpdate; return this; } addLevel( object, distance = 0, hysteresis = 0 ) { distance = Math.abs( distance ); const levels = this.levels; let l; for ( l = 0; l < levels.length; l ++ ) { if ( distance < levels[ l ].distance ) { break; } } levels.splice( l, 0, { distance: distance, hysteresis: hysteresis, object: object } ); this.add( object ); return this; } removeLevel( distance ) { const levels = this.levels; for ( let i = 0; i < levels.length; i ++ ) { if ( levels[ i ].distance === distance ) { const removedElements = levels.splice( i, 1 ); this.remove( removedElements[ 0 ].object ); return true; } } return false; } getCurrentLevel() { return this._currentLevel; } getObjectForDistance( distance ) { const levels = this.levels; if ( levels.length > 0 ) { let i, l; for ( i = 1, l = levels.length; i < l; i ++ ) { let levelDistance = levels[ i ].distance; if ( levels[ i ].object.visible ) { levelDistance -= levelDistance * levels[ i ].hysteresis; } if ( distance < levelDistance ) { break; } } return levels[ i - 1 ].object; } return null; } raycast( raycaster, intersects ) { const levels = this.levels; if ( levels.length > 0 ) { _v1$2.setFromMatrixPosition( this.matrixWorld ); const distance = raycaster.ray.origin.distanceTo( _v1$2 ); this.getObjectForDistance( distance ).raycast( raycaster, intersects ); } } update( camera ) { const levels = this.levels; if ( levels.length > 1 ) { _v1$2.setFromMatrixPosition( camera.matrixWorld ); _v2$1.setFromMatrixPosition( this.matrixWorld ); const distance = _v1$2.distanceTo( _v2$1 ) / camera.zoom; levels[ 0 ].object.visible = true; let i, l; for ( i = 1, l = levels.length; i < l; i ++ ) { let levelDistance = levels[ i ].distance; if ( levels[ i ].object.visible ) { levelDistance -= levelDistance * levels[ i ].hysteresis; } if ( distance >= levelDistance ) { levels[ i - 1 ].object.visible = false; levels[ i ].object.visible = true; } else { break; } } this._currentLevel = i - 1; for ( ; i < l; i ++ ) { levels[ i ].object.visible = false; } } } toJSON( meta ) { const data = super.toJSON( meta ); if ( this.autoUpdate === false ) data.object.autoUpdate = false; data.object.levels = []; const levels = this.levels; for ( let i = 0, l = levels.length; i < l; i ++ ) { const level = levels[ i ]; data.object.levels.push( { object: level.object.uuid, distance: level.distance, hysteresis: level.hysteresis } ); } return data; } } const _basePosition = /*@__PURE__*/ new Vector3(); const _skinIndex = /*@__PURE__*/ new Vector4(); const _skinWeight = /*@__PURE__*/ new Vector4(); const _vector3 = /*@__PURE__*/ new Vector3(); const _matrix4 = /*@__PURE__*/ new Matrix4(); const _vertex = /*@__PURE__*/ new Vector3(); const _sphere$4 = /*@__PURE__*/ new Sphere(); const _inverseMatrix$2 = /*@__PURE__*/ new Matrix4(); const _ray$2 = /*@__PURE__*/ new Ray(); class SkinnedMesh extends Mesh { constructor( geometry, material ) { super( geometry, material ); this.isSkinnedMesh = true; this.type = 'SkinnedMesh'; this.bindMode = AttachedBindMode; this.bindMatrix = new Matrix4(); this.bindMatrixInverse = new Matrix4(); this.boundingBox = null; this.boundingSphere = null; } computeBoundingBox() { const geometry = this.geometry; if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } this.boundingBox.makeEmpty(); const positionAttribute = geometry.getAttribute( 'position' ); for ( let i = 0; i < positionAttribute.count; i ++ ) { this.getVertexPosition( i, _vertex ); this.boundingBox.expandByPoint( _vertex ); } } computeBoundingSphere() { const geometry = this.geometry; if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } this.boundingSphere.makeEmpty(); const positionAttribute = geometry.getAttribute( 'position' ); for ( let i = 0; i < positionAttribute.count; i ++ ) { this.getVertexPosition( i, _vertex ); this.boundingSphere.expandByPoint( _vertex ); } } copy( source, recursive ) { super.copy( source, recursive ); this.bindMode = source.bindMode; this.bindMatrix.copy( source.bindMatrix ); this.bindMatrixInverse.copy( source.bindMatrixInverse ); this.skeleton = source.skeleton; if ( source.boundingBox !== null ) this.boundingBox = source.boundingBox.clone(); if ( source.boundingSphere !== null ) this.boundingSphere = source.boundingSphere.clone(); return this; } raycast( raycaster, intersects ) { const material = this.material; const matrixWorld = this.matrixWorld; if ( material === undefined ) return; // test with bounding sphere in world space if ( this.boundingSphere === null ) this.computeBoundingSphere(); _sphere$4.copy( this.boundingSphere ); _sphere$4.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( _sphere$4 ) === false ) return; // convert ray to local space of skinned mesh _inverseMatrix$2.copy( matrixWorld ).invert(); _ray$2.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$2 ); // test with bounding box in local space if ( this.boundingBox !== null ) { if ( _ray$2.intersectsBox( this.boundingBox ) === false ) return; } // test for intersections with geometry this._computeIntersections( raycaster, intersects, _ray$2 ); } getVertexPosition( index, target ) { super.getVertexPosition( index, target ); this.applyBoneTransform( index, target ); return target; } bind( skeleton, bindMatrix ) { this.skeleton = skeleton; if ( bindMatrix === undefined ) { this.updateMatrixWorld( true ); this.skeleton.calculateInverses(); bindMatrix = this.matrixWorld; } this.bindMatrix.copy( bindMatrix ); this.bindMatrixInverse.copy( bindMatrix ).invert(); } pose() { this.skeleton.pose(); } normalizeSkinWeights() { const vector = new Vector4(); const skinWeight = this.geometry.attributes.skinWeight; for ( let i = 0, l = skinWeight.count; i < l; i ++ ) { vector.fromBufferAttribute( skinWeight, i ); const scale = 1.0 / vector.manhattanLength(); if ( scale !== Infinity ) { vector.multiplyScalar( scale ); } else { vector.set( 1, 0, 0, 0 ); // do something reasonable } skinWeight.setXYZW( i, vector.x, vector.y, vector.z, vector.w ); } } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); if ( this.bindMode === AttachedBindMode ) { this.bindMatrixInverse.copy( this.matrixWorld ).invert(); } else if ( this.bindMode === DetachedBindMode ) { this.bindMatrixInverse.copy( this.bindMatrix ).invert(); } else { console.warn( 'THREE.SkinnedMesh: Unrecognized bindMode: ' + this.bindMode ); } } applyBoneTransform( index, vector ) { const skeleton = this.skeleton; const geometry = this.geometry; _skinIndex.fromBufferAttribute( geometry.attributes.skinIndex, index ); _skinWeight.fromBufferAttribute( geometry.attributes.skinWeight, index ); _basePosition.copy( vector ).applyMatrix4( this.bindMatrix ); vector.set( 0, 0, 0 ); for ( let i = 0; i < 4; i ++ ) { const weight = _skinWeight.getComponent( i ); if ( weight !== 0 ) { const boneIndex = _skinIndex.getComponent( i ); _matrix4.multiplyMatrices( skeleton.bones[ boneIndex ].matrixWorld, skeleton.boneInverses[ boneIndex ] ); vector.addScaledVector( _vector3.copy( _basePosition ).applyMatrix4( _matrix4 ), weight ); } } return vector.applyMatrix4( this.bindMatrixInverse ); } } class Bone extends Object3D { constructor() { super(); this.isBone = true; this.type = 'Bone'; } } class DataTexture extends Texture { constructor( data = null, width = 1, height = 1, format, type, mapping, wrapS, wrapT, magFilter = NearestFilter, minFilter = NearestFilter, anisotropy, colorSpace ) { super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); this.isDataTexture = true; this.image = { data: data, width: width, height: height }; this.generateMipmaps = false; this.flipY = false; this.unpackAlignment = 1; } } const _offsetMatrix = /*@__PURE__*/ new Matrix4(); const _identityMatrix$1 = /*@__PURE__*/ new Matrix4(); class Skeleton { constructor( bones = [], boneInverses = [] ) { this.uuid = generateUUID(); this.bones = bones.slice( 0 ); this.boneInverses = boneInverses; this.boneMatrices = null; this.boneTexture = null; this.init(); } init() { const bones = this.bones; const boneInverses = this.boneInverses; this.boneMatrices = new Float32Array( bones.length * 16 ); // calculate inverse bone matrices if necessary if ( boneInverses.length === 0 ) { this.calculateInverses(); } else { // handle special case if ( bones.length !== boneInverses.length ) { console.warn( 'THREE.Skeleton: Number of inverse bone matrices does not match amount of bones.' ); this.boneInverses = []; for ( let i = 0, il = this.bones.length; i < il; i ++ ) { this.boneInverses.push( new Matrix4() ); } } } } calculateInverses() { this.boneInverses.length = 0; for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const inverse = new Matrix4(); if ( this.bones[ i ] ) { inverse.copy( this.bones[ i ].matrixWorld ).invert(); } this.boneInverses.push( inverse ); } } pose() { // recover the bind-time world matrices for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone ) { bone.matrixWorld.copy( this.boneInverses[ i ] ).invert(); } } // compute the local matrices, positions, rotations and scales for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone ) { if ( bone.parent && bone.parent.isBone ) { bone.matrix.copy( bone.parent.matrixWorld ).invert(); bone.matrix.multiply( bone.matrixWorld ); } else { bone.matrix.copy( bone.matrixWorld ); } bone.matrix.decompose( bone.position, bone.quaternion, bone.scale ); } } } update() { const bones = this.bones; const boneInverses = this.boneInverses; const boneMatrices = this.boneMatrices; const boneTexture = this.boneTexture; // flatten bone matrices to array for ( let i = 0, il = bones.length; i < il; i ++ ) { // compute the offset between the current and the original transform const matrix = bones[ i ] ? bones[ i ].matrixWorld : _identityMatrix$1; _offsetMatrix.multiplyMatrices( matrix, boneInverses[ i ] ); _offsetMatrix.toArray( boneMatrices, i * 16 ); } if ( boneTexture !== null ) { boneTexture.needsUpdate = true; } } clone() { return new Skeleton( this.bones, this.boneInverses ); } computeBoneTexture() { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 bones * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 bones * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 bones * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 bones * 4 pixels = (64 * 64) let size = Math.sqrt( this.bones.length * 4 ); // 4 pixels needed for 1 matrix size = Math.ceil( size / 4 ) * 4; size = Math.max( size, 4 ); const boneMatrices = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel boneMatrices.set( this.boneMatrices ); // copy current values const boneTexture = new DataTexture( boneMatrices, size, size, RGBAFormat, FloatType ); boneTexture.needsUpdate = true; this.boneMatrices = boneMatrices; this.boneTexture = boneTexture; return this; } getBoneByName( name ) { for ( let i = 0, il = this.bones.length; i < il; i ++ ) { const bone = this.bones[ i ]; if ( bone.name === name ) { return bone; } } return undefined; } dispose( ) { if ( this.boneTexture !== null ) { this.boneTexture.dispose(); this.boneTexture = null; } } fromJSON( json, bones ) { this.uuid = json.uuid; for ( let i = 0, l = json.bones.length; i < l; i ++ ) { const uuid = json.bones[ i ]; let bone = bones[ uuid ]; if ( bone === undefined ) { console.warn( 'THREE.Skeleton: No bone found with UUID:', uuid ); bone = new Bone(); } this.bones.push( bone ); this.boneInverses.push( new Matrix4().fromArray( json.boneInverses[ i ] ) ); } this.init(); return this; } toJSON() { const data = { metadata: { version: 4.6, type: 'Skeleton', generator: 'Skeleton.toJSON' }, bones: [], boneInverses: [] }; data.uuid = this.uuid; const bones = this.bones; const boneInverses = this.boneInverses; for ( let i = 0, l = bones.length; i < l; i ++ ) { const bone = bones[ i ]; data.bones.push( bone.uuid ); const boneInverse = boneInverses[ i ]; data.boneInverses.push( boneInverse.toArray() ); } return data; } } class InstancedBufferAttribute extends BufferAttribute { constructor( array, itemSize, normalized, meshPerAttribute = 1 ) { super( array, itemSize, normalized ); this.isInstancedBufferAttribute = true; this.meshPerAttribute = meshPerAttribute; } copy( source ) { super.copy( source ); this.meshPerAttribute = source.meshPerAttribute; return this; } toJSON() { const data = super.toJSON(); data.meshPerAttribute = this.meshPerAttribute; data.isInstancedBufferAttribute = true; return data; } } const _instanceLocalMatrix = /*@__PURE__*/ new Matrix4(); const _instanceWorldMatrix = /*@__PURE__*/ new Matrix4(); const _instanceIntersects = []; const _box3 = /*@__PURE__*/ new Box3(); const _identity = /*@__PURE__*/ new Matrix4(); const _mesh$1 = /*@__PURE__*/ new Mesh(); const _sphere$3 = /*@__PURE__*/ new Sphere(); class InstancedMesh extends Mesh { constructor( geometry, material, count ) { super( geometry, material ); this.isInstancedMesh = true; this.instanceMatrix = new InstancedBufferAttribute( new Float32Array( count * 16 ), 16 ); this.instanceColor = null; this.morphTexture = null; this.count = count; this.boundingBox = null; this.boundingSphere = null; for ( let i = 0; i < count; i ++ ) { this.setMatrixAt( i, _identity ); } } computeBoundingBox() { const geometry = this.geometry; const count = this.count; if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } if ( geometry.boundingBox === null ) { geometry.computeBoundingBox(); } this.boundingBox.makeEmpty(); for ( let i = 0; i < count; i ++ ) { this.getMatrixAt( i, _instanceLocalMatrix ); _box3.copy( geometry.boundingBox ).applyMatrix4( _instanceLocalMatrix ); this.boundingBox.union( _box3 ); } } computeBoundingSphere() { const geometry = this.geometry; const count = this.count; if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } if ( geometry.boundingSphere === null ) { geometry.computeBoundingSphere(); } this.boundingSphere.makeEmpty(); for ( let i = 0; i < count; i ++ ) { this.getMatrixAt( i, _instanceLocalMatrix ); _sphere$3.copy( geometry.boundingSphere ).applyMatrix4( _instanceLocalMatrix ); this.boundingSphere.union( _sphere$3 ); } } copy( source, recursive ) { super.copy( source, recursive ); this.instanceMatrix.copy( source.instanceMatrix ); if ( source.morphTexture !== null ) this.morphTexture = source.morphTexture.clone(); if ( source.instanceColor !== null ) this.instanceColor = source.instanceColor.clone(); this.count = source.count; if ( source.boundingBox !== null ) this.boundingBox = source.boundingBox.clone(); if ( source.boundingSphere !== null ) this.boundingSphere = source.boundingSphere.clone(); return this; } getColorAt( index, color ) { color.fromArray( this.instanceColor.array, index * 3 ); } getMatrixAt( index, matrix ) { matrix.fromArray( this.instanceMatrix.array, index * 16 ); } getMorphAt( index, object ) { const objectInfluences = object.morphTargetInfluences; const array = this.morphTexture.source.data.data; const len = objectInfluences.length + 1; // All influences + the baseInfluenceSum const dataIndex = index * len + 1; // Skip the baseInfluenceSum at the beginning for ( let i = 0; i < objectInfluences.length; i ++ ) { objectInfluences[ i ] = array[ dataIndex + i ]; } } raycast( raycaster, intersects ) { const matrixWorld = this.matrixWorld; const raycastTimes = this.count; _mesh$1.geometry = this.geometry; _mesh$1.material = this.material; if ( _mesh$1.material === undefined ) return; // test with bounding sphere first if ( this.boundingSphere === null ) this.computeBoundingSphere(); _sphere$3.copy( this.boundingSphere ); _sphere$3.applyMatrix4( matrixWorld ); if ( raycaster.ray.intersectsSphere( _sphere$3 ) === false ) return; // now test each instance for ( let instanceId = 0; instanceId < raycastTimes; instanceId ++ ) { // calculate the world matrix for each instance this.getMatrixAt( instanceId, _instanceLocalMatrix ); _instanceWorldMatrix.multiplyMatrices( matrixWorld, _instanceLocalMatrix ); // the mesh represents this single instance _mesh$1.matrixWorld = _instanceWorldMatrix; _mesh$1.raycast( raycaster, _instanceIntersects ); // process the result of raycast for ( let i = 0, l = _instanceIntersects.length; i < l; i ++ ) { const intersect = _instanceIntersects[ i ]; intersect.instanceId = instanceId; intersect.object = this; intersects.push( intersect ); } _instanceIntersects.length = 0; } } setColorAt( index, color ) { if ( this.instanceColor === null ) { this.instanceColor = new InstancedBufferAttribute( new Float32Array( this.instanceMatrix.count * 3 ).fill( 1 ), 3 ); } color.toArray( this.instanceColor.array, index * 3 ); } setMatrixAt( index, matrix ) { matrix.toArray( this.instanceMatrix.array, index * 16 ); } setMorphAt( index, object ) { const objectInfluences = object.morphTargetInfluences; const len = objectInfluences.length + 1; // morphBaseInfluence + all influences if ( this.morphTexture === null ) { this.morphTexture = new DataTexture( new Float32Array( len * this.count ), len, this.count, RedFormat, FloatType ); } const array = this.morphTexture.source.data.data; let morphInfluencesSum = 0; for ( let i = 0; i < objectInfluences.length; i ++ ) { morphInfluencesSum += objectInfluences[ i ]; } const morphBaseInfluence = this.geometry.morphTargetsRelative ? 1 : 1 - morphInfluencesSum; const dataIndex = len * index; array[ dataIndex ] = morphBaseInfluence; array.set( objectInfluences, dataIndex + 1 ); } updateMorphTargets() { } dispose() { this.dispatchEvent( { type: 'dispose' } ); if ( this.morphTexture !== null ) { this.morphTexture.dispose(); this.morphTexture = null; } return this; } } function sortOpaque( a, b ) { return a.z - b.z; } function sortTransparent( a, b ) { return b.z - a.z; } class MultiDrawRenderList { constructor() { this.index = 0; this.pool = []; this.list = []; } push( drawRange, z, index ) { const pool = this.pool; const list = this.list; if ( this.index >= pool.length ) { pool.push( { start: -1, count: -1, z: -1, index: -1, } ); } const item = pool[ this.index ]; list.push( item ); this.index ++; item.start = drawRange.start; item.count = drawRange.count; item.z = z; item.index = index; } reset() { this.list.length = 0; this.index = 0; } } const _matrix$1 = /*@__PURE__*/ new Matrix4(); const _invMatrixWorld = /*@__PURE__*/ new Matrix4(); const _identityMatrix = /*@__PURE__*/ new Matrix4(); const _whiteColor = /*@__PURE__*/ new Color( 1, 1, 1 ); const _projScreenMatrix$2 = /*@__PURE__*/ new Matrix4(); const _frustum = /*@__PURE__*/ new Frustum(); const _box$1 = /*@__PURE__*/ new Box3(); const _sphere$2 = /*@__PURE__*/ new Sphere(); const _vector$5 = /*@__PURE__*/ new Vector3(); const _forward = /*@__PURE__*/ new Vector3(); const _temp = /*@__PURE__*/ new Vector3(); const _renderList = /*@__PURE__*/ new MultiDrawRenderList(); const _mesh = /*@__PURE__*/ new Mesh(); const _batchIntersects = []; // @TODO: SkinnedMesh support? // @TODO: geometry.groups support? // @TODO: geometry.drawRange support? // @TODO: geometry.morphAttributes support? // @TODO: Support uniform parameter per geometry // @TODO: Add an "optimize" function to pack geometry and remove data gaps // copies data from attribute "src" into "target" starting at "targetOffset" function copyAttributeData( src, target, targetOffset = 0 ) { const itemSize = target.itemSize; if ( src.isInterleavedBufferAttribute || src.array.constructor !== target.array.constructor ) { // use the component getters and setters if the array data cannot // be copied directly const vertexCount = src.count; for ( let i = 0; i < vertexCount; i ++ ) { for ( let c = 0; c < itemSize; c ++ ) { target.setComponent( i + targetOffset, c, src.getComponent( i, c ) ); } } } else { // faster copy approach using typed array set function target.array.set( src.array, targetOffset * itemSize ); } target.needsUpdate = true; } class BatchedMesh extends Mesh { get maxInstanceCount() { return this._maxInstanceCount; } constructor( maxInstanceCount, maxVertexCount, maxIndexCount = maxVertexCount * 2, material ) { super( new BufferGeometry(), material ); this.isBatchedMesh = true; this.perObjectFrustumCulled = true; this.sortObjects = true; this.boundingBox = null; this.boundingSphere = null; this.customSort = null; // stores visible, active, and geometry id per object this._drawInfo = []; // instance ids that have been set as inactive, and are available to be overwritten this._availableInstanceIds = []; // geometry information this._drawRanges = []; this._reservedRanges = []; this._bounds = []; this._maxInstanceCount = maxInstanceCount; this._maxVertexCount = maxVertexCount; this._maxIndexCount = maxIndexCount; this._geometryInitialized = false; this._geometryCount = 0; this._multiDrawCounts = new Int32Array( maxInstanceCount ); this._multiDrawStarts = new Int32Array( maxInstanceCount ); this._multiDrawCount = 0; this._multiDrawInstances = null; this._visibilityChanged = true; // Local matrix per geometry by using data texture this._matricesTexture = null; this._indirectTexture = null; this._colorsTexture = null; this._initMatricesTexture(); this._initIndirectTexture(); } _initMatricesTexture() { // layout (1 matrix = 4 pixels) // RGBA RGBA RGBA RGBA (=> column1, column2, column3, column4) // with 8x8 pixel texture max 16 matrices * 4 pixels = (8 * 8) // 16x16 pixel texture max 64 matrices * 4 pixels = (16 * 16) // 32x32 pixel texture max 256 matrices * 4 pixels = (32 * 32) // 64x64 pixel texture max 1024 matrices * 4 pixels = (64 * 64) let size = Math.sqrt( this._maxInstanceCount * 4 ); // 4 pixels needed for 1 matrix size = Math.ceil( size / 4 ) * 4; size = Math.max( size, 4 ); const matricesArray = new Float32Array( size * size * 4 ); // 4 floats per RGBA pixel const matricesTexture = new DataTexture( matricesArray, size, size, RGBAFormat, FloatType ); this._matricesTexture = matricesTexture; } _initIndirectTexture() { let size = Math.sqrt( this._maxInstanceCount ); size = Math.ceil( size ); const indirectArray = new Uint32Array( size * size ); const indirectTexture = new DataTexture( indirectArray, size, size, RedIntegerFormat, UnsignedIntType ); this._indirectTexture = indirectTexture; } _initColorsTexture() { let size = Math.sqrt( this._maxInstanceCount ); size = Math.ceil( size ); // 4 floats per RGBA pixel initialized to white const colorsArray = new Float32Array( size * size * 4 ).fill( 1 ); const colorsTexture = new DataTexture( colorsArray, size, size, RGBAFormat, FloatType ); colorsTexture.colorSpace = ColorManagement.workingColorSpace; this._colorsTexture = colorsTexture; } _initializeGeometry( reference ) { const geometry = this.geometry; const maxVertexCount = this._maxVertexCount; const maxIndexCount = this._maxIndexCount; if ( this._geometryInitialized === false ) { for ( const attributeName in reference.attributes ) { const srcAttribute = reference.getAttribute( attributeName ); const { array, itemSize, normalized } = srcAttribute; const dstArray = new array.constructor( maxVertexCount * itemSize ); const dstAttribute = new BufferAttribute( dstArray, itemSize, normalized ); geometry.setAttribute( attributeName, dstAttribute ); } if ( reference.getIndex() !== null ) { // Reserve last u16 index for primitive restart. const indexArray = maxVertexCount > 65535 ? new Uint32Array( maxIndexCount ) : new Uint16Array( maxIndexCount ); geometry.setIndex( new BufferAttribute( indexArray, 1 ) ); } this._geometryInitialized = true; } } // Make sure the geometry is compatible with the existing combined geometry attributes _validateGeometry( geometry ) { // check to ensure the geometries are using consistent attributes and indices const batchGeometry = this.geometry; if ( Boolean( geometry.getIndex() ) !== Boolean( batchGeometry.getIndex() ) ) { throw new Error( 'BatchedMesh: All geometries must consistently have "index".' ); } for ( const attributeName in batchGeometry.attributes ) { if ( ! geometry.hasAttribute( attributeName ) ) { throw new Error( `BatchedMesh: Added geometry missing "${ attributeName }". All geometries must have consistent attributes.` ); } const srcAttribute = geometry.getAttribute( attributeName ); const dstAttribute = batchGeometry.getAttribute( attributeName ); if ( srcAttribute.itemSize !== dstAttribute.itemSize || srcAttribute.normalized !== dstAttribute.normalized ) { throw new Error( 'BatchedMesh: All attributes must have a consistent itemSize and normalized value.' ); } } } setCustomSort( func ) { this.customSort = func; return this; } computeBoundingBox() { if ( this.boundingBox === null ) { this.boundingBox = new Box3(); } const boundingBox = this.boundingBox; const drawInfo = this._drawInfo; boundingBox.makeEmpty(); for ( let i = 0, l = drawInfo.length; i < l; i ++ ) { if ( drawInfo[ i ].active === false ) continue; const geometryId = drawInfo[ i ].geometryIndex; this.getMatrixAt( i, _matrix$1 ); this.getBoundingBoxAt( geometryId, _box$1 ).applyMatrix4( _matrix$1 ); boundingBox.union( _box$1 ); } } computeBoundingSphere() { if ( this.boundingSphere === null ) { this.boundingSphere = new Sphere(); } const boundingSphere = this.boundingSphere; const drawInfo = this._drawInfo; boundingSphere.makeEmpty(); for ( let i = 0, l = drawInfo.length; i < l; i ++ ) { if ( drawInfo[ i ].active === false ) continue; const geometryId = drawInfo[ i ].geometryIndex; this.getMatrixAt( i, _matrix$1 ); this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 ); boundingSphere.union( _sphere$2 ); } } addInstance( geometryId ) { const atCapacity = this._drawInfo.length >= this.maxInstanceCount; // ensure we're not over geometry if ( atCapacity && this._availableInstanceIds.length === 0 ) { throw new Error( 'BatchedMesh: Maximum item count reached.' ); } const instanceDrawInfo = { visible: true, active: true, geometryIndex: geometryId, }; let drawId = null; // Prioritize using previously freed instance ids if ( this._availableInstanceIds.length > 0 ) { drawId = this._availableInstanceIds.pop(); this._drawInfo[ drawId ] = instanceDrawInfo; } else { drawId = this._drawInfo.length; this._drawInfo.push( instanceDrawInfo ); } const matricesTexture = this._matricesTexture; const matricesArray = matricesTexture.image.data; _identityMatrix.toArray( matricesArray, drawId * 16 ); matricesTexture.needsUpdate = true; const colorsTexture = this._colorsTexture; if ( colorsTexture ) { _whiteColor.toArray( colorsTexture.image.data, drawId * 4 ); colorsTexture.needsUpdate = true; } return drawId; } addGeometry( geometry, vertexCount = -1, indexCount = -1 ) { this._initializeGeometry( geometry ); this._validateGeometry( geometry ); // ensure we're not over geometry if ( this._drawInfo.length >= this._maxInstanceCount ) { throw new Error( 'BatchedMesh: Maximum item count reached.' ); } // get the necessary range fo the geometry const reservedRange = { vertexStart: -1, vertexCount: -1, indexStart: -1, indexCount: -1, }; let lastRange = null; const reservedRanges = this._reservedRanges; const drawRanges = this._drawRanges; const bounds = this._bounds; if ( this._geometryCount !== 0 ) { lastRange = reservedRanges[ reservedRanges.length - 1 ]; } if ( vertexCount === -1 ) { reservedRange.vertexCount = geometry.getAttribute( 'position' ).count; } else { reservedRange.vertexCount = vertexCount; } if ( lastRange === null ) { reservedRange.vertexStart = 0; } else { reservedRange.vertexStart = lastRange.vertexStart + lastRange.vertexCount; } const index = geometry.getIndex(); const hasIndex = index !== null; if ( hasIndex ) { if ( indexCount === -1 ) { reservedRange.indexCount = index.count; } else { reservedRange.indexCount = indexCount; } if ( lastRange === null ) { reservedRange.indexStart = 0; } else { reservedRange.indexStart = lastRange.indexStart + lastRange.indexCount; } } if ( reservedRange.indexStart !== -1 && reservedRange.indexStart + reservedRange.indexCount > this._maxIndexCount || reservedRange.vertexStart + reservedRange.vertexCount > this._maxVertexCount ) { throw new Error( 'BatchedMesh: Reserved space request exceeds the maximum buffer size.' ); } // update id const geometryId = this._geometryCount; this._geometryCount ++; // add the reserved range and draw range objects reservedRanges.push( reservedRange ); drawRanges.push( { start: hasIndex ? reservedRange.indexStart : reservedRange.vertexStart, count: -1 } ); bounds.push( { boxInitialized: false, box: new Box3(), sphereInitialized: false, sphere: new Sphere() } ); // update the geometry this.setGeometryAt( geometryId, geometry ); return geometryId; } setGeometryAt( geometryId, geometry ) { if ( geometryId >= this._geometryCount ) { throw new Error( 'BatchedMesh: Maximum geometry count reached.' ); } this._validateGeometry( geometry ); const batchGeometry = this.geometry; const hasIndex = batchGeometry.getIndex() !== null; const dstIndex = batchGeometry.getIndex(); const srcIndex = geometry.getIndex(); const reservedRange = this._reservedRanges[ geometryId ]; if ( hasIndex && srcIndex.count > reservedRange.indexCount || geometry.attributes.position.count > reservedRange.vertexCount ) { throw new Error( 'BatchedMesh: Reserved space not large enough for provided geometry.' ); } // copy geometry over const vertexStart = reservedRange.vertexStart; const vertexCount = reservedRange.vertexCount; for ( const attributeName in batchGeometry.attributes ) { // copy attribute data const srcAttribute = geometry.getAttribute( attributeName ); const dstAttribute = batchGeometry.getAttribute( attributeName ); copyAttributeData( srcAttribute, dstAttribute, vertexStart ); // fill the rest in with zeroes const itemSize = srcAttribute.itemSize; for ( let i = srcAttribute.count, l = vertexCount; i < l; i ++ ) { const index = vertexStart + i; for ( let c = 0; c < itemSize; c ++ ) { dstAttribute.setComponent( index, c, 0 ); } } dstAttribute.needsUpdate = true; dstAttribute.addUpdateRange( vertexStart * itemSize, vertexCount * itemSize ); } // copy index if ( hasIndex ) { const indexStart = reservedRange.indexStart; // copy index data over for ( let i = 0; i < srcIndex.count; i ++ ) { dstIndex.setX( indexStart + i, vertexStart + srcIndex.getX( i ) ); } // fill the rest in with zeroes for ( let i = srcIndex.count, l = reservedRange.indexCount; i < l; i ++ ) { dstIndex.setX( indexStart + i, vertexStart ); } dstIndex.needsUpdate = true; dstIndex.addUpdateRange( indexStart, reservedRange.indexCount ); } // store the bounding boxes const bound = this._bounds[ geometryId ]; if ( geometry.boundingBox !== null ) { bound.box.copy( geometry.boundingBox ); bound.boxInitialized = true; } else { bound.boxInitialized = false; } if ( geometry.boundingSphere !== null ) { bound.sphere.copy( geometry.boundingSphere ); bound.sphereInitialized = true; } else { bound.sphereInitialized = false; } // set drawRange count const drawRange = this._drawRanges[ geometryId ]; const posAttr = geometry.getAttribute( 'position' ); drawRange.count = hasIndex ? srcIndex.count : posAttr.count; this._visibilityChanged = true; return geometryId; } /* deleteGeometry( geometryId ) { // TODO: delete geometry and associated instances } */ deleteInstance( instanceId ) { const drawInfo = this._drawInfo; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return this; } drawInfo[ instanceId ].active = false; this._availableInstanceIds.push( instanceId ); this._visibilityChanged = true; return this; } // get bounding box and compute it if it doesn't exist getBoundingBoxAt( geometryId, target ) { if ( geometryId >= this._geometryCount ) { return null; } // compute bounding box const bound = this._bounds[ geometryId ]; const box = bound.box; const geometry = this.geometry; if ( bound.boxInitialized === false ) { box.makeEmpty(); const index = geometry.index; const position = geometry.attributes.position; const drawRange = this._drawRanges[ geometryId ]; for ( let i = drawRange.start, l = drawRange.start + drawRange.count; i < l; i ++ ) { let iv = i; if ( index ) { iv = index.getX( iv ); } box.expandByPoint( _vector$5.fromBufferAttribute( position, iv ) ); } bound.boxInitialized = true; } target.copy( box ); return target; } // get bounding sphere and compute it if it doesn't exist getBoundingSphereAt( geometryId, target ) { if ( geometryId >= this._geometryCount ) { return null; } // compute bounding sphere const bound = this._bounds[ geometryId ]; const sphere = bound.sphere; const geometry = this.geometry; if ( bound.sphereInitialized === false ) { sphere.makeEmpty(); this.getBoundingBoxAt( geometryId, _box$1 ); _box$1.getCenter( sphere.center ); const index = geometry.index; const position = geometry.attributes.position; const drawRange = this._drawRanges[ geometryId ]; let maxRadiusSq = 0; for ( let i = drawRange.start, l = drawRange.start + drawRange.count; i < l; i ++ ) { let iv = i; if ( index ) { iv = index.getX( iv ); } _vector$5.fromBufferAttribute( position, iv ); maxRadiusSq = Math.max( maxRadiusSq, sphere.center.distanceToSquared( _vector$5 ) ); } sphere.radius = Math.sqrt( maxRadiusSq ); bound.sphereInitialized = true; } target.copy( sphere ); return target; } setMatrixAt( instanceId, matrix ) { // @TODO: Map geometryId to index of the arrays because // optimize() can make geometryId mismatch the index const drawInfo = this._drawInfo; const matricesTexture = this._matricesTexture; const matricesArray = this._matricesTexture.image.data; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return this; } matrix.toArray( matricesArray, instanceId * 16 ); matricesTexture.needsUpdate = true; return this; } getMatrixAt( instanceId, matrix ) { const drawInfo = this._drawInfo; const matricesArray = this._matricesTexture.image.data; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return null; } return matrix.fromArray( matricesArray, instanceId * 16 ); } setColorAt( instanceId, color ) { if ( this._colorsTexture === null ) { this._initColorsTexture(); } // @TODO: Map id to index of the arrays because // optimize() can make id mismatch the index const colorsTexture = this._colorsTexture; const colorsArray = this._colorsTexture.image.data; const drawInfo = this._drawInfo; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return this; } color.toArray( colorsArray, instanceId * 4 ); colorsTexture.needsUpdate = true; return this; } getColorAt( instanceId, color ) { const colorsArray = this._colorsTexture.image.data; const drawInfo = this._drawInfo; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return null; } return color.fromArray( colorsArray, instanceId * 4 ); } setVisibleAt( instanceId, value ) { // if the geometry is out of range, not active, or visibility state // does not change then return early const drawInfo = this._drawInfo; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false || drawInfo[ instanceId ].visible === value ) { return this; } drawInfo[ instanceId ].visible = value; this._visibilityChanged = true; return this; } getVisibleAt( instanceId ) { // return early if the geometry is out of range or not active const drawInfo = this._drawInfo; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return false; } return drawInfo[ instanceId ].visible; } setGeometryIdAt( instanceId, geometryId ) { // return early if the geometry is out of range or not active const drawInfo = this._drawInfo; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return null; } // check if the provided geometryId is within the valid range if ( geometryId < 0 || geometryId >= this._geometryCount ) { return null; } drawInfo[ instanceId ].geometryIndex = geometryId; return this; } getGeometryIdAt( instanceId ) { const drawInfo = this._drawInfo; if ( instanceId >= drawInfo.length || drawInfo[ instanceId ].active === false ) { return -1; } return drawInfo[ instanceId ].geometryIndex; } getGeometryRangeAt( geometryId, target = {} ) { if ( geometryId < 0 || geometryId >= this._geometryCount ) { return null; } const drawRange = this._drawRanges[ geometryId ]; target.start = drawRange.start; target.count = drawRange.count; return target; } raycast( raycaster, intersects ) { const drawInfo = this._drawInfo; const drawRanges = this._drawRanges; const matrixWorld = this.matrixWorld; const batchGeometry = this.geometry; // iterate over each geometry _mesh.material = this.material; _mesh.geometry.index = batchGeometry.index; _mesh.geometry.attributes = batchGeometry.attributes; if ( _mesh.geometry.boundingBox === null ) { _mesh.geometry.boundingBox = new Box3(); } if ( _mesh.geometry.boundingSphere === null ) { _mesh.geometry.boundingSphere = new Sphere(); } for ( let i = 0, l = drawInfo.length; i < l; i ++ ) { if ( ! drawInfo[ i ].visible || ! drawInfo[ i ].active ) { continue; } const geometryId = drawInfo[ i ].geometryIndex; const drawRange = drawRanges[ geometryId ]; _mesh.geometry.setDrawRange( drawRange.start, drawRange.count ); // ge the intersects this.getMatrixAt( i, _mesh.matrixWorld ).premultiply( matrixWorld ); this.getBoundingBoxAt( geometryId, _mesh.geometry.boundingBox ); this.getBoundingSphereAt( geometryId, _mesh.geometry.boundingSphere ); _mesh.raycast( raycaster, _batchIntersects ); // add batch id to the intersects for ( let j = 0, l = _batchIntersects.length; j < l; j ++ ) { const intersect = _batchIntersects[ j ]; intersect.object = this; intersect.batchId = i; intersects.push( intersect ); } _batchIntersects.length = 0; } _mesh.material = null; _mesh.geometry.index = null; _mesh.geometry.attributes = {}; _mesh.geometry.setDrawRange( 0, Infinity ); } copy( source ) { super.copy( source ); this.geometry = source.geometry.clone(); this.perObjectFrustumCulled = source.perObjectFrustumCulled; this.sortObjects = source.sortObjects; this.boundingBox = source.boundingBox !== null ? source.boundingBox.clone() : null; this.boundingSphere = source.boundingSphere !== null ? source.boundingSphere.clone() : null; this._drawRanges = source._drawRanges.map( range => ( { ...range } ) ); this._reservedRanges = source._reservedRanges.map( range => ( { ...range } ) ); this._drawInfo = source._drawInfo.map( inf => ( { ...inf } ) ); this._bounds = source._bounds.map( bound => ( { boxInitialized: bound.boxInitialized, box: bound.box.clone(), sphereInitialized: bound.sphereInitialized, sphere: bound.sphere.clone() } ) ); this._maxInstanceCount = source._maxInstanceCount; this._maxVertexCount = source._maxVertexCount; this._maxIndexCount = source._maxIndexCount; this._geometryInitialized = source._geometryInitialized; this._geometryCount = source._geometryCount; this._multiDrawCounts = source._multiDrawCounts.slice(); this._multiDrawStarts = source._multiDrawStarts.slice(); this._matricesTexture = source._matricesTexture.clone(); this._matricesTexture.image.data = this._matricesTexture.image.data.slice(); if ( this._colorsTexture !== null ) { this._colorsTexture = source._colorsTexture.clone(); this._colorsTexture.image.data = this._colorsTexture.image.data.slice(); } return this; } dispose() { // Assuming the geometry is not shared with other meshes this.geometry.dispose(); this._matricesTexture.dispose(); this._matricesTexture = null; this._indirectTexture.dispose(); this._indirectTexture = null; if ( this._colorsTexture !== null ) { this._colorsTexture.dispose(); this._colorsTexture = null; } return this; } onBeforeRender( renderer, scene, camera, geometry, material/*, _group*/ ) { // if visibility has not changed and frustum culling and object sorting is not required // then skip iterating over all items if ( ! this._visibilityChanged && ! this.perObjectFrustumCulled && ! this.sortObjects ) { return; } // the indexed version of the multi draw function requires specifying the start // offset in bytes. const index = geometry.getIndex(); const bytesPerElement = index === null ? 1 : index.array.BYTES_PER_ELEMENT; const drawInfo = this._drawInfo; const multiDrawStarts = this._multiDrawStarts; const multiDrawCounts = this._multiDrawCounts; const drawRanges = this._drawRanges; const perObjectFrustumCulled = this.perObjectFrustumCulled; const indirectTexture = this._indirectTexture; const indirectArray = indirectTexture.image.data; // prepare the frustum in the local frame if ( perObjectFrustumCulled ) { _projScreenMatrix$2 .multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ) .multiply( this.matrixWorld ); _frustum.setFromProjectionMatrix( _projScreenMatrix$2, renderer.coordinateSystem ); } let count = 0; if ( this.sortObjects ) { // get the camera position in the local frame _invMatrixWorld.copy( this.matrixWorld ).invert(); _vector$5.setFromMatrixPosition( camera.matrixWorld ).applyMatrix4( _invMatrixWorld ); _forward.set( 0, 0, -1 ).transformDirection( camera.matrixWorld ).transformDirection( _invMatrixWorld ); for ( let i = 0, l = drawInfo.length; i < l; i ++ ) { if ( drawInfo[ i ].visible && drawInfo[ i ].active ) { const geometryId = drawInfo[ i ].geometryIndex; // get the bounds in world space this.getMatrixAt( i, _matrix$1 ); this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 ); // determine whether the batched geometry is within the frustum let culled = false; if ( perObjectFrustumCulled ) { culled = ! _frustum.intersectsSphere( _sphere$2 ); } if ( ! culled ) { // get the distance from camera used for sorting const z = _temp.subVectors( _sphere$2.center, _vector$5 ).dot( _forward ); _renderList.push( drawRanges[ geometryId ], z, i ); } } } // Sort the draw ranges and prep for rendering const list = _renderList.list; const customSort = this.customSort; if ( customSort === null ) { list.sort( material.transparent ? sortTransparent : sortOpaque ); } else { customSort.call( this, list, camera ); } for ( let i = 0, l = list.length; i < l; i ++ ) { const item = list[ i ]; multiDrawStarts[ count ] = item.start * bytesPerElement; multiDrawCounts[ count ] = item.count; indirectArray[ count ] = item.index; count ++; } _renderList.reset(); } else { for ( let i = 0, l = drawInfo.length; i < l; i ++ ) { if ( drawInfo[ i ].visible && drawInfo[ i ].active ) { const geometryId = drawInfo[ i ].geometryIndex; // determine whether the batched geometry is within the frustum let culled = false; if ( perObjectFrustumCulled ) { // get the bounds in world space this.getMatrixAt( i, _matrix$1 ); this.getBoundingSphereAt( geometryId, _sphere$2 ).applyMatrix4( _matrix$1 ); culled = ! _frustum.intersectsSphere( _sphere$2 ); } if ( ! culled ) { const range = drawRanges[ geometryId ]; multiDrawStarts[ count ] = range.start * bytesPerElement; multiDrawCounts[ count ] = range.count; indirectArray[ count ] = i; count ++; } } } } indirectTexture.needsUpdate = true; this._multiDrawCount = count; this._visibilityChanged = false; } onBeforeShadow( renderer, object, camera, shadowCamera, geometry, depthMaterial/* , group */ ) { this.onBeforeRender( renderer, null, shadowCamera, geometry, depthMaterial ); } } class LineBasicMaterial extends Material { constructor( parameters ) { super(); this.isLineBasicMaterial = true; this.type = 'LineBasicMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.linewidth = 1; this.linecap = 'round'; this.linejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.linewidth = source.linewidth; this.linecap = source.linecap; this.linejoin = source.linejoin; this.fog = source.fog; return this; } } const _vStart = /*@__PURE__*/ new Vector3(); const _vEnd = /*@__PURE__*/ new Vector3(); const _inverseMatrix$1 = /*@__PURE__*/ new Matrix4(); const _ray$1 = /*@__PURE__*/ new Ray(); const _sphere$1 = /*@__PURE__*/ new Sphere(); const _intersectPointOnRay = /*@__PURE__*/ new Vector3(); const _intersectPointOnSegment = /*@__PURE__*/ new Vector3(); class Line extends Object3D { constructor( geometry = new BufferGeometry(), material = new LineBasicMaterial() ) { super(); this.isLine = true; this.type = 'Line'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } computeLineDistances() { const geometry = this.geometry; // we assume non-indexed geometry if ( geometry.index === null ) { const positionAttribute = geometry.attributes.position; const lineDistances = [ 0 ]; for ( let i = 1, l = positionAttribute.count; i < l; i ++ ) { _vStart.fromBufferAttribute( positionAttribute, i - 1 ); _vEnd.fromBufferAttribute( positionAttribute, i ); lineDistances[ i ] = lineDistances[ i - 1 ]; lineDistances[ i ] += _vStart.distanceTo( _vEnd ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.Line.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } return this; } raycast( raycaster, intersects ) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Line.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere$1.copy( geometry.boundingSphere ); _sphere$1.applyMatrix4( matrixWorld ); _sphere$1.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere$1 ) === false ) return; // _inverseMatrix$1.copy( matrixWorld ).invert(); _ray$1.copy( raycaster.ray ).applyMatrix4( _inverseMatrix$1 ); const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); const localThresholdSq = localThreshold * localThreshold; const step = this.isLineSegments ? 2 : 1; const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if ( index !== null ) { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { const a = index.getX( i ); const b = index.getX( i + 1 ); const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, a, b ); if ( intersect ) { intersects.push( intersect ); } } if ( this.isLineLoop ) { const a = index.getX( end - 1 ); const b = index.getX( start ); const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, a, b ); if ( intersect ) { intersects.push( intersect ); } } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end - 1; i < l; i += step ) { const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, i, i + 1 ); if ( intersect ) { intersects.push( intersect ); } } if ( this.isLineLoop ) { const intersect = checkIntersection( this, raycaster, _ray$1, localThresholdSq, end - 1, start ); if ( intersect ) { intersects.push( intersect ); } } } } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } } function checkIntersection( object, raycaster, ray, thresholdSq, a, b ) { const positionAttribute = object.geometry.attributes.position; _vStart.fromBufferAttribute( positionAttribute, a ); _vEnd.fromBufferAttribute( positionAttribute, b ); const distSq = ray.distanceSqToSegment( _vStart, _vEnd, _intersectPointOnRay, _intersectPointOnSegment ); if ( distSq > thresholdSq ) return; _intersectPointOnRay.applyMatrix4( object.matrixWorld ); // Move back to world space for distance calculation const distance = raycaster.ray.origin.distanceTo( _intersectPointOnRay ); if ( distance < raycaster.near || distance > raycaster.far ) return; return { distance: distance, // What do we want? intersection point on the ray or on the segment?? // point: raycaster.ray.at( distance ), point: _intersectPointOnSegment.clone().applyMatrix4( object.matrixWorld ), index: a, face: null, faceIndex: null, barycoord: null, object: object }; } const _start = /*@__PURE__*/ new Vector3(); const _end = /*@__PURE__*/ new Vector3(); class LineSegments extends Line { constructor( geometry, material ) { super( geometry, material ); this.isLineSegments = true; this.type = 'LineSegments'; } computeLineDistances() { const geometry = this.geometry; // we assume non-indexed geometry if ( geometry.index === null ) { const positionAttribute = geometry.attributes.position; const lineDistances = []; for ( let i = 0, l = positionAttribute.count; i < l; i += 2 ) { _start.fromBufferAttribute( positionAttribute, i ); _end.fromBufferAttribute( positionAttribute, i + 1 ); lineDistances[ i ] = ( i === 0 ) ? 0 : lineDistances[ i - 1 ]; lineDistances[ i + 1 ] = lineDistances[ i ] + _start.distanceTo( _end ); } geometry.setAttribute( 'lineDistance', new Float32BufferAttribute( lineDistances, 1 ) ); } else { console.warn( 'THREE.LineSegments.computeLineDistances(): Computation only possible with non-indexed BufferGeometry.' ); } return this; } } class LineLoop extends Line { constructor( geometry, material ) { super( geometry, material ); this.isLineLoop = true; this.type = 'LineLoop'; } } class PointsMaterial extends Material { constructor( parameters ) { super(); this.isPointsMaterial = true; this.type = 'PointsMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.alphaMap = null; this.size = 1; this.sizeAttenuation = true; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.alphaMap = source.alphaMap; this.size = source.size; this.sizeAttenuation = source.sizeAttenuation; this.fog = source.fog; return this; } } const _inverseMatrix = /*@__PURE__*/ new Matrix4(); const _ray = /*@__PURE__*/ new Ray(); const _sphere = /*@__PURE__*/ new Sphere(); const _position$2 = /*@__PURE__*/ new Vector3(); class Points extends Object3D { constructor( geometry = new BufferGeometry(), material = new PointsMaterial() ) { super(); this.isPoints = true; this.type = 'Points'; this.geometry = geometry; this.material = material; this.updateMorphTargets(); } copy( source, recursive ) { super.copy( source, recursive ); this.material = Array.isArray( source.material ) ? source.material.slice() : source.material; this.geometry = source.geometry; return this; } raycast( raycaster, intersects ) { const geometry = this.geometry; const matrixWorld = this.matrixWorld; const threshold = raycaster.params.Points.threshold; const drawRange = geometry.drawRange; // Checking boundingSphere distance to ray if ( geometry.boundingSphere === null ) geometry.computeBoundingSphere(); _sphere.copy( geometry.boundingSphere ); _sphere.applyMatrix4( matrixWorld ); _sphere.radius += threshold; if ( raycaster.ray.intersectsSphere( _sphere ) === false ) return; // _inverseMatrix.copy( matrixWorld ).invert(); _ray.copy( raycaster.ray ).applyMatrix4( _inverseMatrix ); const localThreshold = threshold / ( ( this.scale.x + this.scale.y + this.scale.z ) / 3 ); const localThresholdSq = localThreshold * localThreshold; const index = geometry.index; const attributes = geometry.attributes; const positionAttribute = attributes.position; if ( index !== null ) { const start = Math.max( 0, drawRange.start ); const end = Math.min( index.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, il = end; i < il; i ++ ) { const a = index.getX( i ); _position$2.fromBufferAttribute( positionAttribute, a ); testPoint( _position$2, a, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } else { const start = Math.max( 0, drawRange.start ); const end = Math.min( positionAttribute.count, ( drawRange.start + drawRange.count ) ); for ( let i = start, l = end; i < l; i ++ ) { _position$2.fromBufferAttribute( positionAttribute, i ); testPoint( _position$2, i, localThresholdSq, matrixWorld, raycaster, intersects, this ); } } } updateMorphTargets() { const geometry = this.geometry; const morphAttributes = geometry.morphAttributes; const keys = Object.keys( morphAttributes ); if ( keys.length > 0 ) { const morphAttribute = morphAttributes[ keys[ 0 ] ]; if ( morphAttribute !== undefined ) { this.morphTargetInfluences = []; this.morphTargetDictionary = {}; for ( let m = 0, ml = morphAttribute.length; m < ml; m ++ ) { const name = morphAttribute[ m ].name || String( m ); this.morphTargetInfluences.push( 0 ); this.morphTargetDictionary[ name ] = m; } } } } } function testPoint( point, index, localThresholdSq, matrixWorld, raycaster, intersects, object ) { const rayPointDistanceSq = _ray.distanceSqToPoint( point ); if ( rayPointDistanceSq < localThresholdSq ) { const intersectPoint = new Vector3(); _ray.closestPointToPoint( point, intersectPoint ); intersectPoint.applyMatrix4( matrixWorld ); const distance = raycaster.ray.origin.distanceTo( intersectPoint ); if ( distance < raycaster.near || distance > raycaster.far ) return; intersects.push( { distance: distance, distanceToRay: Math.sqrt( rayPointDistanceSq ), point: intersectPoint, index: index, face: null, faceIndex: null, barycoord: null, object: object } ); } } class VideoTexture extends Texture { constructor( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { super( video, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.isVideoTexture = true; this.minFilter = minFilter !== undefined ? minFilter : LinearFilter; this.magFilter = magFilter !== undefined ? magFilter : LinearFilter; this.generateMipmaps = false; const scope = this; function updateVideo() { scope.needsUpdate = true; video.requestVideoFrameCallback( updateVideo ); } if ( 'requestVideoFrameCallback' in video ) { video.requestVideoFrameCallback( updateVideo ); } } clone() { return new this.constructor( this.image ).copy( this ); } update() { const video = this.image; const hasVideoFrameCallback = 'requestVideoFrameCallback' in video; if ( hasVideoFrameCallback === false && video.readyState >= video.HAVE_CURRENT_DATA ) { this.needsUpdate = true; } } } class FramebufferTexture extends Texture { constructor( width, height ) { super( { width, height } ); this.isFramebufferTexture = true; this.magFilter = NearestFilter; this.minFilter = NearestFilter; this.generateMipmaps = false; this.needsUpdate = true; } } class CompressedTexture extends Texture { constructor( mipmaps, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, colorSpace ) { super( null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, colorSpace ); this.isCompressedTexture = true; this.image = { width: width, height: height }; this.mipmaps = mipmaps; // no flipping for cube textures // (also flipping doesn't work for compressed textures ) this.flipY = false; // can't generate mipmaps for compressed textures // mips must be embedded in DDS files this.generateMipmaps = false; } } class CompressedArrayTexture extends CompressedTexture { constructor( mipmaps, width, height, depth, format, type ) { super( mipmaps, width, height, format, type ); this.isCompressedArrayTexture = true; this.image.depth = depth; this.wrapR = ClampToEdgeWrapping; this.layerUpdates = new Set(); } addLayerUpdate( layerIndex ) { this.layerUpdates.add( layerIndex ); } clearLayerUpdates() { this.layerUpdates.clear(); } } class CompressedCubeTexture extends CompressedTexture { constructor( images, format, type ) { super( undefined, images[ 0 ].width, images[ 0 ].height, format, type, CubeReflectionMapping ); this.isCompressedCubeTexture = true; this.isCubeTexture = true; this.image = images; } } class CanvasTexture extends Texture { constructor( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ) { super( canvas, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy ); this.isCanvasTexture = true; this.needsUpdate = true; } } /** * Extensible curve object. * * Some common of curve methods: * .getPoint( t, optionalTarget ), .getTangent( t, optionalTarget ) * .getPointAt( u, optionalTarget ), .getTangentAt( u, optionalTarget ) * .getPoints(), .getSpacedPoints() * .getLength() * .updateArcLengths() * * This following curves inherit from THREE.Curve: * * -- 2D curves -- * THREE.ArcCurve * THREE.CubicBezierCurve * THREE.EllipseCurve * THREE.LineCurve * THREE.QuadraticBezierCurve * THREE.SplineCurve * * -- 3D curves -- * THREE.CatmullRomCurve3 * THREE.CubicBezierCurve3 * THREE.LineCurve3 * THREE.QuadraticBezierCurve3 * * A series of curves can be represented as a THREE.CurvePath. * **/ class Curve { constructor() { this.type = 'Curve'; this.arcLengthDivisions = 200; } // Virtual base class method to overwrite and implement in subclasses // - t [0 .. 1] getPoint( /* t, optionalTarget */ ) { console.warn( 'THREE.Curve: .getPoint() not implemented.' ); return null; } // Get point at relative position in curve according to arc length // - u [0 .. 1] getPointAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getPoint( t, optionalTarget ); } // Get sequence of points using getPoint( t ) getPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPoint( d / divisions ) ); } return points; } // Get sequence of points using getPointAt( u ) getSpacedPoints( divisions = 5 ) { const points = []; for ( let d = 0; d <= divisions; d ++ ) { points.push( this.getPointAt( d / divisions ) ); } return points; } // Get total curve arc length getLength() { const lengths = this.getLengths(); return lengths[ lengths.length - 1 ]; } // Get list of cumulative segment lengths getLengths( divisions = this.arcLengthDivisions ) { if ( this.cacheArcLengths && ( this.cacheArcLengths.length === divisions + 1 ) && ! this.needsUpdate ) { return this.cacheArcLengths; } this.needsUpdate = false; const cache = []; let current, last = this.getPoint( 0 ); let sum = 0; cache.push( 0 ); for ( let p = 1; p <= divisions; p ++ ) { current = this.getPoint( p / divisions ); sum += current.distanceTo( last ); cache.push( sum ); last = current; } this.cacheArcLengths = cache; return cache; // { sums: cache, sum: sum }; Sum is in the last element. } updateArcLengths() { this.needsUpdate = true; this.getLengths(); } // Given u ( 0 .. 1 ), get a t to find p. This gives you points which are equidistant getUtoTmapping( u, distance ) { const arcLengths = this.getLengths(); let i = 0; const il = arcLengths.length; let targetArcLength; // The targeted u distance value to get if ( distance ) { targetArcLength = distance; } else { targetArcLength = u * arcLengths[ il - 1 ]; } // binary search for the index with largest value smaller than target u distance let low = 0, high = il - 1, comparison; while ( low <= high ) { i = Math.floor( low + ( high - low ) / 2 ); // less likely to overflow, though probably not issue here, JS doesn't really have integers, all numbers are floats comparison = arcLengths[ i ] - targetArcLength; if ( comparison < 0 ) { low = i + 1; } else if ( comparison > 0 ) { high = i - 1; } else { high = i; break; // DONE } } i = high; if ( arcLengths[ i ] === targetArcLength ) { return i / ( il - 1 ); } // we could get finer grain at lengths, or use simple interpolation between two points const lengthBefore = arcLengths[ i ]; const lengthAfter = arcLengths[ i + 1 ]; const segmentLength = lengthAfter - lengthBefore; // determine where we are between the 'before' and 'after' points const segmentFraction = ( targetArcLength - lengthBefore ) / segmentLength; // add that fractional amount to t const t = ( i + segmentFraction ) / ( il - 1 ); return t; } // Returns a unit vector tangent at t // In case any sub curve does not implement its tangent derivation, // 2 points a small delta apart will be used to find its gradient // which seems to give a reasonable approximation getTangent( t, optionalTarget ) { const delta = 0.0001; let t1 = t - delta; let t2 = t + delta; // Capping in case of danger if ( t1 < 0 ) t1 = 0; if ( t2 > 1 ) t2 = 1; const pt1 = this.getPoint( t1 ); const pt2 = this.getPoint( t2 ); const tangent = optionalTarget || ( ( pt1.isVector2 ) ? new Vector2() : new Vector3() ); tangent.copy( pt2 ).sub( pt1 ).normalize(); return tangent; } getTangentAt( u, optionalTarget ) { const t = this.getUtoTmapping( u ); return this.getTangent( t, optionalTarget ); } computeFrenetFrames( segments, closed ) { // see http://www.cs.indiana.edu/pub/techreports/TR425.pdf const normal = new Vector3(); const tangents = []; const normals = []; const binormals = []; const vec = new Vector3(); const mat = new Matrix4(); // compute the tangent vectors for each segment on the curve for ( let i = 0; i <= segments; i ++ ) { const u = i / segments; tangents[ i ] = this.getTangentAt( u, new Vector3() ); } // select an initial normal vector perpendicular to the first tangent vector, // and in the direction of the minimum tangent xyz component normals[ 0 ] = new Vector3(); binormals[ 0 ] = new Vector3(); let min = Number.MAX_VALUE; const tx = Math.abs( tangents[ 0 ].x ); const ty = Math.abs( tangents[ 0 ].y ); const tz = Math.abs( tangents[ 0 ].z ); if ( tx <= min ) { min = tx; normal.set( 1, 0, 0 ); } if ( ty <= min ) { min = ty; normal.set( 0, 1, 0 ); } if ( tz <= min ) { normal.set( 0, 0, 1 ); } vec.crossVectors( tangents[ 0 ], normal ).normalize(); normals[ 0 ].crossVectors( tangents[ 0 ], vec ); binormals[ 0 ].crossVectors( tangents[ 0 ], normals[ 0 ] ); // compute the slowly-varying normal and binormal vectors for each segment on the curve for ( let i = 1; i <= segments; i ++ ) { normals[ i ] = normals[ i - 1 ].clone(); binormals[ i ] = binormals[ i - 1 ].clone(); vec.crossVectors( tangents[ i - 1 ], tangents[ i ] ); if ( vec.length() > Number.EPSILON ) { vec.normalize(); const theta = Math.acos( clamp$1( tangents[ i - 1 ].dot( tangents[ i ] ), -1, 1 ) ); // clamp for floating pt errors normals[ i ].applyMatrix4( mat.makeRotationAxis( vec, theta ) ); } binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } // if the curve is closed, postprocess the vectors so the first and last normal vectors are the same if ( closed === true ) { let theta = Math.acos( clamp$1( normals[ 0 ].dot( normals[ segments ] ), -1, 1 ) ); theta /= segments; if ( tangents[ 0 ].dot( vec.crossVectors( normals[ 0 ], normals[ segments ] ) ) > 0 ) { theta = - theta; } for ( let i = 1; i <= segments; i ++ ) { // twist a little... normals[ i ].applyMatrix4( mat.makeRotationAxis( tangents[ i ], theta * i ) ); binormals[ i ].crossVectors( tangents[ i ], normals[ i ] ); } } return { tangents: tangents, normals: normals, binormals: binormals }; } clone() { return new this.constructor().copy( this ); } copy( source ) { this.arcLengthDivisions = source.arcLengthDivisions; return this; } toJSON() { const data = { metadata: { version: 4.6, type: 'Curve', generator: 'Curve.toJSON' } }; data.arcLengthDivisions = this.arcLengthDivisions; data.type = this.type; return data; } fromJSON( json ) { this.arcLengthDivisions = json.arcLengthDivisions; return this; } } class EllipseCurve extends Curve { constructor( aX = 0, aY = 0, xRadius = 1, yRadius = 1, aStartAngle = 0, aEndAngle = Math.PI * 2, aClockwise = false, aRotation = 0 ) { super(); this.isEllipseCurve = true; this.type = 'EllipseCurve'; this.aX = aX; this.aY = aY; this.xRadius = xRadius; this.yRadius = yRadius; this.aStartAngle = aStartAngle; this.aEndAngle = aEndAngle; this.aClockwise = aClockwise; this.aRotation = aRotation; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const twoPi = Math.PI * 2; let deltaAngle = this.aEndAngle - this.aStartAngle; const samePoints = Math.abs( deltaAngle ) < Number.EPSILON; // ensures that deltaAngle is 0 .. 2 PI while ( deltaAngle < 0 ) deltaAngle += twoPi; while ( deltaAngle > twoPi ) deltaAngle -= twoPi; if ( deltaAngle < Number.EPSILON ) { if ( samePoints ) { deltaAngle = 0; } else { deltaAngle = twoPi; } } if ( this.aClockwise === true && ! samePoints ) { if ( deltaAngle === twoPi ) { deltaAngle = - twoPi; } else { deltaAngle = deltaAngle - twoPi; } } const angle = this.aStartAngle + t * deltaAngle; let x = this.aX + this.xRadius * Math.cos( angle ); let y = this.aY + this.yRadius * Math.sin( angle ); if ( this.aRotation !== 0 ) { const cos = Math.cos( this.aRotation ); const sin = Math.sin( this.aRotation ); const tx = x - this.aX; const ty = y - this.aY; // Rotate the point about the center of the ellipse. x = tx * cos - ty * sin + this.aX; y = tx * sin + ty * cos + this.aY; } return point.set( x, y ); } copy( source ) { super.copy( source ); this.aX = source.aX; this.aY = source.aY; this.xRadius = source.xRadius; this.yRadius = source.yRadius; this.aStartAngle = source.aStartAngle; this.aEndAngle = source.aEndAngle; this.aClockwise = source.aClockwise; this.aRotation = source.aRotation; return this; } toJSON() { const data = super.toJSON(); data.aX = this.aX; data.aY = this.aY; data.xRadius = this.xRadius; data.yRadius = this.yRadius; data.aStartAngle = this.aStartAngle; data.aEndAngle = this.aEndAngle; data.aClockwise = this.aClockwise; data.aRotation = this.aRotation; return data; } fromJSON( json ) { super.fromJSON( json ); this.aX = json.aX; this.aY = json.aY; this.xRadius = json.xRadius; this.yRadius = json.yRadius; this.aStartAngle = json.aStartAngle; this.aEndAngle = json.aEndAngle; this.aClockwise = json.aClockwise; this.aRotation = json.aRotation; return this; } } class ArcCurve extends EllipseCurve { constructor( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { super( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); this.isArcCurve = true; this.type = 'ArcCurve'; } } /** * Centripetal CatmullRom Curve - which is useful for avoiding * cusps and self-intersections in non-uniform catmull rom curves. * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf * * curve.type accepts centripetal(default), chordal and catmullrom * curve.tension is used for catmullrom which defaults to 0.5 */ /* Based on an optimized c++ solution in - http://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections/ - http://ideone.com/NoEbVM This CubicPoly class could be used for reusing some variables and calculations, but for three.js curve use, it could be possible inlined and flatten into a single function call which can be placed in CurveUtils. */ function CubicPoly() { let c0 = 0, c1 = 0, c2 = 0, c3 = 0; /* * Compute coefficients for a cubic polynomial * p(s) = c0 + c1*s + c2*s^2 + c3*s^3 * such that * p(0) = x0, p(1) = x1 * and * p'(0) = t0, p'(1) = t1. */ function init( x0, x1, t0, t1 ) { c0 = x0; c1 = t0; c2 = -3 * x0 + 3 * x1 - 2 * t0 - t1; c3 = 2 * x0 - 2 * x1 + t0 + t1; } return { initCatmullRom: function ( x0, x1, x2, x3, tension ) { init( x1, x2, tension * ( x2 - x0 ), tension * ( x3 - x1 ) ); }, initNonuniformCatmullRom: function ( x0, x1, x2, x3, dt0, dt1, dt2 ) { // compute tangents when parameterized in [t1,t2] let t1 = ( x1 - x0 ) / dt0 - ( x2 - x0 ) / ( dt0 + dt1 ) + ( x2 - x1 ) / dt1; let t2 = ( x2 - x1 ) / dt1 - ( x3 - x1 ) / ( dt1 + dt2 ) + ( x3 - x2 ) / dt2; // rescale tangents for parametrization in [0,1] t1 *= dt1; t2 *= dt1; init( x1, x2, t1, t2 ); }, calc: function ( t ) { const t2 = t * t; const t3 = t2 * t; return c0 + c1 * t + c2 * t2 + c3 * t3; } }; } // const tmp = /*@__PURE__*/ new Vector3(); const px = /*@__PURE__*/ new CubicPoly(); const py = /*@__PURE__*/ new CubicPoly(); const pz = /*@__PURE__*/ new CubicPoly(); class CatmullRomCurve3 extends Curve { constructor( points = [], closed = false, curveType = 'centripetal', tension = 0.5 ) { super(); this.isCatmullRomCurve3 = true; this.type = 'CatmullRomCurve3'; this.points = points; this.closed = closed; this.curveType = curveType; this.tension = tension; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const points = this.points; const l = points.length; const p = ( l - ( this.closed ? 0 : 1 ) ) * t; let intPoint = Math.floor( p ); let weight = p - intPoint; if ( this.closed ) { intPoint += intPoint > 0 ? 0 : ( Math.floor( Math.abs( intPoint ) / l ) + 1 ) * l; } else if ( weight === 0 && intPoint === l - 1 ) { intPoint = l - 2; weight = 1; } let p0, p3; // 4 points (p1 & p2 defined below) if ( this.closed || intPoint > 0 ) { p0 = points[ ( intPoint - 1 ) % l ]; } else { // extrapolate first point tmp.subVectors( points[ 0 ], points[ 1 ] ).add( points[ 0 ] ); p0 = tmp; } const p1 = points[ intPoint % l ]; const p2 = points[ ( intPoint + 1 ) % l ]; if ( this.closed || intPoint + 2 < l ) { p3 = points[ ( intPoint + 2 ) % l ]; } else { // extrapolate last point tmp.subVectors( points[ l - 1 ], points[ l - 2 ] ).add( points[ l - 1 ] ); p3 = tmp; } if ( this.curveType === 'centripetal' || this.curveType === 'chordal' ) { // init Centripetal / Chordal Catmull-Rom const pow = this.curveType === 'chordal' ? 0.5 : 0.25; let dt0 = Math.pow( p0.distanceToSquared( p1 ), pow ); let dt1 = Math.pow( p1.distanceToSquared( p2 ), pow ); let dt2 = Math.pow( p2.distanceToSquared( p3 ), pow ); // safety check for repeated points if ( dt1 < 1e-4 ) dt1 = 1.0; if ( dt0 < 1e-4 ) dt0 = dt1; if ( dt2 < 1e-4 ) dt2 = dt1; px.initNonuniformCatmullRom( p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2 ); py.initNonuniformCatmullRom( p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2 ); pz.initNonuniformCatmullRom( p0.z, p1.z, p2.z, p3.z, dt0, dt1, dt2 ); } else if ( this.curveType === 'catmullrom' ) { px.initCatmullRom( p0.x, p1.x, p2.x, p3.x, this.tension ); py.initCatmullRom( p0.y, p1.y, p2.y, p3.y, this.tension ); pz.initCatmullRom( p0.z, p1.z, p2.z, p3.z, this.tension ); } point.set( px.calc( weight ), py.calc( weight ), pz.calc( weight ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } this.closed = source.closed; this.curveType = source.curveType; this.tension = source.tension; return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } data.closed = this.closed; data.curveType = this.curveType; data.tension = this.tension; return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector3().fromArray( point ) ); } this.closed = json.closed; this.curveType = json.curveType; this.tension = json.tension; return this; } } /** * Bezier Curves formulas obtained from * https://en.wikipedia.org/wiki/B%C3%A9zier_curve */ function CatmullRom( t, p0, p1, p2, p3 ) { const v0 = ( p2 - p0 ) * 0.5; const v1 = ( p3 - p1 ) * 0.5; const t2 = t * t; const t3 = t * t2; return ( 2 * p1 - 2 * p2 + v0 + v1 ) * t3 + ( -3 * p1 + 3 * p2 - 2 * v0 - v1 ) * t2 + v0 * t + p1; } // function QuadraticBezierP0( t, p ) { const k = 1 - t; return k * k * p; } function QuadraticBezierP1( t, p ) { return 2 * ( 1 - t ) * t * p; } function QuadraticBezierP2( t, p ) { return t * t * p; } function QuadraticBezier( t, p0, p1, p2 ) { return QuadraticBezierP0( t, p0 ) + QuadraticBezierP1( t, p1 ) + QuadraticBezierP2( t, p2 ); } // function CubicBezierP0( t, p ) { const k = 1 - t; return k * k * k * p; } function CubicBezierP1( t, p ) { const k = 1 - t; return 3 * k * k * t * p; } function CubicBezierP2( t, p ) { return 3 * ( 1 - t ) * t * t * p; } function CubicBezierP3( t, p ) { return t * t * t * p; } function CubicBezier( t, p0, p1, p2, p3 ) { return CubicBezierP0( t, p0 ) + CubicBezierP1( t, p1 ) + CubicBezierP2( t, p2 ) + CubicBezierP3( t, p3 ); } class CubicBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2(), v3 = new Vector2() ) { super(); this.isCubicBezierCurve = true; this.type = 'CubicBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } class CubicBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3(), v3 = new Vector3() ) { super(); this.isCubicBezierCurve3 = true; this.type = 'CubicBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; this.v3 = v3; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2, v3 = this.v3; point.set( CubicBezier( t, v0.x, v1.x, v2.x, v3.x ), CubicBezier( t, v0.y, v1.y, v2.y, v3.y ), CubicBezier( t, v0.z, v1.z, v2.z, v3.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); this.v3.copy( source.v3 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); data.v3 = this.v3.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); this.v3.fromArray( json.v3 ); return this; } } class LineCurve extends Curve { constructor( v1 = new Vector2(), v2 = new Vector2() ) { super(); this.isLineCurve = true; this.type = 'LineCurve'; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } getTangent( t, optionalTarget = new Vector2() ) { return optionalTarget.subVectors( this.v2, this.v1 ).normalize(); } getTangentAt( u, optionalTarget ) { return this.getTangent( u, optionalTarget ); } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class LineCurve3 extends Curve { constructor( v1 = new Vector3(), v2 = new Vector3() ) { super(); this.isLineCurve3 = true; this.type = 'LineCurve3'; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; if ( t === 1 ) { point.copy( this.v2 ); } else { point.copy( this.v2 ).sub( this.v1 ); point.multiplyScalar( t ).add( this.v1 ); } return point; } // Line curve is linear, so we can overwrite default getPointAt getPointAt( u, optionalTarget ) { return this.getPoint( u, optionalTarget ); } getTangent( t, optionalTarget = new Vector3() ) { return optionalTarget.subVectors( this.v2, this.v1 ).normalize(); } getTangentAt( u, optionalTarget ) { return this.getTangent( u, optionalTarget ); } copy( source ) { super.copy( source ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class QuadraticBezierCurve extends Curve { constructor( v0 = new Vector2(), v1 = new Vector2(), v2 = new Vector2() ) { super(); this.isQuadraticBezierCurve = true; this.type = 'QuadraticBezierCurve'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class QuadraticBezierCurve3 extends Curve { constructor( v0 = new Vector3(), v1 = new Vector3(), v2 = new Vector3() ) { super(); this.isQuadraticBezierCurve3 = true; this.type = 'QuadraticBezierCurve3'; this.v0 = v0; this.v1 = v1; this.v2 = v2; } getPoint( t, optionalTarget = new Vector3() ) { const point = optionalTarget; const v0 = this.v0, v1 = this.v1, v2 = this.v2; point.set( QuadraticBezier( t, v0.x, v1.x, v2.x ), QuadraticBezier( t, v0.y, v1.y, v2.y ), QuadraticBezier( t, v0.z, v1.z, v2.z ) ); return point; } copy( source ) { super.copy( source ); this.v0.copy( source.v0 ); this.v1.copy( source.v1 ); this.v2.copy( source.v2 ); return this; } toJSON() { const data = super.toJSON(); data.v0 = this.v0.toArray(); data.v1 = this.v1.toArray(); data.v2 = this.v2.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.v0.fromArray( json.v0 ); this.v1.fromArray( json.v1 ); this.v2.fromArray( json.v2 ); return this; } } class SplineCurve extends Curve { constructor( points = [] ) { super(); this.isSplineCurve = true; this.type = 'SplineCurve'; this.points = points; } getPoint( t, optionalTarget = new Vector2() ) { const point = optionalTarget; const points = this.points; const p = ( points.length - 1 ) * t; const intPoint = Math.floor( p ); const weight = p - intPoint; const p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; const p1 = points[ intPoint ]; const p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; const p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; point.set( CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) ); return point; } copy( source ) { super.copy( source ); this.points = []; for ( let i = 0, l = source.points.length; i < l; i ++ ) { const point = source.points[ i ]; this.points.push( point.clone() ); } return this; } toJSON() { const data = super.toJSON(); data.points = []; for ( let i = 0, l = this.points.length; i < l; i ++ ) { const point = this.points[ i ]; data.points.push( point.toArray() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.points = []; for ( let i = 0, l = json.points.length; i < l; i ++ ) { const point = json.points[ i ]; this.points.push( new Vector2().fromArray( point ) ); } return this; } } var Curves = /*#__PURE__*/Object.freeze({ __proto__: null, ArcCurve: ArcCurve, CatmullRomCurve3: CatmullRomCurve3, CubicBezierCurve: CubicBezierCurve, CubicBezierCurve3: CubicBezierCurve3, EllipseCurve: EllipseCurve, LineCurve: LineCurve, LineCurve3: LineCurve3, QuadraticBezierCurve: QuadraticBezierCurve, QuadraticBezierCurve3: QuadraticBezierCurve3, SplineCurve: SplineCurve }); /************************************************************** * Curved Path - a curve path is simply a array of connected * curves, but retains the api of a curve **************************************************************/ class CurvePath extends Curve { constructor() { super(); this.type = 'CurvePath'; this.curves = []; this.autoClose = false; // Automatically closes the path } add( curve ) { this.curves.push( curve ); } closePath() { // Add a line curve if start and end of lines are not connected const startPoint = this.curves[ 0 ].getPoint( 0 ); const endPoint = this.curves[ this.curves.length - 1 ].getPoint( 1 ); if ( ! startPoint.equals( endPoint ) ) { const lineType = ( startPoint.isVector2 === true ) ? 'LineCurve' : 'LineCurve3'; this.curves.push( new Curves[ lineType ]( endPoint, startPoint ) ); } return this; } // To get accurate point with reference to // entire path distance at time t, // following has to be done: // 1. Length of each sub path have to be known // 2. Locate and identify type of curve // 3. Get t for the curve // 4. Return curve.getPointAt(t') getPoint( t, optionalTarget ) { const d = t * this.getLength(); const curveLengths = this.getCurveLengths(); let i = 0; // To think about boundaries points. while ( i < curveLengths.length ) { if ( curveLengths[ i ] >= d ) { const diff = curveLengths[ i ] - d; const curve = this.curves[ i ]; const segmentLength = curve.getLength(); const u = segmentLength === 0 ? 0 : 1 - diff / segmentLength; return curve.getPointAt( u, optionalTarget ); } i ++; } return null; // loop where sum != 0, sum > d , sum+1 1 && ! points[ points.length - 1 ].equals( points[ 0 ] ) ) { points.push( points[ 0 ] ); } return points; } copy( source ) { super.copy( source ); this.curves = []; for ( let i = 0, l = source.curves.length; i < l; i ++ ) { const curve = source.curves[ i ]; this.curves.push( curve.clone() ); } this.autoClose = source.autoClose; return this; } toJSON() { const data = super.toJSON(); data.autoClose = this.autoClose; data.curves = []; for ( let i = 0, l = this.curves.length; i < l; i ++ ) { const curve = this.curves[ i ]; data.curves.push( curve.toJSON() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.autoClose = json.autoClose; this.curves = []; for ( let i = 0, l = json.curves.length; i < l; i ++ ) { const curve = json.curves[ i ]; this.curves.push( new Curves[ curve.type ]().fromJSON( curve ) ); } return this; } } class Path extends CurvePath { constructor( points ) { super(); this.type = 'Path'; this.currentPoint = new Vector2(); if ( points ) { this.setFromPoints( points ); } } setFromPoints( points ) { this.moveTo( points[ 0 ].x, points[ 0 ].y ); for ( let i = 1, l = points.length; i < l; i ++ ) { this.lineTo( points[ i ].x, points[ i ].y ); } return this; } moveTo( x, y ) { this.currentPoint.set( x, y ); // TODO consider referencing vectors instead of copying? return this; } lineTo( x, y ) { const curve = new LineCurve( this.currentPoint.clone(), new Vector2( x, y ) ); this.curves.push( curve ); this.currentPoint.set( x, y ); return this; } quadraticCurveTo( aCPx, aCPy, aX, aY ) { const curve = new QuadraticBezierCurve( this.currentPoint.clone(), new Vector2( aCPx, aCPy ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; } bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { const curve = new CubicBezierCurve( this.currentPoint.clone(), new Vector2( aCP1x, aCP1y ), new Vector2( aCP2x, aCP2y ), new Vector2( aX, aY ) ); this.curves.push( curve ); this.currentPoint.set( aX, aY ); return this; } splineThru( pts /*Array of Vector*/ ) { const npts = [ this.currentPoint.clone() ].concat( pts ); const curve = new SplineCurve( npts ); this.curves.push( curve ); this.currentPoint.copy( pts[ pts.length - 1 ] ); return this; } arc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absarc( aX + x0, aY + y0, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; } absarc( aX, aY, aRadius, aStartAngle, aEndAngle, aClockwise ) { this.absellipse( aX, aY, aRadius, aRadius, aStartAngle, aEndAngle, aClockwise ); return this; } ellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { const x0 = this.currentPoint.x; const y0 = this.currentPoint.y; this.absellipse( aX + x0, aY + y0, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); return this; } absellipse( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ) { const curve = new EllipseCurve( aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation ); if ( this.curves.length > 0 ) { // if a previous curve is present, attempt to join const firstPoint = curve.getPoint( 0 ); if ( ! firstPoint.equals( this.currentPoint ) ) { this.lineTo( firstPoint.x, firstPoint.y ); } } this.curves.push( curve ); const lastPoint = curve.getPoint( 1 ); this.currentPoint.copy( lastPoint ); return this; } copy( source ) { super.copy( source ); this.currentPoint.copy( source.currentPoint ); return this; } toJSON() { const data = super.toJSON(); data.currentPoint = this.currentPoint.toArray(); return data; } fromJSON( json ) { super.fromJSON( json ); this.currentPoint.fromArray( json.currentPoint ); return this; } } class LatheGeometry extends BufferGeometry { constructor( points = [ new Vector2( 0, -0.5 ), new Vector2( 0.5, 0 ), new Vector2( 0, 0.5 ) ], segments = 12, phiStart = 0, phiLength = Math.PI * 2 ) { super(); this.type = 'LatheGeometry'; this.parameters = { points: points, segments: segments, phiStart: phiStart, phiLength: phiLength }; segments = Math.floor( segments ); // clamp phiLength so it's in range of [ 0, 2PI ] phiLength = clamp$1( phiLength, 0, Math.PI * 2 ); // buffers const indices = []; const vertices = []; const uvs = []; const initNormals = []; const normals = []; // helper variables const inverseSegments = 1.0 / segments; const vertex = new Vector3(); const uv = new Vector2(); const normal = new Vector3(); const curNormal = new Vector3(); const prevNormal = new Vector3(); let dx = 0; let dy = 0; // pre-compute normals for initial "meridian" for ( let j = 0; j <= ( points.length - 1 ); j ++ ) { switch ( j ) { case 0: // special handling for 1st vertex on path dx = points[ j + 1 ].x - points[ j ].x; dy = points[ j + 1 ].y - points[ j ].y; normal.x = dy * 1.0; normal.y = - dx; normal.z = dy * 0.0; prevNormal.copy( normal ); normal.normalize(); initNormals.push( normal.x, normal.y, normal.z ); break; case ( points.length - 1 ): // special handling for last Vertex on path initNormals.push( prevNormal.x, prevNormal.y, prevNormal.z ); break; default: // default handling for all vertices in between dx = points[ j + 1 ].x - points[ j ].x; dy = points[ j + 1 ].y - points[ j ].y; normal.x = dy * 1.0; normal.y = - dx; normal.z = dy * 0.0; curNormal.copy( normal ); normal.x += prevNormal.x; normal.y += prevNormal.y; normal.z += prevNormal.z; normal.normalize(); initNormals.push( normal.x, normal.y, normal.z ); prevNormal.copy( curNormal ); } } // generate vertices, uvs and normals for ( let i = 0; i <= segments; i ++ ) { const phi = phiStart + i * inverseSegments * phiLength; const sin = Math.sin( phi ); const cos = Math.cos( phi ); for ( let j = 0; j <= ( points.length - 1 ); j ++ ) { // vertex vertex.x = points[ j ].x * sin; vertex.y = points[ j ].y; vertex.z = points[ j ].x * cos; vertices.push( vertex.x, vertex.y, vertex.z ); // uv uv.x = i / segments; uv.y = j / ( points.length - 1 ); uvs.push( uv.x, uv.y ); // normal const x = initNormals[ 3 * j + 0 ] * sin; const y = initNormals[ 3 * j + 1 ]; const z = initNormals[ 3 * j + 0 ] * cos; normals.push( x, y, z ); } } // indices for ( let i = 0; i < segments; i ++ ) { for ( let j = 0; j < ( points.length - 1 ); j ++ ) { const base = j + i * points.length; const a = base; const b = base + points.length; const c = base + points.length + 1; const d = base + 1; // faces indices.push( a, b, d ); indices.push( c, d, b ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new LatheGeometry( data.points, data.segments, data.phiStart, data.phiLength ); } } class CapsuleGeometry extends LatheGeometry { constructor( radius = 1, length = 1, capSegments = 4, radialSegments = 8 ) { const path = new Path(); path.absarc( 0, - length / 2, radius, Math.PI * 1.5, 0 ); path.absarc( 0, length / 2, radius, 0, Math.PI * 0.5 ); super( path.getPoints( capSegments ), radialSegments ); this.type = 'CapsuleGeometry'; this.parameters = { radius: radius, length: length, capSegments: capSegments, radialSegments: radialSegments, }; } static fromJSON( data ) { return new CapsuleGeometry( data.radius, data.length, data.capSegments, data.radialSegments ); } } class CircleGeometry extends BufferGeometry { constructor( radius = 1, segments = 32, thetaStart = 0, thetaLength = Math.PI * 2 ) { super(); this.type = 'CircleGeometry'; this.parameters = { radius: radius, segments: segments, thetaStart: thetaStart, thetaLength: thetaLength }; segments = Math.max( 3, segments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const vertex = new Vector3(); const uv = new Vector2(); // center point vertices.push( 0, 0, 0 ); normals.push( 0, 0, 1 ); uvs.push( 0.5, 0.5 ); for ( let s = 0, i = 3; s <= segments; s ++, i += 3 ) { const segment = thetaStart + s / segments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uvs uv.x = ( vertices[ i ] / radius + 1 ) / 2; uv.y = ( vertices[ i + 1 ] / radius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // indices for ( let i = 1; i <= segments; i ++ ) { indices.push( i, i + 1, 0 ); } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new CircleGeometry( data.radius, data.segments, data.thetaStart, data.thetaLength ); } } class CylinderGeometry extends BufferGeometry { constructor( radiusTop = 1, radiusBottom = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { super(); this.type = 'CylinderGeometry'; this.parameters = { radiusTop: radiusTop, radiusBottom: radiusBottom, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; const scope = this; radialSegments = Math.floor( radialSegments ); heightSegments = Math.floor( heightSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let index = 0; const indexArray = []; const halfHeight = height / 2; let groupStart = 0; // generate geometry generateTorso(); if ( openEnded === false ) { if ( radiusTop > 0 ) generateCap( true ); if ( radiusBottom > 0 ) generateCap( false ); } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); function generateTorso() { const normal = new Vector3(); const vertex = new Vector3(); let groupCount = 0; // this will be used to calculate the normal const slope = ( radiusBottom - radiusTop ) / height; // generate vertices, normals and uvs for ( let y = 0; y <= heightSegments; y ++ ) { const indexRow = []; const v = y / heightSegments; // calculate the radius of the current row const radius = v * ( radiusBottom - radiusTop ) + radiusTop; for ( let x = 0; x <= radialSegments; x ++ ) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const sinTheta = Math.sin( theta ); const cosTheta = Math.cos( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = - v * height + halfHeight; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.set( sinTheta, slope, cosTheta ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u, 1 - v ); // save index of vertex in respective row indexRow.push( index ++ ); } // now save vertices of the row in our index array indexArray.push( indexRow ); } // generate indices for ( let x = 0; x < radialSegments; x ++ ) { for ( let y = 0; y < heightSegments; y ++ ) { // we use the index array to access the correct indices const a = indexArray[ y ][ x ]; const b = indexArray[ y + 1 ][ x ]; const c = indexArray[ y + 1 ][ x + 1 ]; const d = indexArray[ y ][ x + 1 ]; // faces if ( radiusTop > 0 ) { indices.push( a, b, d ); groupCount += 3; } if ( radiusBottom > 0 ) { indices.push( b, c, d ); groupCount += 3; } } } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, 0 ); // calculate new start value for groups groupStart += groupCount; } function generateCap( top ) { // save the index of the first center vertex const centerIndexStart = index; const uv = new Vector2(); const vertex = new Vector3(); let groupCount = 0; const radius = ( top === true ) ? radiusTop : radiusBottom; const sign = ( top === true ) ? 1 : -1; // first we generate the center vertex data of the cap. // because the geometry needs one set of uvs per face, // we must generate a center vertex per face/segment for ( let x = 1; x <= radialSegments; x ++ ) { // vertex vertices.push( 0, halfHeight * sign, 0 ); // normal normals.push( 0, sign, 0 ); // uv uvs.push( 0.5, 0.5 ); // increase index index ++; } // save the index of the last center vertex const centerIndexEnd = index; // now we generate the surrounding vertices, normals and uvs for ( let x = 0; x <= radialSegments; x ++ ) { const u = x / radialSegments; const theta = u * thetaLength + thetaStart; const cosTheta = Math.cos( theta ); const sinTheta = Math.sin( theta ); // vertex vertex.x = radius * sinTheta; vertex.y = halfHeight * sign; vertex.z = radius * cosTheta; vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, sign, 0 ); // uv uv.x = ( cosTheta * 0.5 ) + 0.5; uv.y = ( sinTheta * 0.5 * sign ) + 0.5; uvs.push( uv.x, uv.y ); // increase index index ++; } // generate indices for ( let x = 0; x < radialSegments; x ++ ) { const c = centerIndexStart + x; const i = centerIndexEnd + x; if ( top === true ) { // face top indices.push( i, i + 1, c ); } else { // face bottom indices.push( i + 1, i, c ); } groupCount += 3; } // add a group to the geometry. this will ensure multi material support scope.addGroup( groupStart, groupCount, top === true ? 1 : 2 ); // calculate new start value for groups groupStart += groupCount; } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new CylinderGeometry( data.radiusTop, data.radiusBottom, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); } } class ConeGeometry extends CylinderGeometry { constructor( radius = 1, height = 1, radialSegments = 32, heightSegments = 1, openEnded = false, thetaStart = 0, thetaLength = Math.PI * 2 ) { super( 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); this.type = 'ConeGeometry'; this.parameters = { radius: radius, height: height, radialSegments: radialSegments, heightSegments: heightSegments, openEnded: openEnded, thetaStart: thetaStart, thetaLength: thetaLength }; } static fromJSON( data ) { return new ConeGeometry( data.radius, data.height, data.radialSegments, data.heightSegments, data.openEnded, data.thetaStart, data.thetaLength ); } } class PolyhedronGeometry extends BufferGeometry { constructor( vertices = [], indices = [], radius = 1, detail = 0 ) { super(); this.type = 'PolyhedronGeometry'; this.parameters = { vertices: vertices, indices: indices, radius: radius, detail: detail }; // default buffer data const vertexBuffer = []; const uvBuffer = []; // the subdivision creates the vertex buffer data subdivide( detail ); // all vertices should lie on a conceptual sphere with a given radius applyRadius( radius ); // finally, create the uv data generateUVs(); // build non-indexed geometry this.setAttribute( 'position', new Float32BufferAttribute( vertexBuffer, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( vertexBuffer.slice(), 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvBuffer, 2 ) ); if ( detail === 0 ) { this.computeVertexNormals(); // flat normals } else { this.normalizeNormals(); // smooth normals } // helper functions function subdivide( detail ) { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); // iterate over all faces and apply a subdivision with the given detail value for ( let i = 0; i < indices.length; i += 3 ) { // get the vertices of the face getVertexByIndex( indices[ i + 0 ], a ); getVertexByIndex( indices[ i + 1 ], b ); getVertexByIndex( indices[ i + 2 ], c ); // perform subdivision subdivideFace( a, b, c, detail ); } } function subdivideFace( a, b, c, detail ) { const cols = detail + 1; // we use this multidimensional array as a data structure for creating the subdivision const v = []; // construct all of the vertices for this subdivision for ( let i = 0; i <= cols; i ++ ) { v[ i ] = []; const aj = a.clone().lerp( c, i / cols ); const bj = b.clone().lerp( c, i / cols ); const rows = cols - i; for ( let j = 0; j <= rows; j ++ ) { if ( j === 0 && i === cols ) { v[ i ][ j ] = aj; } else { v[ i ][ j ] = aj.clone().lerp( bj, j / rows ); } } } // construct all of the faces for ( let i = 0; i < cols; i ++ ) { for ( let j = 0; j < 2 * ( cols - i ) - 1; j ++ ) { const k = Math.floor( j / 2 ); if ( j % 2 === 0 ) { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); pushVertex( v[ i ][ k ] ); } else { pushVertex( v[ i ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k + 1 ] ); pushVertex( v[ i + 1 ][ k ] ); } } } } function applyRadius( radius ) { const vertex = new Vector3(); // iterate over the entire buffer and apply the radius to each vertex for ( let i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; vertex.normalize().multiplyScalar( radius ); vertexBuffer[ i + 0 ] = vertex.x; vertexBuffer[ i + 1 ] = vertex.y; vertexBuffer[ i + 2 ] = vertex.z; } } function generateUVs() { const vertex = new Vector3(); for ( let i = 0; i < vertexBuffer.length; i += 3 ) { vertex.x = vertexBuffer[ i + 0 ]; vertex.y = vertexBuffer[ i + 1 ]; vertex.z = vertexBuffer[ i + 2 ]; const u = azimuth( vertex ) / 2 / Math.PI + 0.5; const v = inclination( vertex ) / Math.PI + 0.5; uvBuffer.push( u, 1 - v ); } correctUVs(); correctSeam(); } function correctSeam() { // handle case when face straddles the seam, see #3269 for ( let i = 0; i < uvBuffer.length; i += 6 ) { // uv data of a single face const x0 = uvBuffer[ i + 0 ]; const x1 = uvBuffer[ i + 2 ]; const x2 = uvBuffer[ i + 4 ]; const max = Math.max( x0, x1, x2 ); const min = Math.min( x0, x1, x2 ); // 0.9 is somewhat arbitrary if ( max > 0.9 && min < 0.1 ) { if ( x0 < 0.2 ) uvBuffer[ i + 0 ] += 1; if ( x1 < 0.2 ) uvBuffer[ i + 2 ] += 1; if ( x2 < 0.2 ) uvBuffer[ i + 4 ] += 1; } } } function pushVertex( vertex ) { vertexBuffer.push( vertex.x, vertex.y, vertex.z ); } function getVertexByIndex( index, vertex ) { const stride = index * 3; vertex.x = vertices[ stride + 0 ]; vertex.y = vertices[ stride + 1 ]; vertex.z = vertices[ stride + 2 ]; } function correctUVs() { const a = new Vector3(); const b = new Vector3(); const c = new Vector3(); const centroid = new Vector3(); const uvA = new Vector2(); const uvB = new Vector2(); const uvC = new Vector2(); for ( let i = 0, j = 0; i < vertexBuffer.length; i += 9, j += 6 ) { a.set( vertexBuffer[ i + 0 ], vertexBuffer[ i + 1 ], vertexBuffer[ i + 2 ] ); b.set( vertexBuffer[ i + 3 ], vertexBuffer[ i + 4 ], vertexBuffer[ i + 5 ] ); c.set( vertexBuffer[ i + 6 ], vertexBuffer[ i + 7 ], vertexBuffer[ i + 8 ] ); uvA.set( uvBuffer[ j + 0 ], uvBuffer[ j + 1 ] ); uvB.set( uvBuffer[ j + 2 ], uvBuffer[ j + 3 ] ); uvC.set( uvBuffer[ j + 4 ], uvBuffer[ j + 5 ] ); centroid.copy( a ).add( b ).add( c ).divideScalar( 3 ); const azi = azimuth( centroid ); correctUV( uvA, j + 0, a, azi ); correctUV( uvB, j + 2, b, azi ); correctUV( uvC, j + 4, c, azi ); } } function correctUV( uv, stride, vector, azimuth ) { if ( ( azimuth < 0 ) && ( uv.x === 1 ) ) { uvBuffer[ stride ] = uv.x - 1; } if ( ( vector.x === 0 ) && ( vector.z === 0 ) ) { uvBuffer[ stride ] = azimuth / 2 / Math.PI + 0.5; } } // Angle around the Y axis, counter-clockwise when looking from above. function azimuth( vector ) { return Math.atan2( vector.z, - vector.x ); } // Angle above the XZ plane. function inclination( vector ) { return Math.atan2( - vector.y, Math.sqrt( ( vector.x * vector.x ) + ( vector.z * vector.z ) ) ); } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new PolyhedronGeometry( data.vertices, data.indices, data.radius, data.details ); } } class DodecahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const t = ( 1 + Math.sqrt( 5 ) ) / 2; const r = 1 / t; const vertices = [ // (±1, ±1, ±1) -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1, // (0, ±1/φ, ±φ) 0, - r, - t, 0, - r, t, 0, r, - t, 0, r, t, // (±1/φ, ±φ, 0) - r, - t, 0, - r, t, 0, r, - t, 0, r, t, 0, // (±φ, 0, ±1/φ) - t, 0, - r, t, 0, - r, - t, 0, r, t, 0, r ]; const indices = [ 3, 11, 7, 3, 7, 15, 3, 15, 13, 7, 19, 17, 7, 17, 6, 7, 6, 15, 17, 4, 8, 17, 8, 10, 17, 10, 6, 8, 0, 16, 8, 16, 2, 8, 2, 10, 0, 12, 1, 0, 1, 18, 0, 18, 16, 6, 10, 2, 6, 2, 13, 6, 13, 15, 2, 16, 18, 2, 18, 3, 2, 3, 13, 18, 1, 9, 18, 9, 11, 18, 11, 3, 4, 14, 12, 4, 12, 0, 4, 0, 8, 11, 9, 5, 11, 5, 19, 11, 19, 7, 19, 5, 14, 19, 14, 4, 19, 4, 17, 1, 12, 14, 1, 14, 5, 1, 5, 9 ]; super( vertices, indices, radius, detail ); this.type = 'DodecahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new DodecahedronGeometry( data.radius, data.detail ); } } const _v0 = /*@__PURE__*/ new Vector3(); const _v1$1 = /*@__PURE__*/ new Vector3(); const _normal$1 = /*@__PURE__*/ new Vector3(); const _triangle = /*@__PURE__*/ new Triangle(); class EdgesGeometry extends BufferGeometry { constructor( geometry = null, thresholdAngle = 1 ) { super(); this.type = 'EdgesGeometry'; this.parameters = { geometry: geometry, thresholdAngle: thresholdAngle }; if ( geometry !== null ) { const precisionPoints = 4; const precision = Math.pow( 10, precisionPoints ); const thresholdDot = Math.cos( DEG2RAD * thresholdAngle ); const indexAttr = geometry.getIndex(); const positionAttr = geometry.getAttribute( 'position' ); const indexCount = indexAttr ? indexAttr.count : positionAttr.count; const indexArr = [ 0, 0, 0 ]; const vertKeys = [ 'a', 'b', 'c' ]; const hashes = new Array( 3 ); const edgeData = {}; const vertices = []; for ( let i = 0; i < indexCount; i += 3 ) { if ( indexAttr ) { indexArr[ 0 ] = indexAttr.getX( i ); indexArr[ 1 ] = indexAttr.getX( i + 1 ); indexArr[ 2 ] = indexAttr.getX( i + 2 ); } else { indexArr[ 0 ] = i; indexArr[ 1 ] = i + 1; indexArr[ 2 ] = i + 2; } const { a, b, c } = _triangle; a.fromBufferAttribute( positionAttr, indexArr[ 0 ] ); b.fromBufferAttribute( positionAttr, indexArr[ 1 ] ); c.fromBufferAttribute( positionAttr, indexArr[ 2 ] ); _triangle.getNormal( _normal$1 ); // create hashes for the edge from the vertices hashes[ 0 ] = `${ Math.round( a.x * precision ) },${ Math.round( a.y * precision ) },${ Math.round( a.z * precision ) }`; hashes[ 1 ] = `${ Math.round( b.x * precision ) },${ Math.round( b.y * precision ) },${ Math.round( b.z * precision ) }`; hashes[ 2 ] = `${ Math.round( c.x * precision ) },${ Math.round( c.y * precision ) },${ Math.round( c.z * precision ) }`; // skip degenerate triangles if ( hashes[ 0 ] === hashes[ 1 ] || hashes[ 1 ] === hashes[ 2 ] || hashes[ 2 ] === hashes[ 0 ] ) { continue; } // iterate over every edge for ( let j = 0; j < 3; j ++ ) { // get the first and next vertex making up the edge const jNext = ( j + 1 ) % 3; const vecHash0 = hashes[ j ]; const vecHash1 = hashes[ jNext ]; const v0 = _triangle[ vertKeys[ j ] ]; const v1 = _triangle[ vertKeys[ jNext ] ]; const hash = `${ vecHash0 }_${ vecHash1 }`; const reverseHash = `${ vecHash1 }_${ vecHash0 }`; if ( reverseHash in edgeData && edgeData[ reverseHash ] ) { // if we found a sibling edge add it into the vertex array if // it meets the angle threshold and delete the edge from the map. if ( _normal$1.dot( edgeData[ reverseHash ].normal ) <= thresholdDot ) { vertices.push( v0.x, v0.y, v0.z ); vertices.push( v1.x, v1.y, v1.z ); } edgeData[ reverseHash ] = null; } else if ( ! ( hash in edgeData ) ) { // if we've already got an edge here then skip adding a new one edgeData[ hash ] = { index0: indexArr[ j ], index1: indexArr[ jNext ], normal: _normal$1.clone(), }; } } } // iterate over all remaining, unmatched edges and add them to the vertex array for ( const key in edgeData ) { if ( edgeData[ key ] ) { const { index0, index1 } = edgeData[ key ]; _v0.fromBufferAttribute( positionAttr, index0 ); _v1$1.fromBufferAttribute( positionAttr, index1 ); vertices.push( _v0.x, _v0.y, _v0.z ); vertices.push( _v1$1.x, _v1$1.y, _v1$1.z ); } } this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } } class Shape extends Path { constructor( points ) { super( points ); this.uuid = generateUUID(); this.type = 'Shape'; this.holes = []; } getPointsHoles( divisions ) { const holesPts = []; for ( let i = 0, l = this.holes.length; i < l; i ++ ) { holesPts[ i ] = this.holes[ i ].getPoints( divisions ); } return holesPts; } // get points of shape and holes (keypoints based on segments parameter) extractPoints( divisions ) { return { shape: this.getPoints( divisions ), holes: this.getPointsHoles( divisions ) }; } copy( source ) { super.copy( source ); this.holes = []; for ( let i = 0, l = source.holes.length; i < l; i ++ ) { const hole = source.holes[ i ]; this.holes.push( hole.clone() ); } return this; } toJSON() { const data = super.toJSON(); data.uuid = this.uuid; data.holes = []; for ( let i = 0, l = this.holes.length; i < l; i ++ ) { const hole = this.holes[ i ]; data.holes.push( hole.toJSON() ); } return data; } fromJSON( json ) { super.fromJSON( json ); this.uuid = json.uuid; this.holes = []; for ( let i = 0, l = json.holes.length; i < l; i ++ ) { const hole = json.holes[ i ]; this.holes.push( new Path().fromJSON( hole ) ); } return this; } } /** * Port from https://github.com/mapbox/earcut (v2.2.4) */ const Earcut = { triangulate: function ( data, holeIndices, dim = 2 ) { const hasHoles = holeIndices && holeIndices.length; const outerLen = hasHoles ? holeIndices[ 0 ] * dim : data.length; let outerNode = linkedList( data, 0, outerLen, dim, true ); const triangles = []; if ( ! outerNode || outerNode.next === outerNode.prev ) return triangles; let minX, minY, maxX, maxY, x, y, invSize; if ( hasHoles ) outerNode = eliminateHoles( data, holeIndices, outerNode, dim ); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if ( data.length > 80 * dim ) { minX = maxX = data[ 0 ]; minY = maxY = data[ 1 ]; for ( let i = dim; i < outerLen; i += dim ) { x = data[ i ]; y = data[ i + 1 ]; if ( x < minX ) minX = x; if ( y < minY ) minY = y; if ( x > maxX ) maxX = x; if ( y > maxY ) maxY = y; } // minX, minY and invSize are later used to transform coords into integers for z-order calculation invSize = Math.max( maxX - minX, maxY - minY ); invSize = invSize !== 0 ? 32767 / invSize : 0; } earcutLinked( outerNode, triangles, dim, minX, minY, invSize, 0 ); return triangles; } }; // create a circular doubly linked list from polygon points in the specified winding order function linkedList( data, start, end, dim, clockwise ) { let i, last; if ( clockwise === ( signedArea( data, start, end, dim ) > 0 ) ) { for ( i = start; i < end; i += dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last ); } else { for ( i = end - dim; i >= start; i -= dim ) last = insertNode( i, data[ i ], data[ i + 1 ], last ); } if ( last && equals$1( last, last.next ) ) { removeNode( last ); last = last.next; } return last; } // eliminate colinear or duplicate points function filterPoints( start, end ) { if ( ! start ) return start; if ( ! end ) end = start; let p = start, again; do { again = false; if ( ! p.steiner && ( equals$1( p, p.next ) || area( p.prev, p, p.next ) === 0 ) ) { removeNode( p ); p = end = p.prev; if ( p === p.next ) break; again = true; } else { p = p.next; } } while ( again || p !== end ); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) function earcutLinked( ear, triangles, dim, minX, minY, invSize, pass ) { if ( ! ear ) return; // interlink polygon nodes in z-order if ( ! pass && invSize ) indexCurve( ear, minX, minY, invSize ); let stop = ear, prev, next; // iterate through ears, slicing them one by one while ( ear.prev !== ear.next ) { prev = ear.prev; next = ear.next; if ( invSize ? isEarHashed( ear, minX, minY, invSize ) : isEar( ear ) ) { // cut off the triangle triangles.push( prev.i / dim | 0 ); triangles.push( ear.i / dim | 0 ); triangles.push( next.i / dim | 0 ); removeNode( ear ); // skipping the next vertex leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if ( ear === stop ) { // try filtering points and slicing again if ( ! pass ) { earcutLinked( filterPoints( ear ), triangles, dim, minX, minY, invSize, 1 ); // if this didn't work, try curing all small self-intersections locally } else if ( pass === 1 ) { ear = cureLocalIntersections( filterPoints( ear ), triangles, dim ); earcutLinked( ear, triangles, dim, minX, minY, invSize, 2 ); // as a last resort, try splitting the remaining polygon into two } else if ( pass === 2 ) { splitEarcut( ear, triangles, dim, minX, minY, invSize ); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes function isEar( ear ) { const a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y; // triangle bbox; min & max are calculated like this for speed const x0 = ax < bx ? ( ax < cx ? ax : cx ) : ( bx < cx ? bx : cx ), y0 = ay < by ? ( ay < cy ? ay : cy ) : ( by < cy ? by : cy ), x1 = ax > bx ? ( ax > cx ? ax : cx ) : ( bx > cx ? bx : cx ), y1 = ay > by ? ( ay > cy ? ay : cy ) : ( by > cy ? by : cy ); let p = c.next; while ( p !== a ) { if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && pointInTriangle( ax, ay, bx, by, cx, cy, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.next; } return true; } function isEarHashed( ear, minX, minY, invSize ) { const a = ear.prev, b = ear, c = ear.next; if ( area( a, b, c ) >= 0 ) return false; // reflex, can't be an ear const ax = a.x, bx = b.x, cx = c.x, ay = a.y, by = b.y, cy = c.y; // triangle bbox; min & max are calculated like this for speed const x0 = ax < bx ? ( ax < cx ? ax : cx ) : ( bx < cx ? bx : cx ), y0 = ay < by ? ( ay < cy ? ay : cy ) : ( by < cy ? by : cy ), x1 = ax > bx ? ( ax > cx ? ax : cx ) : ( bx > cx ? bx : cx ), y1 = ay > by ? ( ay > cy ? ay : cy ) : ( by > cy ? by : cy ); // z-order range for the current triangle bbox; const minZ = zOrder( x0, y0, minX, minY, invSize ), maxZ = zOrder( x1, y1, minX, minY, invSize ); let p = ear.prevZ, n = ear.nextZ; // look for points inside the triangle in both directions while ( p && p.z >= minZ && n && n.z <= maxZ ) { if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle( ax, ay, bx, by, cx, cy, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.prevZ; if ( n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle( ax, ay, bx, by, cx, cy, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false; n = n.nextZ; } // look for remaining points in decreasing z-order while ( p && p.z >= minZ ) { if ( p.x >= x0 && p.x <= x1 && p.y >= y0 && p.y <= y1 && p !== a && p !== c && pointInTriangle( ax, ay, bx, by, cx, cy, p.x, p.y ) && area( p.prev, p, p.next ) >= 0 ) return false; p = p.prevZ; } // look for remaining points in increasing z-order while ( n && n.z <= maxZ ) { if ( n.x >= x0 && n.x <= x1 && n.y >= y0 && n.y <= y1 && n !== a && n !== c && pointInTriangle( ax, ay, bx, by, cx, cy, n.x, n.y ) && area( n.prev, n, n.next ) >= 0 ) return false; n = n.nextZ; } return true; } // go through all polygon nodes and cure small local self-intersections function cureLocalIntersections( start, triangles, dim ) { let p = start; do { const a = p.prev, b = p.next.next; if ( ! equals$1( a, b ) && intersects( a, p, p.next, b ) && locallyInside( a, b ) && locallyInside( b, a ) ) { triangles.push( a.i / dim | 0 ); triangles.push( p.i / dim | 0 ); triangles.push( b.i / dim | 0 ); // remove two nodes involved removeNode( p ); removeNode( p.next ); p = start = b; } p = p.next; } while ( p !== start ); return filterPoints( p ); } // try splitting polygon into two and triangulate them independently function splitEarcut( start, triangles, dim, minX, minY, invSize ) { // look for a valid diagonal that divides the polygon into two let a = start; do { let b = a.next.next; while ( b !== a.prev ) { if ( a.i !== b.i && isValidDiagonal( a, b ) ) { // split the polygon in two by the diagonal let c = splitPolygon( a, b ); // filter colinear points around the cuts a = filterPoints( a, a.next ); c = filterPoints( c, c.next ); // run earcut on each half earcutLinked( a, triangles, dim, minX, minY, invSize, 0 ); earcutLinked( c, triangles, dim, minX, minY, invSize, 0 ); return; } b = b.next; } a = a.next; } while ( a !== start ); } // link every hole into the outer loop, producing a single-ring polygon without holes function eliminateHoles( data, holeIndices, outerNode, dim ) { const queue = []; let i, len, start, end, list; for ( i = 0, len = holeIndices.length; i < len; i ++ ) { start = holeIndices[ i ] * dim; end = i < len - 1 ? holeIndices[ i + 1 ] * dim : data.length; list = linkedList( data, start, end, dim, false ); if ( list === list.next ) list.steiner = true; queue.push( getLeftmost( list ) ); } queue.sort( compareX ); // process holes from left to right for ( i = 0; i < queue.length; i ++ ) { outerNode = eliminateHole( queue[ i ], outerNode ); } return outerNode; } function compareX( a, b ) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and link it function eliminateHole( hole, outerNode ) { const bridge = findHoleBridge( hole, outerNode ); if ( ! bridge ) { return outerNode; } const bridgeReverse = splitPolygon( bridge, hole ); // filter collinear points around the cuts filterPoints( bridgeReverse, bridgeReverse.next ); return filterPoints( bridge, bridge.next ); } // David Eberly's algorithm for finding a bridge between hole and outer polygon function findHoleBridge( hole, outerNode ) { let p = outerNode, qx = - Infinity, m; const hx = hole.x, hy = hole.y; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) { const x = p.x + ( hy - p.y ) * ( p.next.x - p.x ) / ( p.next.y - p.y ); if ( x <= hx && x > qx ) { qx = x; m = p.x < p.next.x ? p : p.next; if ( x === hx ) return m; // hole touches outer segment; pick leftmost endpoint } } p = p.next; } while ( p !== outerNode ); if ( ! m ) return null; // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point const stop = m, mx = m.x, my = m.y; let tanMin = Infinity, tan; p = m; do { if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle( hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y ) ) { tan = Math.abs( hy - p.y ) / ( hx - p.x ); // tangential if ( locallyInside( p, hole ) && ( tan < tanMin || ( tan === tanMin && ( p.x > m.x || ( p.x === m.x && sectorContainsSector( m, p ) ) ) ) ) ) { m = p; tanMin = tan; } } p = p.next; } while ( p !== stop ); return m; } // whether sector in vertex m contains sector in vertex p in the same coordinates function sectorContainsSector( m, p ) { return area( m.prev, m, p.prev ) < 0 && area( p.next, m, m.next ) < 0; } // interlink polygon nodes in z-order function indexCurve( start, minX, minY, invSize ) { let p = start; do { if ( p.z === 0 ) p.z = zOrder( p.x, p.y, minX, minY, invSize ); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while ( p !== start ); p.prevZ.nextZ = null; p.prevZ = null; sortLinked( p ); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html function sortLinked( list ) { let i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while ( p ) { numMerges ++; q = p; pSize = 0; for ( i = 0; i < inSize; i ++ ) { pSize ++; q = q.nextZ; if ( ! q ) break; } qSize = inSize; while ( pSize > 0 || ( qSize > 0 && q ) ) { if ( pSize !== 0 && ( qSize === 0 || ! q || p.z <= q.z ) ) { e = p; p = p.nextZ; pSize --; } else { e = q; q = q.nextZ; qSize --; } if ( tail ) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while ( numMerges > 1 ); return list; } // z-order of a point given coords and inverse of the longer side of data bbox function zOrder( x, y, minX, minY, invSize ) { // coords are transformed into non-negative 15-bit integer range x = ( x - minX ) * invSize | 0; y = ( y - minY ) * invSize | 0; x = ( x | ( x << 8 ) ) & 0x00FF00FF; x = ( x | ( x << 4 ) ) & 0x0F0F0F0F; x = ( x | ( x << 2 ) ) & 0x33333333; x = ( x | ( x << 1 ) ) & 0x55555555; y = ( y | ( y << 8 ) ) & 0x00FF00FF; y = ( y | ( y << 4 ) ) & 0x0F0F0F0F; y = ( y | ( y << 2 ) ) & 0x33333333; y = ( y | ( y << 1 ) ) & 0x55555555; return x | ( y << 1 ); } // find the leftmost node of a polygon ring function getLeftmost( start ) { let p = start, leftmost = start; do { if ( p.x < leftmost.x || ( p.x === leftmost.x && p.y < leftmost.y ) ) leftmost = p; p = p.next; } while ( p !== start ); return leftmost; } // check if a point lies within a convex triangle function pointInTriangle( ax, ay, bx, by, cx, cy, px, py ) { return ( cx - px ) * ( ay - py ) >= ( ax - px ) * ( cy - py ) && ( ax - px ) * ( by - py ) >= ( bx - px ) * ( ay - py ) && ( bx - px ) * ( cy - py ) >= ( cx - px ) * ( by - py ); } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) function isValidDiagonal( a, b ) { return a.next.i !== b.i && a.prev.i !== b.i && ! intersectsPolygon( a, b ) && // dones't intersect other edges ( locallyInside( a, b ) && locallyInside( b, a ) && middleInside( a, b ) && // locally visible ( area( a.prev, a, b.prev ) || area( a, b.prev, b ) ) || // does not create opposite-facing sectors equals$1( a, b ) && area( a.prev, a, a.next ) > 0 && area( b.prev, b, b.next ) > 0 ); // special zero-length case } // signed area of a triangle function area( p, q, r ) { return ( q.y - p.y ) * ( r.x - q.x ) - ( q.x - p.x ) * ( r.y - q.y ); } // check if two points are equal function equals$1( p1, p2 ) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect function intersects( p1, q1, p2, q2 ) { const o1 = sign$1( area( p1, q1, p2 ) ); const o2 = sign$1( area( p1, q1, q2 ) ); const o3 = sign$1( area( p2, q2, p1 ) ); const o4 = sign$1( area( p2, q2, q1 ) ); if ( o1 !== o2 && o3 !== o4 ) return true; // general case if ( o1 === 0 && onSegment( p1, p2, q1 ) ) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 if ( o2 === 0 && onSegment( p1, q2, q1 ) ) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 if ( o3 === 0 && onSegment( p2, p1, q2 ) ) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 if ( o4 === 0 && onSegment( p2, q1, q2 ) ) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 return false; } // for collinear points p, q, r, check if point q lies on segment pr function onSegment( p, q, r ) { return q.x <= Math.max( p.x, r.x ) && q.x >= Math.min( p.x, r.x ) && q.y <= Math.max( p.y, r.y ) && q.y >= Math.min( p.y, r.y ); } function sign$1( num ) { return num > 0 ? 1 : num < 0 ? -1 : 0; } // check if a polygon diagonal intersects any polygon segments function intersectsPolygon( a, b ) { let p = a; do { if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects( p, p.next, a, b ) ) return true; p = p.next; } while ( p !== a ); return false; } // check if a polygon diagonal is locally inside the polygon function locallyInside( a, b ) { return area( a.prev, a, a.next ) < 0 ? area( a, b, a.next ) >= 0 && area( a, a.prev, b ) >= 0 : area( a, b, a.prev ) < 0 || area( a, a.next, b ) < 0; } // check if the middle point of a polygon diagonal is inside the polygon function middleInside( a, b ) { let p = a, inside = false; const px = ( a.x + b.x ) / 2, py = ( a.y + b.y ) / 2; do { if ( ( ( p.y > py ) !== ( p.next.y > py ) ) && p.next.y !== p.y && ( px < ( p.next.x - p.x ) * ( py - p.y ) / ( p.next.y - p.y ) + p.x ) ) inside = ! inside; p = p.next; } while ( p !== a ); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring function splitPolygon( a, b ) { const a2 = new Node$1( a.i, a.x, a.y ), b2 = new Node$1( b.i, b.x, b.y ), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) function insertNode( i, x, y, last ) { const p = new Node$1( i, x, y ); if ( ! last ) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } function removeNode( p ) { p.next.prev = p.prev; p.prev.next = p.next; if ( p.prevZ ) p.prevZ.nextZ = p.nextZ; if ( p.nextZ ) p.nextZ.prevZ = p.prevZ; } function Node$1( i, x, y ) { // vertex index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertex nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = 0; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; } function signedArea( data, start, end, dim ) { let sum = 0; for ( let i = start, j = end - dim; i < end; i += dim ) { sum += ( data[ j ] - data[ i ] ) * ( data[ i + 1 ] + data[ j + 1 ] ); j = i; } return sum; } class ShapeUtils { // calculate area of the contour polygon static area( contour ) { const n = contour.length; let a = 0.0; for ( let p = n - 1, q = 0; q < n; p = q ++ ) { a += contour[ p ].x * contour[ q ].y - contour[ q ].x * contour[ p ].y; } return a * 0.5; } static isClockWise( pts ) { return ShapeUtils.area( pts ) < 0; } static triangulateShape( contour, holes ) { const vertices = []; // flat array of vertices like [ x0,y0, x1,y1, x2,y2, ... ] const holeIndices = []; // array of hole indices const faces = []; // final array of vertex indices like [ [ a,b,d ], [ b,c,d ] ] removeDupEndPts( contour ); addContour( vertices, contour ); // let holeIndex = contour.length; holes.forEach( removeDupEndPts ); for ( let i = 0; i < holes.length; i ++ ) { holeIndices.push( holeIndex ); holeIndex += holes[ i ].length; addContour( vertices, holes[ i ] ); } // const triangles = Earcut.triangulate( vertices, holeIndices ); // for ( let i = 0; i < triangles.length; i += 3 ) { faces.push( triangles.slice( i, i + 3 ) ); } return faces; } } function removeDupEndPts( points ) { const l = points.length; if ( l > 2 && points[ l - 1 ].equals( points[ 0 ] ) ) { points.pop(); } } function addContour( vertices, contour ) { for ( let i = 0; i < contour.length; i ++ ) { vertices.push( contour[ i ].x ); vertices.push( contour[ i ].y ); } } /** * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segments of extrude spline too * depth: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline (including bevelOffset) is bevel * bevelOffset: , // how far from shape outline does bevel start * bevelSegments: , // number of bevel layers * * extrudePath: // curve to extrude shape along * * UVGenerator: // object that provides UV generator functions * * } */ class ExtrudeGeometry extends BufferGeometry { constructor( shapes = new Shape( [ new Vector2( 0.5, 0.5 ), new Vector2( -0.5, 0.5 ), new Vector2( -0.5, -0.5 ), new Vector2( 0.5, -0.5 ) ] ), options = {} ) { super(); this.type = 'ExtrudeGeometry'; this.parameters = { shapes: shapes, options: options }; shapes = Array.isArray( shapes ) ? shapes : [ shapes ]; const scope = this; const verticesArray = []; const uvArray = []; for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; addShape( shape ); } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( verticesArray, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvArray, 2 ) ); this.computeVertexNormals(); // functions function addShape( shape ) { const placeholder = []; // options const curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; const steps = options.steps !== undefined ? options.steps : 1; const depth = options.depth !== undefined ? options.depth : 1; let bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; let bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 0.2; let bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 0.1; let bevelOffset = options.bevelOffset !== undefined ? options.bevelOffset : 0; let bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; const extrudePath = options.extrudePath; const uvgen = options.UVGenerator !== undefined ? options.UVGenerator : WorldUVGenerator; // let extrudePts, extrudeByPath = false; let splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // TODO1 - have a .isClosed in spline? splineTube = extrudePath.computeFrenetFrames( steps, false ); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new Vector3(); normal = new Vector3(); position2 = new Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; bevelOffset = 0; } // Variables initialization const shapePoints = shape.extractPoints( curveSegments ); let vertices = shapePoints.shape; const holes = shapePoints.holes; const reverse = ! ShapeUtils.isClockWise( vertices ); if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; if ( ShapeUtils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } } const faces = ShapeUtils.triangulateShape( vertices, holes ); /* Vertices */ const contour = vertices; // vertices has all points but contour has only points of circumference for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2( pt, vec, size ) { if ( ! vec ) console.error( 'THREE.ExtrudeGeometry: vec does not exist' ); return pt.clone().addScaledVector( vec, size ); } const vlen = vertices.length, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { // computes for inPt the corresponding point inPt' on a new contour // shifted by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. let v_trans_x, v_trans_y, shrink_by; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html const v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; const v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; const v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for collinear edges const collinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( collinear0 ) > Number.EPSILON ) { // not collinear // length of vectors for normalizing const v_prev_len = Math.sqrt( v_prev_lensq ); const v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left const ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); const ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); const ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); const ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point const sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes const v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ); if ( v_trans_lensq <= 2 ) { return new Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of collinear edges let direction_eq = false; // assumes: opposite if ( v_prev_x > Number.EPSILON ) { if ( v_next_x > Number.EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - Number.EPSILON ) { if ( v_next_x < - Number.EPSILON ) { direction_eq = true; } } else { if ( Math.sign( v_prev_y ) === Math.sign( v_next_y ) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } const contourMovements = []; for ( let i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } const holesMovements = []; let oneHoleMovements, verticesMovements = contourMovements.concat(); for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = []; for ( let i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( let b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } const bs = bevelSize + bevelOffset; // Back facing vertices for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[ 0 ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ 0 ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ 0 ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices for ( let s = 1; s <= steps; s ++ ) { for ( let i = 0; i < vlen; i ++ ) { const vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, depth / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[ s ] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[ s ] ).multiplyScalar( vert.y ); position2.copy( extrudePts[ s ] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( let b = bevelSegments - 1; b >= 0; b -- ) { const t = b / bevelSegments; const z = bevelThickness * Math.cos( t * Math.PI / 2 ); const bs = bevelSize * Math.sin( t * Math.PI / 2 ) + bevelOffset; // contract shape for ( let i = 0, il = contour.length; i < il; i ++ ) { const vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, depth + z ); } // expand holes for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( let i = 0, il = ahole.length; i < il; i ++ ) { const vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, depth + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { const start = verticesArray.length / 3; if ( bevelEnabled ) { let layer = 0; // steps + 1 let offset = vlen * layer; // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( let i = 0; i < flen; i ++ ) { const face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } scope.addGroup( start, verticesArray.length / 3 - start, 0 ); } // Create faces for the z-sides of the shape function buildSideFaces() { const start = verticesArray.length / 3; let layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( let h = 0, hl = holes.length; h < hl; h ++ ) { const ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } scope.addGroup( start, verticesArray.length / 3 - start, 1 ); } function sidewalls( contour, layeroffset ) { let i = contour.length; while ( -- i >= 0 ) { const j = i; let k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); for ( let s = 0, sl = ( steps + bevelSegments * 2 ); s < sl; s ++ ) { const slen1 = vlen * s; const slen2 = vlen * ( s + 1 ); const a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d ); } } } function v( x, y, z ) { placeholder.push( x ); placeholder.push( y ); placeholder.push( z ); } function f3( a, b, c ) { addVertex( a ); addVertex( b ); addVertex( c ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateTopUV( scope, verticesArray, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); } function f4( a, b, c, d ) { addVertex( a ); addVertex( b ); addVertex( d ); addVertex( b ); addVertex( c ); addVertex( d ); const nextIndex = verticesArray.length / 3; const uvs = uvgen.generateSideWallUV( scope, verticesArray, nextIndex - 6, nextIndex - 3, nextIndex - 2, nextIndex - 1 ); addUV( uvs[ 0 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 3 ] ); addUV( uvs[ 1 ] ); addUV( uvs[ 2 ] ); addUV( uvs[ 3 ] ); } function addVertex( index ) { verticesArray.push( placeholder[ index * 3 + 0 ] ); verticesArray.push( placeholder[ index * 3 + 1 ] ); verticesArray.push( placeholder[ index * 3 + 2 ] ); } function addUV( vector2 ) { uvArray.push( vector2.x ); uvArray.push( vector2.y ); } } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; const options = this.parameters.options; return toJSON$1( shapes, options, data ); } static fromJSON( data, shapes ) { const geometryShapes = []; for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { const shape = shapes[ data.shapes[ j ] ]; geometryShapes.push( shape ); } const extrudePath = data.options.extrudePath; if ( extrudePath !== undefined ) { data.options.extrudePath = new Curves[ extrudePath.type ]().fromJSON( extrudePath ); } return new ExtrudeGeometry( geometryShapes, data.options ); } } const WorldUVGenerator = { generateTopUV: function ( geometry, vertices, indexA, indexB, indexC ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; return [ new Vector2( a_x, a_y ), new Vector2( b_x, b_y ), new Vector2( c_x, c_y ) ]; }, generateSideWallUV: function ( geometry, vertices, indexA, indexB, indexC, indexD ) { const a_x = vertices[ indexA * 3 ]; const a_y = vertices[ indexA * 3 + 1 ]; const a_z = vertices[ indexA * 3 + 2 ]; const b_x = vertices[ indexB * 3 ]; const b_y = vertices[ indexB * 3 + 1 ]; const b_z = vertices[ indexB * 3 + 2 ]; const c_x = vertices[ indexC * 3 ]; const c_y = vertices[ indexC * 3 + 1 ]; const c_z = vertices[ indexC * 3 + 2 ]; const d_x = vertices[ indexD * 3 ]; const d_y = vertices[ indexD * 3 + 1 ]; const d_z = vertices[ indexD * 3 + 2 ]; if ( Math.abs( a_y - b_y ) < Math.abs( a_x - b_x ) ) { return [ new Vector2( a_x, 1 - a_z ), new Vector2( b_x, 1 - b_z ), new Vector2( c_x, 1 - c_z ), new Vector2( d_x, 1 - d_z ) ]; } else { return [ new Vector2( a_y, 1 - a_z ), new Vector2( b_y, 1 - b_z ), new Vector2( c_y, 1 - c_z ), new Vector2( d_y, 1 - d_z ) ]; } } }; function toJSON$1( shapes, options, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } data.options = Object.assign( {}, options ); if ( options.extrudePath !== undefined ) data.options.extrudePath = options.extrudePath.toJSON(); return data; } class IcosahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const t = ( 1 + Math.sqrt( 5 ) ) / 2; const vertices = [ -1, t, 0, 1, t, 0, -1, - t, 0, 1, - t, 0, 0, -1, t, 0, 1, t, 0, -1, - t, 0, 1, - t, t, 0, -1, t, 0, 1, - t, 0, -1, - t, 0, 1 ]; const indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 0, 10, 11, 1, 5, 9, 5, 11, 4, 11, 10, 2, 10, 7, 6, 7, 1, 8, 3, 9, 4, 3, 4, 2, 3, 2, 6, 3, 6, 8, 3, 8, 9, 4, 9, 5, 2, 4, 11, 6, 2, 10, 8, 6, 7, 9, 8, 1 ]; super( vertices, indices, radius, detail ); this.type = 'IcosahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new IcosahedronGeometry( data.radius, data.detail ); } } class OctahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const vertices = [ 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1 ]; const indices = [ 0, 2, 4, 0, 4, 3, 0, 3, 5, 0, 5, 2, 1, 2, 5, 1, 5, 3, 1, 3, 4, 1, 4, 2 ]; super( vertices, indices, radius, detail ); this.type = 'OctahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new OctahedronGeometry( data.radius, data.detail ); } } class RingGeometry extends BufferGeometry { constructor( innerRadius = 0.5, outerRadius = 1, thetaSegments = 32, phiSegments = 1, thetaStart = 0, thetaLength = Math.PI * 2 ) { super(); this.type = 'RingGeometry'; this.parameters = { innerRadius: innerRadius, outerRadius: outerRadius, thetaSegments: thetaSegments, phiSegments: phiSegments, thetaStart: thetaStart, thetaLength: thetaLength }; thetaSegments = Math.max( 3, thetaSegments ); phiSegments = Math.max( 1, phiSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // some helper variables let radius = innerRadius; const radiusStep = ( ( outerRadius - innerRadius ) / phiSegments ); const vertex = new Vector3(); const uv = new Vector2(); // generate vertices, normals and uvs for ( let j = 0; j <= phiSegments; j ++ ) { for ( let i = 0; i <= thetaSegments; i ++ ) { // values are generate from the inside of the ring to the outside const segment = thetaStart + i / thetaSegments * thetaLength; // vertex vertex.x = radius * Math.cos( segment ); vertex.y = radius * Math.sin( segment ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normals.push( 0, 0, 1 ); // uv uv.x = ( vertex.x / outerRadius + 1 ) / 2; uv.y = ( vertex.y / outerRadius + 1 ) / 2; uvs.push( uv.x, uv.y ); } // increase the radius for next row of vertices radius += radiusStep; } // indices for ( let j = 0; j < phiSegments; j ++ ) { const thetaSegmentLevel = j * ( thetaSegments + 1 ); for ( let i = 0; i < thetaSegments; i ++ ) { const segment = i + thetaSegmentLevel; const a = segment; const b = segment + thetaSegments + 1; const c = segment + thetaSegments + 2; const d = segment + 1; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new RingGeometry( data.innerRadius, data.outerRadius, data.thetaSegments, data.phiSegments, data.thetaStart, data.thetaLength ); } } class ShapeGeometry extends BufferGeometry { constructor( shapes = new Shape( [ new Vector2( 0, 0.5 ), new Vector2( -0.5, -0.5 ), new Vector2( 0.5, -0.5 ) ] ), curveSegments = 12 ) { super(); this.type = 'ShapeGeometry'; this.parameters = { shapes: shapes, curveSegments: curveSegments }; // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables let groupStart = 0; let groupCount = 0; // allow single and array values for "shapes" parameter if ( Array.isArray( shapes ) === false ) { addShape( shapes ); } else { for ( let i = 0; i < shapes.length; i ++ ) { addShape( shapes[ i ] ); this.addGroup( groupStart, groupCount, i ); // enables MultiMaterial support groupStart += groupCount; groupCount = 0; } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // helper functions function addShape( shape ) { const indexOffset = vertices.length / 3; const points = shape.extractPoints( curveSegments ); let shapeVertices = points.shape; const shapeHoles = points.holes; // check direction of vertices if ( ShapeUtils.isClockWise( shapeVertices ) === false ) { shapeVertices = shapeVertices.reverse(); } for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) { const shapeHole = shapeHoles[ i ]; if ( ShapeUtils.isClockWise( shapeHole ) === true ) { shapeHoles[ i ] = shapeHole.reverse(); } } const faces = ShapeUtils.triangulateShape( shapeVertices, shapeHoles ); // join vertices of inner and outer paths to a single array for ( let i = 0, l = shapeHoles.length; i < l; i ++ ) { const shapeHole = shapeHoles[ i ]; shapeVertices = shapeVertices.concat( shapeHole ); } // vertices, normals, uvs for ( let i = 0, l = shapeVertices.length; i < l; i ++ ) { const vertex = shapeVertices[ i ]; vertices.push( vertex.x, vertex.y, 0 ); normals.push( 0, 0, 1 ); uvs.push( vertex.x, vertex.y ); // world uvs } // indices for ( let i = 0, l = faces.length; i < l; i ++ ) { const face = faces[ i ]; const a = face[ 0 ] + indexOffset; const b = face[ 1 ] + indexOffset; const c = face[ 2 ] + indexOffset; indices.push( a, b, c ); groupCount += 3; } } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } toJSON() { const data = super.toJSON(); const shapes = this.parameters.shapes; return toJSON( shapes, data ); } static fromJSON( data, shapes ) { const geometryShapes = []; for ( let j = 0, jl = data.shapes.length; j < jl; j ++ ) { const shape = shapes[ data.shapes[ j ] ]; geometryShapes.push( shape ); } return new ShapeGeometry( geometryShapes, data.curveSegments ); } } function toJSON( shapes, data ) { data.shapes = []; if ( Array.isArray( shapes ) ) { for ( let i = 0, l = shapes.length; i < l; i ++ ) { const shape = shapes[ i ]; data.shapes.push( shape.uuid ); } } else { data.shapes.push( shapes.uuid ); } return data; } class SphereGeometry extends BufferGeometry { constructor( radius = 1, widthSegments = 32, heightSegments = 16, phiStart = 0, phiLength = Math.PI * 2, thetaStart = 0, thetaLength = Math.PI ) { super(); this.type = 'SphereGeometry'; this.parameters = { radius: radius, widthSegments: widthSegments, heightSegments: heightSegments, phiStart: phiStart, phiLength: phiLength, thetaStart: thetaStart, thetaLength: thetaLength }; widthSegments = Math.max( 3, Math.floor( widthSegments ) ); heightSegments = Math.max( 2, Math.floor( heightSegments ) ); const thetaEnd = Math.min( thetaStart + thetaLength, Math.PI ); let index = 0; const grid = []; const vertex = new Vector3(); const normal = new Vector3(); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // generate vertices, normals and uvs for ( let iy = 0; iy <= heightSegments; iy ++ ) { const verticesRow = []; const v = iy / heightSegments; // special case for the poles let uOffset = 0; if ( iy === 0 && thetaStart === 0 ) { uOffset = 0.5 / widthSegments; } else if ( iy === heightSegments && thetaEnd === Math.PI ) { uOffset = -0.5 / widthSegments; } for ( let ix = 0; ix <= widthSegments; ix ++ ) { const u = ix / widthSegments; // vertex vertex.x = - radius * Math.cos( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertex.y = radius * Math.cos( thetaStart + v * thetaLength ); vertex.z = radius * Math.sin( phiStart + u * phiLength ) * Math.sin( thetaStart + v * thetaLength ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal normal.copy( vertex ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( u + uOffset, 1 - v ); verticesRow.push( index ++ ); } grid.push( verticesRow ); } // indices for ( let iy = 0; iy < heightSegments; iy ++ ) { for ( let ix = 0; ix < widthSegments; ix ++ ) { const a = grid[ iy ][ ix + 1 ]; const b = grid[ iy ][ ix ]; const c = grid[ iy + 1 ][ ix ]; const d = grid[ iy + 1 ][ ix + 1 ]; if ( iy !== 0 || thetaStart > 0 ) indices.push( a, b, d ); if ( iy !== heightSegments - 1 || thetaEnd < Math.PI ) indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new SphereGeometry( data.radius, data.widthSegments, data.heightSegments, data.phiStart, data.phiLength, data.thetaStart, data.thetaLength ); } } class TetrahedronGeometry extends PolyhedronGeometry { constructor( radius = 1, detail = 0 ) { const vertices = [ 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1 ]; const indices = [ 2, 1, 0, 0, 3, 2, 1, 3, 0, 2, 3, 1 ]; super( vertices, indices, radius, detail ); this.type = 'TetrahedronGeometry'; this.parameters = { radius: radius, detail: detail }; } static fromJSON( data ) { return new TetrahedronGeometry( data.radius, data.detail ); } } class TorusGeometry extends BufferGeometry { constructor( radius = 1, tube = 0.4, radialSegments = 12, tubularSegments = 48, arc = Math.PI * 2 ) { super(); this.type = 'TorusGeometry'; this.parameters = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, arc: arc }; radialSegments = Math.floor( radialSegments ); tubularSegments = Math.floor( tubularSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const center = new Vector3(); const vertex = new Vector3(); const normal = new Vector3(); // generate vertices, normals and uvs for ( let j = 0; j <= radialSegments; j ++ ) { for ( let i = 0; i <= tubularSegments; i ++ ) { const u = i / tubularSegments * arc; const v = j / radialSegments * Math.PI * 2; // vertex vertex.x = ( radius + tube * Math.cos( v ) ) * Math.cos( u ); vertex.y = ( radius + tube * Math.cos( v ) ) * Math.sin( u ); vertex.z = tube * Math.sin( v ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal center.x = radius * Math.cos( u ); center.y = radius * Math.sin( u ); normal.subVectors( vertex, center ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( let j = 1; j <= radialSegments; j ++ ) { for ( let i = 1; i <= tubularSegments; i ++ ) { // indices const a = ( tubularSegments + 1 ) * j + i - 1; const b = ( tubularSegments + 1 ) * ( j - 1 ) + i - 1; const c = ( tubularSegments + 1 ) * ( j - 1 ) + i; const d = ( tubularSegments + 1 ) * j + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new TorusGeometry( data.radius, data.tube, data.radialSegments, data.tubularSegments, data.arc ); } } class TorusKnotGeometry extends BufferGeometry { constructor( radius = 1, tube = 0.4, tubularSegments = 64, radialSegments = 8, p = 2, q = 3 ) { super(); this.type = 'TorusKnotGeometry'; this.parameters = { radius: radius, tube: tube, tubularSegments: tubularSegments, radialSegments: radialSegments, p: p, q: q }; tubularSegments = Math.floor( tubularSegments ); radialSegments = Math.floor( radialSegments ); // buffers const indices = []; const vertices = []; const normals = []; const uvs = []; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const P1 = new Vector3(); const P2 = new Vector3(); const B = new Vector3(); const T = new Vector3(); const N = new Vector3(); // generate vertices, normals and uvs for ( let i = 0; i <= tubularSegments; ++ i ) { // the radian "u" is used to calculate the position on the torus curve of the current tubular segment const u = i / tubularSegments * p * Math.PI * 2; // now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead. // these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions calculatePositionOnCurve( u, p, q, radius, P1 ); calculatePositionOnCurve( u + 0.01, p, q, radius, P2 ); // calculate orthonormal basis T.subVectors( P2, P1 ); N.addVectors( P2, P1 ); B.crossVectors( T, N ); N.crossVectors( B, T ); // normalize B, N. T can be ignored, we don't use it B.normalize(); N.normalize(); for ( let j = 0; j <= radialSegments; ++ j ) { // now calculate the vertices. they are nothing more than an extrusion of the torus curve. // because we extrude a shape in the xy-plane, there is no need to calculate a z-value. const v = j / radialSegments * Math.PI * 2; const cx = - tube * Math.cos( v ); const cy = tube * Math.sin( v ); // now calculate the final vertex position. // first we orient the extrusion with our basis vectors, then we add it to the current position on the curve vertex.x = P1.x + ( cx * N.x + cy * B.x ); vertex.y = P1.y + ( cx * N.y + cy * B.y ); vertex.z = P1.z + ( cx * N.z + cy * B.z ); vertices.push( vertex.x, vertex.y, vertex.z ); // normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal) normal.subVectors( vertex, P1 ).normalize(); normals.push( normal.x, normal.y, normal.z ); // uv uvs.push( i / tubularSegments ); uvs.push( j / radialSegments ); } } // generate indices for ( let j = 1; j <= tubularSegments; j ++ ) { for ( let i = 1; i <= radialSegments; i ++ ) { // indices const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); const b = ( radialSegments + 1 ) * j + ( i - 1 ); const c = ( radialSegments + 1 ) * j + i; const d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // this function calculates the current position on the torus curve function calculatePositionOnCurve( u, p, q, radius, position ) { const cu = Math.cos( u ); const su = Math.sin( u ); const quOverP = q / p * u; const cs = Math.cos( quOverP ); position.x = radius * ( 2 + cs ) * 0.5 * cu; position.y = radius * ( 2 + cs ) * su * 0.5; position.z = radius * Math.sin( quOverP ) * 0.5; } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } static fromJSON( data ) { return new TorusKnotGeometry( data.radius, data.tube, data.tubularSegments, data.radialSegments, data.p, data.q ); } } class TubeGeometry extends BufferGeometry { constructor( path = new QuadraticBezierCurve3( new Vector3( -1, -1, 0 ), new Vector3( -1, 1, 0 ), new Vector3( 1, 1, 0 ) ), tubularSegments = 64, radius = 1, radialSegments = 8, closed = false ) { super(); this.type = 'TubeGeometry'; this.parameters = { path: path, tubularSegments: tubularSegments, radius: radius, radialSegments: radialSegments, closed: closed }; const frames = path.computeFrenetFrames( tubularSegments, closed ); // expose internals this.tangents = frames.tangents; this.normals = frames.normals; this.binormals = frames.binormals; // helper variables const vertex = new Vector3(); const normal = new Vector3(); const uv = new Vector2(); let P = new Vector3(); // buffer const vertices = []; const normals = []; const uvs = []; const indices = []; // create buffer data generateBufferData(); // build geometry this.setIndex( indices ); this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); this.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) ); // functions function generateBufferData() { for ( let i = 0; i < tubularSegments; i ++ ) { generateSegment( i ); } // if the geometry is not closed, generate the last row of vertices and normals // at the regular position on the given path // // if the geometry is closed, duplicate the first row of vertices and normals (uvs will differ) generateSegment( ( closed === false ) ? tubularSegments : 0 ); // uvs are generated in a separate function. // this makes it easy compute correct values for closed geometries generateUVs(); // finally create faces generateIndices(); } function generateSegment( i ) { // we use getPointAt to sample evenly distributed points from the given path P = path.getPointAt( i / tubularSegments, P ); // retrieve corresponding normal and binormal const N = frames.normals[ i ]; const B = frames.binormals[ i ]; // generate normals and vertices for the current segment for ( let j = 0; j <= radialSegments; j ++ ) { const v = j / radialSegments * Math.PI * 2; const sin = Math.sin( v ); const cos = - Math.cos( v ); // normal normal.x = ( cos * N.x + sin * B.x ); normal.y = ( cos * N.y + sin * B.y ); normal.z = ( cos * N.z + sin * B.z ); normal.normalize(); normals.push( normal.x, normal.y, normal.z ); // vertex vertex.x = P.x + radius * normal.x; vertex.y = P.y + radius * normal.y; vertex.z = P.z + radius * normal.z; vertices.push( vertex.x, vertex.y, vertex.z ); } } function generateIndices() { for ( let j = 1; j <= tubularSegments; j ++ ) { for ( let i = 1; i <= radialSegments; i ++ ) { const a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 ); const b = ( radialSegments + 1 ) * j + ( i - 1 ); const c = ( radialSegments + 1 ) * j + i; const d = ( radialSegments + 1 ) * ( j - 1 ) + i; // faces indices.push( a, b, d ); indices.push( b, c, d ); } } } function generateUVs() { for ( let i = 0; i <= tubularSegments; i ++ ) { for ( let j = 0; j <= radialSegments; j ++ ) { uv.x = i / tubularSegments; uv.y = j / radialSegments; uvs.push( uv.x, uv.y ); } } } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } toJSON() { const data = super.toJSON(); data.path = this.parameters.path.toJSON(); return data; } static fromJSON( data ) { // This only works for built-in curves (e.g. CatmullRomCurve3). // User defined curves or instances of CurvePath will not be deserialized. return new TubeGeometry( new Curves[ data.path.type ]().fromJSON( data.path ), data.tubularSegments, data.radius, data.radialSegments, data.closed ); } } class WireframeGeometry extends BufferGeometry { constructor( geometry = null ) { super(); this.type = 'WireframeGeometry'; this.parameters = { geometry: geometry }; if ( geometry !== null ) { // buffer const vertices = []; const edges = new Set(); // helper variables const start = new Vector3(); const end = new Vector3(); if ( geometry.index !== null ) { // indexed BufferGeometry const position = geometry.attributes.position; const indices = geometry.index; let groups = geometry.groups; if ( groups.length === 0 ) { groups = [ { start: 0, count: indices.count, materialIndex: 0 } ]; } // create a data structure that contains all edges without duplicates for ( let o = 0, ol = groups.length; o < ol; ++ o ) { const group = groups[ o ]; const groupStart = group.start; const groupCount = group.count; for ( let i = groupStart, l = ( groupStart + groupCount ); i < l; i += 3 ) { for ( let j = 0; j < 3; j ++ ) { const index1 = indices.getX( i + j ); const index2 = indices.getX( i + ( j + 1 ) % 3 ); start.fromBufferAttribute( position, index1 ); end.fromBufferAttribute( position, index2 ); if ( isUniqueEdge( start, end, edges ) === true ) { vertices.push( start.x, start.y, start.z ); vertices.push( end.x, end.y, end.z ); } } } } } else { // non-indexed BufferGeometry const position = geometry.attributes.position; for ( let i = 0, l = ( position.count / 3 ); i < l; i ++ ) { for ( let j = 0; j < 3; j ++ ) { // three edges per triangle, an edge is represented as (index1, index2) // e.g. the first triangle has the following edges: (0,1),(1,2),(2,0) const index1 = 3 * i + j; const index2 = 3 * i + ( ( j + 1 ) % 3 ); start.fromBufferAttribute( position, index1 ); end.fromBufferAttribute( position, index2 ); if ( isUniqueEdge( start, end, edges ) === true ) { vertices.push( start.x, start.y, start.z ); vertices.push( end.x, end.y, end.z ); } } } } // build geometry this.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); } } copy( source ) { super.copy( source ); this.parameters = Object.assign( {}, source.parameters ); return this; } } function isUniqueEdge( start, end, edges ) { const hash1 = `${start.x},${start.y},${start.z}-${end.x},${end.y},${end.z}`; const hash2 = `${end.x},${end.y},${end.z}-${start.x},${start.y},${start.z}`; // coincident edge if ( edges.has( hash1 ) === true || edges.has( hash2 ) === true ) { return false; } else { edges.add( hash1 ); edges.add( hash2 ); return true; } } var Geometries = /*#__PURE__*/Object.freeze({ __proto__: null, BoxGeometry: BoxGeometry, CapsuleGeometry: CapsuleGeometry, CircleGeometry: CircleGeometry, ConeGeometry: ConeGeometry, CylinderGeometry: CylinderGeometry, DodecahedronGeometry: DodecahedronGeometry, EdgesGeometry: EdgesGeometry, ExtrudeGeometry: ExtrudeGeometry, IcosahedronGeometry: IcosahedronGeometry, LatheGeometry: LatheGeometry, OctahedronGeometry: OctahedronGeometry, PlaneGeometry: PlaneGeometry, PolyhedronGeometry: PolyhedronGeometry, RingGeometry: RingGeometry, ShapeGeometry: ShapeGeometry, SphereGeometry: SphereGeometry, TetrahedronGeometry: TetrahedronGeometry, TorusGeometry: TorusGeometry, TorusKnotGeometry: TorusKnotGeometry, TubeGeometry: TubeGeometry, WireframeGeometry: WireframeGeometry }); class ShadowMaterial extends Material { constructor( parameters ) { super(); this.isShadowMaterial = true; this.type = 'ShadowMaterial'; this.color = new Color( 0x000000 ); this.transparent = true; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.fog = source.fog; return this; } } class RawShaderMaterial extends ShaderMaterial { constructor( parameters ) { super( parameters ); this.isRawShaderMaterial = true; this.type = 'RawShaderMaterial'; } } class MeshStandardMaterial extends Material { constructor( parameters ) { super(); this.isMeshStandardMaterial = true; this.defines = { 'STANDARD': '' }; this.type = 'MeshStandardMaterial'; this.color = new Color( 0xffffff ); // diffuse this.roughness = 1.0; this.metalness = 0.0; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.roughnessMap = null; this.metalnessMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.envMapIntensity = 1.0; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.defines = { 'STANDARD': '' }; this.color.copy( source.color ); this.roughness = source.roughness; this.metalness = source.metalness; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.roughnessMap = source.roughnessMap; this.metalnessMap = source.metalnessMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy( source.envMapRotation ); this.envMapIntensity = source.envMapIntensity; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshPhysicalMaterial extends MeshStandardMaterial { constructor( parameters ) { super(); this.isMeshPhysicalMaterial = true; this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.type = 'MeshPhysicalMaterial'; this.anisotropyRotation = 0; this.anisotropyMap = null; this.clearcoatMap = null; this.clearcoatRoughness = 0.0; this.clearcoatRoughnessMap = null; this.clearcoatNormalScale = new Vector2( 1, 1 ); this.clearcoatNormalMap = null; this.ior = 1.5; Object.defineProperty( this, 'reflectivity', { get: function () { return ( clamp$1( 2.5 * ( this.ior - 1 ) / ( this.ior + 1 ), 0, 1 ) ); }, set: function ( reflectivity ) { this.ior = ( 1 + 0.4 * reflectivity ) / ( 1 - 0.4 * reflectivity ); } } ); this.iridescenceMap = null; this.iridescenceIOR = 1.3; this.iridescenceThicknessRange = [ 100, 400 ]; this.iridescenceThicknessMap = null; this.sheenColor = new Color( 0x000000 ); this.sheenColorMap = null; this.sheenRoughness = 1.0; this.sheenRoughnessMap = null; this.transmissionMap = null; this.thickness = 0; this.thicknessMap = null; this.attenuationDistance = Infinity; this.attenuationColor = new Color( 1, 1, 1 ); this.specularIntensity = 1.0; this.specularIntensityMap = null; this.specularColor = new Color( 1, 1, 1 ); this.specularColorMap = null; this._anisotropy = 0; this._clearcoat = 0; this._dispersion = 0; this._iridescence = 0; this._sheen = 0.0; this._transmission = 0; this.setValues( parameters ); } get anisotropy() { return this._anisotropy; } set anisotropy( value ) { if ( this._anisotropy > 0 !== value > 0 ) { this.version ++; } this._anisotropy = value; } get clearcoat() { return this._clearcoat; } set clearcoat( value ) { if ( this._clearcoat > 0 !== value > 0 ) { this.version ++; } this._clearcoat = value; } get iridescence() { return this._iridescence; } set iridescence( value ) { if ( this._iridescence > 0 !== value > 0 ) { this.version ++; } this._iridescence = value; } get dispersion() { return this._dispersion; } set dispersion( value ) { if ( this._dispersion > 0 !== value > 0 ) { this.version ++; } this._dispersion = value; } get sheen() { return this._sheen; } set sheen( value ) { if ( this._sheen > 0 !== value > 0 ) { this.version ++; } this._sheen = value; } get transmission() { return this._transmission; } set transmission( value ) { if ( this._transmission > 0 !== value > 0 ) { this.version ++; } this._transmission = value; } copy( source ) { super.copy( source ); this.defines = { 'STANDARD': '', 'PHYSICAL': '' }; this.anisotropy = source.anisotropy; this.anisotropyRotation = source.anisotropyRotation; this.anisotropyMap = source.anisotropyMap; this.clearcoat = source.clearcoat; this.clearcoatMap = source.clearcoatMap; this.clearcoatRoughness = source.clearcoatRoughness; this.clearcoatRoughnessMap = source.clearcoatRoughnessMap; this.clearcoatNormalMap = source.clearcoatNormalMap; this.clearcoatNormalScale.copy( source.clearcoatNormalScale ); this.dispersion = source.dispersion; this.ior = source.ior; this.iridescence = source.iridescence; this.iridescenceMap = source.iridescenceMap; this.iridescenceIOR = source.iridescenceIOR; this.iridescenceThicknessRange = [ ...source.iridescenceThicknessRange ]; this.iridescenceThicknessMap = source.iridescenceThicknessMap; this.sheen = source.sheen; this.sheenColor.copy( source.sheenColor ); this.sheenColorMap = source.sheenColorMap; this.sheenRoughness = source.sheenRoughness; this.sheenRoughnessMap = source.sheenRoughnessMap; this.transmission = source.transmission; this.transmissionMap = source.transmissionMap; this.thickness = source.thickness; this.thicknessMap = source.thicknessMap; this.attenuationDistance = source.attenuationDistance; this.attenuationColor.copy( source.attenuationColor ); this.specularIntensity = source.specularIntensity; this.specularIntensityMap = source.specularIntensityMap; this.specularColor.copy( source.specularColor ); this.specularColorMap = source.specularColorMap; return this; } } class MeshPhongMaterial extends Material { constructor( parameters ) { super(); this.isMeshPhongMaterial = true; this.type = 'MeshPhongMaterial'; this.color = new Color( 0xffffff ); // diffuse this.specular = new Color( 0x111111 ); this.shininess = 30; this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.specular.copy( source.specular ); this.shininess = source.shininess; this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy( source.envMapRotation ); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshToonMaterial extends Material { constructor( parameters ) { super(); this.isMeshToonMaterial = true; this.defines = { 'TOON': '' }; this.type = 'MeshToonMaterial'; this.color = new Color( 0xffffff ); this.map = null; this.gradientMap = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.gradientMap = source.gradientMap; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.fog = source.fog; return this; } } class MeshNormalMaterial extends Material { constructor( parameters ) { super(); this.isMeshNormalMaterial = true; this.type = 'MeshNormalMaterial'; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.wireframe = false; this.wireframeLinewidth = 1; this.flatShading = false; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.flatShading = source.flatShading; return this; } } class MeshLambertMaterial extends Material { constructor( parameters ) { super(); this.isMeshLambertMaterial = true; this.type = 'MeshLambertMaterial'; this.color = new Color( 0xffffff ); // diffuse this.map = null; this.lightMap = null; this.lightMapIntensity = 1.0; this.aoMap = null; this.aoMapIntensity = 1.0; this.emissive = new Color( 0x000000 ); this.emissiveIntensity = 1.0; this.emissiveMap = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.specularMap = null; this.alphaMap = null; this.envMap = null; this.envMapRotation = new Euler(); this.combine = MultiplyOperation; this.reflectivity = 1; this.refractionRatio = 0.98; this.wireframe = false; this.wireframeLinewidth = 1; this.wireframeLinecap = 'round'; this.wireframeLinejoin = 'round'; this.flatShading = false; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.color.copy( source.color ); this.map = source.map; this.lightMap = source.lightMap; this.lightMapIntensity = source.lightMapIntensity; this.aoMap = source.aoMap; this.aoMapIntensity = source.aoMapIntensity; this.emissive.copy( source.emissive ); this.emissiveMap = source.emissiveMap; this.emissiveIntensity = source.emissiveIntensity; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.specularMap = source.specularMap; this.alphaMap = source.alphaMap; this.envMap = source.envMap; this.envMapRotation.copy( source.envMapRotation ); this.combine = source.combine; this.reflectivity = source.reflectivity; this.refractionRatio = source.refractionRatio; this.wireframe = source.wireframe; this.wireframeLinewidth = source.wireframeLinewidth; this.wireframeLinecap = source.wireframeLinecap; this.wireframeLinejoin = source.wireframeLinejoin; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class MeshMatcapMaterial extends Material { constructor( parameters ) { super(); this.isMeshMatcapMaterial = true; this.defines = { 'MATCAP': '' }; this.type = 'MeshMatcapMaterial'; this.color = new Color( 0xffffff ); // diffuse this.matcap = null; this.map = null; this.bumpMap = null; this.bumpScale = 1; this.normalMap = null; this.normalMapType = TangentSpaceNormalMap; this.normalScale = new Vector2( 1, 1 ); this.displacementMap = null; this.displacementScale = 1; this.displacementBias = 0; this.alphaMap = null; this.flatShading = false; this.fog = true; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.defines = { 'MATCAP': '' }; this.color.copy( source.color ); this.matcap = source.matcap; this.map = source.map; this.bumpMap = source.bumpMap; this.bumpScale = source.bumpScale; this.normalMap = source.normalMap; this.normalMapType = source.normalMapType; this.normalScale.copy( source.normalScale ); this.displacementMap = source.displacementMap; this.displacementScale = source.displacementScale; this.displacementBias = source.displacementBias; this.alphaMap = source.alphaMap; this.flatShading = source.flatShading; this.fog = source.fog; return this; } } class LineDashedMaterial extends LineBasicMaterial { constructor( parameters ) { super(); this.isLineDashedMaterial = true; this.type = 'LineDashedMaterial'; this.scale = 1; this.dashSize = 3; this.gapSize = 1; this.setValues( parameters ); } copy( source ) { super.copy( source ); this.scale = source.scale; this.dashSize = source.dashSize; this.gapSize = source.gapSize; return this; } } // converts an array to a specific type function convertArray( array, type, forceClone ) { if ( ! array || // let 'undefined' and 'null' pass ! forceClone && array.constructor === type ) return array; if ( typeof type.BYTES_PER_ELEMENT === 'number' ) { return new type( array ); // create typed array } return Array.prototype.slice.call( array ); // create Array } function isTypedArray( object ) { return ArrayBuffer.isView( object ) && ! ( object instanceof DataView ); } // returns an array by which times and values can be sorted function getKeyframeOrder( times ) { function compareTime( i, j ) { return times[ i ] - times[ j ]; } const n = times.length; const result = new Array( n ); for ( let i = 0; i !== n; ++ i ) result[ i ] = i; result.sort( compareTime ); return result; } // uses the array previously returned by 'getKeyframeOrder' to sort data function sortedArray( values, stride, order ) { const nValues = values.length; const result = new values.constructor( nValues ); for ( let i = 0, dstOffset = 0; dstOffset !== nValues; ++ i ) { const srcOffset = order[ i ] * stride; for ( let j = 0; j !== stride; ++ j ) { result[ dstOffset ++ ] = values[ srcOffset + j ]; } } return result; } // function for parsing AOS keyframe formats function flattenJSON( jsonKeys, times, values, valuePropertyName ) { let i = 1, key = jsonKeys[ 0 ]; while ( key !== undefined && key[ valuePropertyName ] === undefined ) { key = jsonKeys[ i ++ ]; } if ( key === undefined ) return; // no data let value = key[ valuePropertyName ]; if ( value === undefined ) return; // no data if ( Array.isArray( value ) ) { do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push.apply( values, value ); // push all elements } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else if ( value.toArray !== undefined ) { // ...assume THREE.Math-ish do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); value.toArray( values, values.length ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } else { // otherwise push as-is do { value = key[ valuePropertyName ]; if ( value !== undefined ) { times.push( key.time ); values.push( value ); } key = jsonKeys[ i ++ ]; } while ( key !== undefined ); } } function subclip( sourceClip, name, startFrame, endFrame, fps = 30 ) { const clip = sourceClip.clone(); clip.name = name; const tracks = []; for ( let i = 0; i < clip.tracks.length; ++ i ) { const track = clip.tracks[ i ]; const valueSize = track.getValueSize(); const times = []; const values = []; for ( let j = 0; j < track.times.length; ++ j ) { const frame = track.times[ j ] * fps; if ( frame < startFrame || frame >= endFrame ) continue; times.push( track.times[ j ] ); for ( let k = 0; k < valueSize; ++ k ) { values.push( track.values[ j * valueSize + k ] ); } } if ( times.length === 0 ) continue; track.times = convertArray( times, track.times.constructor ); track.values = convertArray( values, track.values.constructor ); tracks.push( track ); } clip.tracks = tracks; // find minimum .times value across all tracks in the trimmed clip let minStartTime = Infinity; for ( let i = 0; i < clip.tracks.length; ++ i ) { if ( minStartTime > clip.tracks[ i ].times[ 0 ] ) { minStartTime = clip.tracks[ i ].times[ 0 ]; } } // shift all tracks such that clip begins at t=0 for ( let i = 0; i < clip.tracks.length; ++ i ) { clip.tracks[ i ].shift( -1 * minStartTime ); } clip.resetDuration(); return clip; } function makeClipAdditive( targetClip, referenceFrame = 0, referenceClip = targetClip, fps = 30 ) { if ( fps <= 0 ) fps = 30; const numTracks = referenceClip.tracks.length; const referenceTime = referenceFrame / fps; // Make each track's values relative to the values at the reference frame for ( let i = 0; i < numTracks; ++ i ) { const referenceTrack = referenceClip.tracks[ i ]; const referenceTrackType = referenceTrack.ValueTypeName; // Skip this track if it's non-numeric if ( referenceTrackType === 'bool' || referenceTrackType === 'string' ) continue; // Find the track in the target clip whose name and type matches the reference track const targetTrack = targetClip.tracks.find( function ( track ) { return track.name === referenceTrack.name && track.ValueTypeName === referenceTrackType; } ); if ( targetTrack === undefined ) continue; let referenceOffset = 0; const referenceValueSize = referenceTrack.getValueSize(); if ( referenceTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { referenceOffset = referenceValueSize / 3; } let targetOffset = 0; const targetValueSize = targetTrack.getValueSize(); if ( targetTrack.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline ) { targetOffset = targetValueSize / 3; } const lastIndex = referenceTrack.times.length - 1; let referenceValue; // Find the value to subtract out of the track if ( referenceTime <= referenceTrack.times[ 0 ] ) { // Reference frame is earlier than the first keyframe, so just use the first keyframe const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; referenceValue = referenceTrack.values.slice( startIndex, endIndex ); } else if ( referenceTime >= referenceTrack.times[ lastIndex ] ) { // Reference frame is after the last keyframe, so just use the last keyframe const startIndex = lastIndex * referenceValueSize + referenceOffset; const endIndex = startIndex + referenceValueSize - referenceOffset; referenceValue = referenceTrack.values.slice( startIndex, endIndex ); } else { // Interpolate to the reference value const interpolant = referenceTrack.createInterpolant(); const startIndex = referenceOffset; const endIndex = referenceValueSize - referenceOffset; interpolant.evaluate( referenceTime ); referenceValue = interpolant.resultBuffer.slice( startIndex, endIndex ); } // Conjugate the quaternion if ( referenceTrackType === 'quaternion' ) { const referenceQuat = new Quaternion().fromArray( referenceValue ).normalize().conjugate(); referenceQuat.toArray( referenceValue ); } // Subtract the reference value from all of the track values const numTimes = targetTrack.times.length; for ( let j = 0; j < numTimes; ++ j ) { const valueStart = j * targetValueSize + targetOffset; if ( referenceTrackType === 'quaternion' ) { // Multiply the conjugate for quaternion track types Quaternion.multiplyQuaternionsFlat( targetTrack.values, valueStart, referenceValue, 0, targetTrack.values, valueStart ); } else { const valueEnd = targetValueSize - targetOffset * 2; // Subtract each value for all other numeric track types for ( let k = 0; k < valueEnd; ++ k ) { targetTrack.values[ valueStart + k ] -= referenceValue[ k ]; } } } } targetClip.blendMode = AdditiveAnimationBlendMode; return targetClip; } const AnimationUtils = { convertArray: convertArray, isTypedArray: isTypedArray, getKeyframeOrder: getKeyframeOrder, sortedArray: sortedArray, flattenJSON: flattenJSON, subclip: subclip, makeClipAdditive: makeClipAdditive }; /** * Abstract base class of interpolants over parametric samples. * * The parameter domain is one dimensional, typically the time or a path * along a curve defined by the data. * * The sample values can have any dimensionality and derived classes may * apply special interpretations to the data. * * This class provides the interval seek in a Template Method, deferring * the actual interpolation to derived classes. * * Time complexity is O(1) for linear access crossing at most two points * and O(log N) for random access, where N is the number of positions. * * References: * * http://www.oodesign.com/template-method-pattern.html * */ class Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { this.parameterPositions = parameterPositions; this._cachedIndex = 0; this.resultBuffer = resultBuffer !== undefined ? resultBuffer : new sampleValues.constructor( sampleSize ); this.sampleValues = sampleValues; this.valueSize = sampleSize; this.settings = null; this.DefaultSettings_ = {}; } evaluate( t ) { const pp = this.parameterPositions; let i1 = this._cachedIndex, t1 = pp[ i1 ], t0 = pp[ i1 - 1 ]; validate_interval: { seek: { let right; linear_scan: { //- See http://jsperf.com/comparison-to-undefined/3 //- slower code: //- //- if ( t >= t1 || t1 === undefined ) { forward_scan: if ( ! ( t < t1 ) ) { for ( let giveUpAt = i1 + 2; ; ) { if ( t1 === undefined ) { if ( t < t0 ) break forward_scan; // after end i1 = pp.length; this._cachedIndex = i1; return this.copySampleValue_( i1 - 1 ); } if ( i1 === giveUpAt ) break; // this loop t0 = t1; t1 = pp[ ++ i1 ]; if ( t < t1 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the right side of the index right = pp.length; break linear_scan; } //- slower code: //- if ( t < t0 || t0 === undefined ) { if ( ! ( t >= t0 ) ) { // looping? const t1global = pp[ 1 ]; if ( t < t1global ) { i1 = 2; // + 1, using the scan for the details t0 = t1global; } // linear reverse scan for ( let giveUpAt = i1 - 2; ; ) { if ( t0 === undefined ) { // before start this._cachedIndex = 0; return this.copySampleValue_( 0 ); } if ( i1 === giveUpAt ) break; // this loop t1 = t0; t0 = pp[ -- i1 - 1 ]; if ( t >= t0 ) { // we have arrived at the sought interval break seek; } } // prepare binary search on the left side of the index right = i1; i1 = 0; break linear_scan; } // the interval is valid break validate_interval; } // linear scan // binary search while ( i1 < right ) { const mid = ( i1 + right ) >>> 1; if ( t < pp[ mid ] ) { right = mid; } else { i1 = mid + 1; } } t1 = pp[ i1 ]; t0 = pp[ i1 - 1 ]; // check boundary cases, again if ( t0 === undefined ) { this._cachedIndex = 0; return this.copySampleValue_( 0 ); } if ( t1 === undefined ) { i1 = pp.length; this._cachedIndex = i1; return this.copySampleValue_( i1 - 1 ); } } // seek this._cachedIndex = i1; this.intervalChanged_( i1, t0, t1 ); } // validate_interval return this.interpolate_( i1, t0, t, t1 ); } getSettings_() { return this.settings || this.DefaultSettings_; } copySampleValue_( index ) { // copies a sample value to the result buffer const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset = index * stride; for ( let i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset + i ]; } return result; } // Template methods for derived classes: interpolate_( /* i1, t0, t, t1 */ ) { throw new Error( 'call to abstract method' ); // implementations shall return this.resultBuffer } intervalChanged_( /* i1, t0, t1 */ ) { // empty } } /** * Fast and simple cubic spline interpolant. * * It was derived from a Hermitian construction setting the first derivative * at each sample position to the linear slope between neighboring positions * over their parameter interval. */ class CubicInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); this._weightPrev = -0; this._offsetPrev = -0; this._weightNext = -0; this._offsetNext = -0; this.DefaultSettings_ = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; } intervalChanged_( i1, t0, t1 ) { const pp = this.parameterPositions; let iPrev = i1 - 2, iNext = i1 + 1, tPrev = pp[ iPrev ], tNext = pp[ iNext ]; if ( tPrev === undefined ) { switch ( this.getSettings_().endingStart ) { case ZeroSlopeEnding: // f'(t0) = 0 iPrev = i1; tPrev = 2 * t0 - t1; break; case WrapAroundEnding: // use the other end of the curve iPrev = pp.length - 2; tPrev = t0 + pp[ iPrev ] - pp[ iPrev + 1 ]; break; default: // ZeroCurvatureEnding // f''(t0) = 0 a.k.a. Natural Spline iPrev = i1; tPrev = t1; } } if ( tNext === undefined ) { switch ( this.getSettings_().endingEnd ) { case ZeroSlopeEnding: // f'(tN) = 0 iNext = i1; tNext = 2 * t1 - t0; break; case WrapAroundEnding: // use the other end of the curve iNext = 1; tNext = t1 + pp[ 1 ] - pp[ 0 ]; break; default: // ZeroCurvatureEnding // f''(tN) = 0, a.k.a. Natural Spline iNext = i1 - 1; tNext = t0; } } const halfDt = ( t1 - t0 ) * 0.5, stride = this.valueSize; this._weightPrev = halfDt / ( t0 - tPrev ); this._weightNext = halfDt / ( tNext - t1 ); this._offsetPrev = iPrev * stride; this._offsetNext = iNext * stride; } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, o1 = i1 * stride, o0 = o1 - stride, oP = this._offsetPrev, oN = this._offsetNext, wP = this._weightPrev, wN = this._weightNext, p = ( t - t0 ) / ( t1 - t0 ), pp = p * p, ppp = pp * p; // evaluate polynomials const sP = - wP * ppp + 2 * wP * pp - wP * p; const s0 = ( 1 + wP ) * ppp + ( -1.5 - 2 * wP ) * pp + ( -0.5 + wP ) * p + 1; const s1 = ( -1 - wN ) * ppp + ( 1.5 + wN ) * pp + 0.5 * p; const sN = wN * ppp - wN * pp; // combine data linearly for ( let i = 0; i !== stride; ++ i ) { result[ i ] = sP * values[ oP + i ] + s0 * values[ o0 + i ] + s1 * values[ o1 + i ] + sN * values[ oN + i ]; } return result; } } class LinearInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, offset1 = i1 * stride, offset0 = offset1 - stride, weight1 = ( t - t0 ) / ( t1 - t0 ), weight0 = 1 - weight1; for ( let i = 0; i !== stride; ++ i ) { result[ i ] = values[ offset0 + i ] * weight0 + values[ offset1 + i ] * weight1; } return result; } } /** * * Interpolant that evaluates to the sample value at the position preceding * the parameter. */ class DiscreteInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1 /*, t0, t, t1 */ ) { return this.copySampleValue_( i1 - 1 ); } } class KeyframeTrack { constructor( name, times, values, interpolation ) { if ( name === undefined ) throw new Error( 'THREE.KeyframeTrack: track name is undefined' ); if ( times === undefined || times.length === 0 ) throw new Error( 'THREE.KeyframeTrack: no keyframes in track named ' + name ); this.name = name; this.times = convertArray( times, this.TimeBufferType ); this.values = convertArray( values, this.ValueBufferType ); this.setInterpolation( interpolation || this.DefaultInterpolation ); } // Serialization (in static context, because of constructor invocation // and automatic invocation of .toJSON): static toJSON( track ) { const trackType = track.constructor; let json; // derived classes can define a static toJSON method if ( trackType.toJSON !== this.toJSON ) { json = trackType.toJSON( track ); } else { // by default, we assume the data can be serialized as-is json = { 'name': track.name, 'times': convertArray( track.times, Array ), 'values': convertArray( track.values, Array ) }; const interpolation = track.getInterpolation(); if ( interpolation !== track.DefaultInterpolation ) { json.interpolation = interpolation; } } json.type = track.ValueTypeName; // mandatory return json; } InterpolantFactoryMethodDiscrete( result ) { return new DiscreteInterpolant( this.times, this.values, this.getValueSize(), result ); } InterpolantFactoryMethodLinear( result ) { return new LinearInterpolant( this.times, this.values, this.getValueSize(), result ); } InterpolantFactoryMethodSmooth( result ) { return new CubicInterpolant( this.times, this.values, this.getValueSize(), result ); } setInterpolation( interpolation ) { let factoryMethod; switch ( interpolation ) { case InterpolateDiscrete: factoryMethod = this.InterpolantFactoryMethodDiscrete; break; case InterpolateLinear: factoryMethod = this.InterpolantFactoryMethodLinear; break; case InterpolateSmooth: factoryMethod = this.InterpolantFactoryMethodSmooth; break; } if ( factoryMethod === undefined ) { const message = 'unsupported interpolation for ' + this.ValueTypeName + ' keyframe track named ' + this.name; if ( this.createInterpolant === undefined ) { // fall back to default, unless the default itself is messed up if ( interpolation !== this.DefaultInterpolation ) { this.setInterpolation( this.DefaultInterpolation ); } else { throw new Error( message ); // fatal, in this case } } console.warn( 'THREE.KeyframeTrack:', message ); return this; } this.createInterpolant = factoryMethod; return this; } getInterpolation() { switch ( this.createInterpolant ) { case this.InterpolantFactoryMethodDiscrete: return InterpolateDiscrete; case this.InterpolantFactoryMethodLinear: return InterpolateLinear; case this.InterpolantFactoryMethodSmooth: return InterpolateSmooth; } } getValueSize() { return this.values.length / this.times.length; } // move all keyframes either forwards or backwards in time shift( timeOffset ) { if ( timeOffset !== 0.0 ) { const times = this.times; for ( let i = 0, n = times.length; i !== n; ++ i ) { times[ i ] += timeOffset; } } return this; } // scale all keyframe times by a factor (useful for frame <-> seconds conversions) scale( timeScale ) { if ( timeScale !== 1.0 ) { const times = this.times; for ( let i = 0, n = times.length; i !== n; ++ i ) { times[ i ] *= timeScale; } } return this; } // removes keyframes before and after animation without changing any values within the range [startTime, endTime]. // IMPORTANT: We do not shift around keys to the start of the track time, because for interpolated keys this will change their values trim( startTime, endTime ) { const times = this.times, nKeys = times.length; let from = 0, to = nKeys - 1; while ( from !== nKeys && times[ from ] < startTime ) { ++ from; } while ( to !== -1 && times[ to ] > endTime ) { -- to; } ++ to; // inclusive -> exclusive bound if ( from !== 0 || to !== nKeys ) { // empty tracks are forbidden, so keep at least one keyframe if ( from >= to ) { to = Math.max( to, 1 ); from = to - 1; } const stride = this.getValueSize(); this.times = times.slice( from, to ); this.values = this.values.slice( from * stride, to * stride ); } return this; } // ensure we do not get a GarbageInGarbageOut situation, make sure tracks are at least minimally viable validate() { let valid = true; const valueSize = this.getValueSize(); if ( valueSize - Math.floor( valueSize ) !== 0 ) { console.error( 'THREE.KeyframeTrack: Invalid value size in track.', this ); valid = false; } const times = this.times, values = this.values, nKeys = times.length; if ( nKeys === 0 ) { console.error( 'THREE.KeyframeTrack: Track is empty.', this ); valid = false; } let prevTime = null; for ( let i = 0; i !== nKeys; i ++ ) { const currTime = times[ i ]; if ( typeof currTime === 'number' && isNaN( currTime ) ) { console.error( 'THREE.KeyframeTrack: Time is not a valid number.', this, i, currTime ); valid = false; break; } if ( prevTime !== null && prevTime > currTime ) { console.error( 'THREE.KeyframeTrack: Out of order keys.', this, i, currTime, prevTime ); valid = false; break; } prevTime = currTime; } if ( values !== undefined ) { if ( isTypedArray( values ) ) { for ( let i = 0, n = values.length; i !== n; ++ i ) { const value = values[ i ]; if ( isNaN( value ) ) { console.error( 'THREE.KeyframeTrack: Value is not a valid number.', this, i, value ); valid = false; break; } } } } return valid; } // removes equivalent sequential keys as common in morph target sequences // (0,0,0,0,1,1,1,0,0,0,0,0,0,0) --> (0,0,1,1,0,0) optimize() { // times or values may be shared with other tracks, so overwriting is unsafe const times = this.times.slice(), values = this.values.slice(), stride = this.getValueSize(), smoothInterpolation = this.getInterpolation() === InterpolateSmooth, lastIndex = times.length - 1; let writeIndex = 1; for ( let i = 1; i < lastIndex; ++ i ) { let keep = false; const time = times[ i ]; const timeNext = times[ i + 1 ]; // remove adjacent keyframes scheduled at the same time if ( time !== timeNext && ( i !== 1 || time !== times[ 0 ] ) ) { if ( ! smoothInterpolation ) { // remove unnecessary keyframes same as their neighbors const offset = i * stride, offsetP = offset - stride, offsetN = offset + stride; for ( let j = 0; j !== stride; ++ j ) { const value = values[ offset + j ]; if ( value !== values[ offsetP + j ] || value !== values[ offsetN + j ] ) { keep = true; break; } } } else { keep = true; } } // in-place compaction if ( keep ) { if ( i !== writeIndex ) { times[ writeIndex ] = times[ i ]; const readOffset = i * stride, writeOffset = writeIndex * stride; for ( let j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } } ++ writeIndex; } } // flush last keyframe (compaction looks ahead) if ( lastIndex > 0 ) { times[ writeIndex ] = times[ lastIndex ]; for ( let readOffset = lastIndex * stride, writeOffset = writeIndex * stride, j = 0; j !== stride; ++ j ) { values[ writeOffset + j ] = values[ readOffset + j ]; } ++ writeIndex; } if ( writeIndex !== times.length ) { this.times = times.slice( 0, writeIndex ); this.values = values.slice( 0, writeIndex * stride ); } else { this.times = times; this.values = values; } return this; } clone() { const times = this.times.slice(); const values = this.values.slice(); const TypedKeyframeTrack = this.constructor; const track = new TypedKeyframeTrack( this.name, times, values ); // Interpolant argument to constructor is not saved, so copy the factory method directly. track.createInterpolant = this.createInterpolant; return track; } } KeyframeTrack.prototype.TimeBufferType = Float32Array; KeyframeTrack.prototype.ValueBufferType = Float32Array; KeyframeTrack.prototype.DefaultInterpolation = InterpolateLinear; /** * A Track of Boolean keyframe values. */ class BooleanKeyframeTrack extends KeyframeTrack { // No interpolation parameter because only InterpolateDiscrete is valid. constructor( name, times, values ) { super( name, times, values ); } } BooleanKeyframeTrack.prototype.ValueTypeName = 'bool'; BooleanKeyframeTrack.prototype.ValueBufferType = Array; BooleanKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; BooleanKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track of keyframe values that represent color. */ class ColorKeyframeTrack extends KeyframeTrack {} ColorKeyframeTrack.prototype.ValueTypeName = 'color'; /** * A Track of numeric keyframe values. */ class NumberKeyframeTrack extends KeyframeTrack {} NumberKeyframeTrack.prototype.ValueTypeName = 'number'; /** * Spherical linear unit quaternion interpolant. */ class QuaternionLinearInterpolant extends Interpolant { constructor( parameterPositions, sampleValues, sampleSize, resultBuffer ) { super( parameterPositions, sampleValues, sampleSize, resultBuffer ); } interpolate_( i1, t0, t, t1 ) { const result = this.resultBuffer, values = this.sampleValues, stride = this.valueSize, alpha = ( t - t0 ) / ( t1 - t0 ); let offset = i1 * stride; for ( let end = offset + stride; offset !== end; offset += 4 ) { Quaternion.slerpFlat( result, 0, values, offset - stride, values, offset, alpha ); } return result; } } /** * A Track of quaternion keyframe values. */ class QuaternionKeyframeTrack extends KeyframeTrack { InterpolantFactoryMethodLinear( result ) { return new QuaternionLinearInterpolant( this.times, this.values, this.getValueSize(), result ); } } QuaternionKeyframeTrack.prototype.ValueTypeName = 'quaternion'; // ValueBufferType is inherited // DefaultInterpolation is inherited; QuaternionKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track that interpolates Strings */ class StringKeyframeTrack extends KeyframeTrack { // No interpolation parameter because only InterpolateDiscrete is valid. constructor( name, times, values ) { super( name, times, values ); } } StringKeyframeTrack.prototype.ValueTypeName = 'string'; StringKeyframeTrack.prototype.ValueBufferType = Array; StringKeyframeTrack.prototype.DefaultInterpolation = InterpolateDiscrete; StringKeyframeTrack.prototype.InterpolantFactoryMethodLinear = undefined; StringKeyframeTrack.prototype.InterpolantFactoryMethodSmooth = undefined; /** * A Track of vectored keyframe values. */ class VectorKeyframeTrack extends KeyframeTrack {} VectorKeyframeTrack.prototype.ValueTypeName = 'vector'; class AnimationClip { constructor( name = '', duration = -1, tracks = [], blendMode = NormalAnimationBlendMode ) { this.name = name; this.tracks = tracks; this.duration = duration; this.blendMode = blendMode; this.uuid = generateUUID(); // this means it should figure out its duration by scanning the tracks if ( this.duration < 0 ) { this.resetDuration(); } } static parse( json ) { const tracks = [], jsonTracks = json.tracks, frameTime = 1.0 / ( json.fps || 1.0 ); for ( let i = 0, n = jsonTracks.length; i !== n; ++ i ) { tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime ) ); } const clip = new this( json.name, json.duration, tracks, json.blendMode ); clip.uuid = json.uuid; return clip; } static toJSON( clip ) { const tracks = [], clipTracks = clip.tracks; const json = { 'name': clip.name, 'duration': clip.duration, 'tracks': tracks, 'uuid': clip.uuid, 'blendMode': clip.blendMode }; for ( let i = 0, n = clipTracks.length; i !== n; ++ i ) { tracks.push( KeyframeTrack.toJSON( clipTracks[ i ] ) ); } return json; } static CreateFromMorphTargetSequence( name, morphTargetSequence, fps, noLoop ) { const numMorphTargets = morphTargetSequence.length; const tracks = []; for ( let i = 0; i < numMorphTargets; i ++ ) { let times = []; let values = []; times.push( ( i + numMorphTargets - 1 ) % numMorphTargets, i, ( i + 1 ) % numMorphTargets ); values.push( 0, 1, 0 ); const order = getKeyframeOrder( times ); times = sortedArray( times, 1, order ); values = sortedArray( values, 1, order ); // if there is a key at the first frame, duplicate it as the // last frame as well for perfect loop. if ( ! noLoop && times[ 0 ] === 0 ) { times.push( numMorphTargets ); values.push( values[ 0 ] ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluences[' + morphTargetSequence[ i ].name + ']', times, values ).scale( 1.0 / fps ) ); } return new this( name, -1, tracks ); } static findByName( objectOrClipArray, name ) { let clipArray = objectOrClipArray; if ( ! Array.isArray( objectOrClipArray ) ) { const o = objectOrClipArray; clipArray = o.geometry && o.geometry.animations || o.animations; } for ( let i = 0; i < clipArray.length; i ++ ) { if ( clipArray[ i ].name === name ) { return clipArray[ i ]; } } return null; } static CreateClipsFromMorphTargetSequences( morphTargets, fps, noLoop ) { const animationToMorphTargets = {}; // tested with https://regex101.com/ on trick sequences // such flamingo_flyA_003, flamingo_run1_003, crdeath0059 const pattern = /^([\w-]*?)([\d]+)$/; // sort morph target names into animation groups based // patterns like Walk_001, Walk_002, Run_001, Run_002 for ( let i = 0, il = morphTargets.length; i < il; i ++ ) { const morphTarget = morphTargets[ i ]; const parts = morphTarget.name.match( pattern ); if ( parts && parts.length > 1 ) { const name = parts[ 1 ]; let animationMorphTargets = animationToMorphTargets[ name ]; if ( ! animationMorphTargets ) { animationToMorphTargets[ name ] = animationMorphTargets = []; } animationMorphTargets.push( morphTarget ); } } const clips = []; for ( const name in animationToMorphTargets ) { clips.push( this.CreateFromMorphTargetSequence( name, animationToMorphTargets[ name ], fps, noLoop ) ); } return clips; } // parse the animation.hierarchy format static parseAnimation( animation, bones ) { if ( ! animation ) { console.error( 'THREE.AnimationClip: No animation in JSONLoader data.' ); return null; } const addNonemptyTrack = function ( trackType, trackName, animationKeys, propertyName, destTracks ) { // only return track if there are actually keys. if ( animationKeys.length !== 0 ) { const times = []; const values = []; flattenJSON( animationKeys, times, values, propertyName ); // empty keys are filtered out, so check again if ( times.length !== 0 ) { destTracks.push( new trackType( trackName, times, values ) ); } } }; const tracks = []; const clipName = animation.name || 'default'; const fps = animation.fps || 30; const blendMode = animation.blendMode; // automatic length determination in AnimationClip. let duration = animation.length || -1; const hierarchyTracks = animation.hierarchy || []; for ( let h = 0; h < hierarchyTracks.length; h ++ ) { const animationKeys = hierarchyTracks[ h ].keys; // skip empty tracks if ( ! animationKeys || animationKeys.length === 0 ) continue; // process morph targets if ( animationKeys[ 0 ].morphTargets ) { // figure out all morph targets used in this track const morphTargetNames = {}; let k; for ( k = 0; k < animationKeys.length; k ++ ) { if ( animationKeys[ k ].morphTargets ) { for ( let m = 0; m < animationKeys[ k ].morphTargets.length; m ++ ) { morphTargetNames[ animationKeys[ k ].morphTargets[ m ] ] = -1; } } } // create a track for each morph target with all zero // morphTargetInfluences except for the keys in which // the morphTarget is named. for ( const morphTargetName in morphTargetNames ) { const times = []; const values = []; for ( let m = 0; m !== animationKeys[ k ].morphTargets.length; ++ m ) { const animationKey = animationKeys[ k ]; times.push( animationKey.time ); values.push( ( animationKey.morphTarget === morphTargetName ) ? 1 : 0 ); } tracks.push( new NumberKeyframeTrack( '.morphTargetInfluence[' + morphTargetName + ']', times, values ) ); } duration = morphTargetNames.length * fps; } else { // ...assume skeletal animation const boneName = '.bones[' + bones[ h ].name + ']'; addNonemptyTrack( VectorKeyframeTrack, boneName + '.position', animationKeys, 'pos', tracks ); addNonemptyTrack( QuaternionKeyframeTrack, boneName + '.quaternion', animationKeys, 'rot', tracks ); addNonemptyTrack( VectorKeyframeTrack, boneName + '.scale', animationKeys, 'scl', tracks ); } } if ( tracks.length === 0 ) { return null; } const clip = new this( clipName, duration, tracks, blendMode ); return clip; } resetDuration() { const tracks = this.tracks; let duration = 0; for ( let i = 0, n = tracks.length; i !== n; ++ i ) { const track = this.tracks[ i ]; duration = Math.max( duration, track.times[ track.times.length - 1 ] ); } this.duration = duration; return this; } trim() { for ( let i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].trim( 0, this.duration ); } return this; } validate() { let valid = true; for ( let i = 0; i < this.tracks.length; i ++ ) { valid = valid && this.tracks[ i ].validate(); } return valid; } optimize() { for ( let i = 0; i < this.tracks.length; i ++ ) { this.tracks[ i ].optimize(); } return this; } clone() { const tracks = []; for ( let i = 0; i < this.tracks.length; i ++ ) { tracks.push( this.tracks[ i ].clone() ); } return new this.constructor( this.name, this.duration, tracks, this.blendMode ); } toJSON() { return this.constructor.toJSON( this ); } } function getTrackTypeForValueTypeName( typeName ) { switch ( typeName.toLowerCase() ) { case 'scalar': case 'double': case 'float': case 'number': case 'integer': return NumberKeyframeTrack; case 'vector': case 'vector2': case 'vector3': case 'vector4': return VectorKeyframeTrack; case 'color': return ColorKeyframeTrack; case 'quaternion': return QuaternionKeyframeTrack; case 'bool': case 'boolean': return BooleanKeyframeTrack; case 'string': return StringKeyframeTrack; } throw new Error( 'THREE.KeyframeTrack: Unsupported typeName: ' + typeName ); } function parseKeyframeTrack( json ) { if ( json.type === undefined ) { throw new Error( 'THREE.KeyframeTrack: track type undefined, can not parse' ); } const trackType = getTrackTypeForValueTypeName( json.type ); if ( json.times === undefined ) { const times = [], values = []; flattenJSON( json.keys, times, values, 'value' ); json.times = times; json.values = values; } // derived classes can define a static parse method if ( trackType.parse !== undefined ) { return trackType.parse( json ); } else { // by default, we assume a constructor compatible with the base return new trackType( json.name, json.times, json.values, json.interpolation ); } } const Cache = { enabled: false, files: {}, add: function ( key, file ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Adding key:', key ); this.files[ key ] = file; }, get: function ( key ) { if ( this.enabled === false ) return; // console.log( 'THREE.Cache', 'Checking key:', key ); return this.files[ key ]; }, remove: function ( key ) { delete this.files[ key ]; }, clear: function () { this.files = {}; } }; class LoadingManager { constructor( onLoad, onProgress, onError ) { const scope = this; let isLoading = false; let itemsLoaded = 0; let itemsTotal = 0; let urlModifier = undefined; const handlers = []; // Refer to #5689 for the reason why we don't set .onStart // in the constructor this.onStart = undefined; this.onLoad = onLoad; this.onProgress = onProgress; this.onError = onError; this.itemStart = function ( url ) { itemsTotal ++; if ( isLoading === false ) { if ( scope.onStart !== undefined ) { scope.onStart( url, itemsLoaded, itemsTotal ); } } isLoading = true; }; this.itemEnd = function ( url ) { itemsLoaded ++; if ( scope.onProgress !== undefined ) { scope.onProgress( url, itemsLoaded, itemsTotal ); } if ( itemsLoaded === itemsTotal ) { isLoading = false; if ( scope.onLoad !== undefined ) { scope.onLoad(); } } }; this.itemError = function ( url ) { if ( scope.onError !== undefined ) { scope.onError( url ); } }; this.resolveURL = function ( url ) { if ( urlModifier ) { return urlModifier( url ); } return url; }; this.setURLModifier = function ( transform ) { urlModifier = transform; return this; }; this.addHandler = function ( regex, loader ) { handlers.push( regex, loader ); return this; }; this.removeHandler = function ( regex ) { const index = handlers.indexOf( regex ); if ( index !== -1 ) { handlers.splice( index, 2 ); } return this; }; this.getHandler = function ( file ) { for ( let i = 0, l = handlers.length; i < l; i += 2 ) { const regex = handlers[ i ]; const loader = handlers[ i + 1 ]; if ( regex.global ) regex.lastIndex = 0; // see #17920 if ( regex.test( file ) ) { return loader; } } return null; }; } } const DefaultLoadingManager = /*@__PURE__*/ new LoadingManager(); class Loader { constructor( manager ) { this.manager = ( manager !== undefined ) ? manager : DefaultLoadingManager; this.crossOrigin = 'anonymous'; this.withCredentials = false; this.path = ''; this.resourcePath = ''; this.requestHeader = {}; } load( /* url, onLoad, onProgress, onError */ ) {} loadAsync( url, onProgress ) { const scope = this; return new Promise( function ( resolve, reject ) { scope.load( url, resolve, onProgress, reject ); } ); } parse( /* data */ ) {} setCrossOrigin( crossOrigin ) { this.crossOrigin = crossOrigin; return this; } setWithCredentials( value ) { this.withCredentials = value; return this; } setPath( path ) { this.path = path; return this; } setResourcePath( resourcePath ) { this.resourcePath = resourcePath; return this; } setRequestHeader( requestHeader ) { this.requestHeader = requestHeader; return this; } } Loader.DEFAULT_MATERIAL_NAME = '__DEFAULT'; const loading = {}; class HttpError extends Error { constructor( message, response ) { super( message ); this.response = response; } } class FileLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const cached = Cache.get( url ); if ( cached !== undefined ) { this.manager.itemStart( url ); setTimeout( () => { if ( onLoad ) onLoad( cached ); this.manager.itemEnd( url ); }, 0 ); return cached; } // Check if request is duplicate if ( loading[ url ] !== undefined ) { loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError } ); return; } // Initialise array for duplicate requests loading[ url ] = []; loading[ url ].push( { onLoad: onLoad, onProgress: onProgress, onError: onError, } ); // create request const req = new Request( url, { headers: new Headers( this.requestHeader ), credentials: this.withCredentials ? 'include' : 'same-origin', // An abort controller could be added within a future PR } ); // record states ( avoid data race ) const mimeType = this.mimeType; const responseType = this.responseType; // start the fetch fetch( req ) .then( response => { if ( response.status === 200 || response.status === 0 ) { // Some browsers return HTTP Status 0 when using non-http protocol // e.g. 'file://' or 'data://'. Handle as success. if ( response.status === 0 ) { console.warn( 'THREE.FileLoader: HTTP Status 0 received.' ); } // Workaround: Checking if response.body === undefined for Alipay browser #23548 if ( typeof ReadableStream === 'undefined' || response.body === undefined || response.body.getReader === undefined ) { return response; } const callbacks = loading[ url ]; const reader = response.body.getReader(); // Nginx needs X-File-Size check // https://serverfault.com/questions/482875/why-does-nginx-remove-content-length-header-for-chunked-content const contentLength = response.headers.get( 'X-File-Size' ) || response.headers.get( 'Content-Length' ); const total = contentLength ? parseInt( contentLength ) : 0; const lengthComputable = total !== 0; let loaded = 0; // periodically read data into the new stream tracking while download progress const stream = new ReadableStream( { start( controller ) { readData(); function readData() { reader.read().then( ( { done, value } ) => { if ( done ) { controller.close(); } else { loaded += value.byteLength; const event = new ProgressEvent( 'progress', { lengthComputable, loaded, total } ); for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onProgress ) callback.onProgress( event ); } controller.enqueue( value ); readData(); } }, ( e ) => { controller.error( e ); } ); } } } ); return new Response( stream ); } else { throw new HttpError( `fetch for "${response.url}" responded with ${response.status}: ${response.statusText}`, response ); } } ) .then( response => { switch ( responseType ) { case 'arraybuffer': return response.arrayBuffer(); case 'blob': return response.blob(); case 'document': return response.text() .then( text => { const parser = new DOMParser(); return parser.parseFromString( text, mimeType ); } ); case 'json': return response.json(); default: if ( mimeType === undefined ) { return response.text(); } else { // sniff encoding const re = /charset="?([^;"\s]*)"?/i; const exec = re.exec( mimeType ); const label = exec && exec[ 1 ] ? exec[ 1 ].toLowerCase() : undefined; const decoder = new TextDecoder( label ); return response.arrayBuffer().then( ab => decoder.decode( ab ) ); } } } ) .then( data => { // Add to cache only on HTTP success, so that we do not cache // error response bodies as proper responses to requests. Cache.add( url, data ); const callbacks = loading[ url ]; delete loading[ url ]; for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onLoad ) callback.onLoad( data ); } } ) .catch( err => { // Abort errors and other errors are handled the same const callbacks = loading[ url ]; if ( callbacks === undefined ) { // When onLoad was called and url was deleted in `loading` this.manager.itemError( url ); throw err; } delete loading[ url ]; for ( let i = 0, il = callbacks.length; i < il; i ++ ) { const callback = callbacks[ i ]; if ( callback.onError ) callback.onError( err ); } this.manager.itemError( url ); } ) .finally( () => { this.manager.itemEnd( url ); } ); this.manager.itemStart( url ); } setResponseType( value ) { this.responseType = value; return this; } setMimeType( value ) { this.mimeType = value; return this; } } class AnimationLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( json ) { const animations = []; for ( let i = 0; i < json.length; i ++ ) { const clip = AnimationClip.parse( json[ i ] ); animations.push( clip ); } return animations; } } /** * Abstract Base class to block based textures loader (dds, pvr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class CompressedTextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const images = []; const texture = new CompressedTexture(); const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( scope.withCredentials ); let loaded = 0; function loadTexture( i ) { loader.load( url[ i ], function ( buffer ) { const texDatas = scope.parse( buffer, true ); images[ i ] = { width: texDatas.width, height: texDatas.height, format: texDatas.format, mipmaps: texDatas.mipmaps }; loaded += 1; if ( loaded === 6 ) { if ( texDatas.mipmapCount === 1 ) texture.minFilter = LinearFilter; texture.image = images; texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, onProgress, onError ); } if ( Array.isArray( url ) ) { for ( let i = 0, il = url.length; i < il; ++ i ) { loadTexture( i ); } } else { // compressed cubemap texture stored in a single DDS file loader.load( url, function ( buffer ) { const texDatas = scope.parse( buffer, true ); if ( texDatas.isCubemap ) { const faces = texDatas.mipmaps.length / texDatas.mipmapCount; for ( let f = 0; f < faces; f ++ ) { images[ f ] = { mipmaps: [] }; for ( let i = 0; i < texDatas.mipmapCount; i ++ ) { images[ f ].mipmaps.push( texDatas.mipmaps[ f * texDatas.mipmapCount + i ] ); images[ f ].format = texDatas.format; images[ f ].width = texDatas.width; images[ f ].height = texDatas.height; } } texture.image = images; } else { texture.image.width = texDatas.width; texture.image.height = texDatas.height; texture.mipmaps = texDatas.mipmaps; } if ( texDatas.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } texture.format = texDatas.format; texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); }, onProgress, onError ); } return texture; } } class ImageLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } const image = createElementNS( 'img' ); function onImageLoad() { removeEventListeners(); Cache.add( url, this ); if ( onLoad ) onLoad( this ); scope.manager.itemEnd( url ); } function onImageError( event ) { removeEventListeners(); if ( onError ) onError( event ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); } function removeEventListeners() { image.removeEventListener( 'load', onImageLoad, false ); image.removeEventListener( 'error', onImageError, false ); } image.addEventListener( 'load', onImageLoad, false ); image.addEventListener( 'error', onImageError, false ); if ( url.slice( 0, 5 ) !== 'data:' ) { if ( this.crossOrigin !== undefined ) image.crossOrigin = this.crossOrigin; } scope.manager.itemStart( url ); image.src = url; return image; } } class CubeTextureLoader extends Loader { constructor( manager ) { super( manager ); } load( urls, onLoad, onProgress, onError ) { const texture = new CubeTexture(); texture.colorSpace = SRGBColorSpace; const loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); let loaded = 0; function loadTexture( i ) { loader.load( urls[ i ], function ( image ) { texture.images[ i ] = image; loaded ++; if ( loaded === 6 ) { texture.needsUpdate = true; if ( onLoad ) onLoad( texture ); } }, undefined, onError ); } for ( let i = 0; i < urls.length; ++ i ) { loadTexture( i ); } return texture; } } /** * Abstract Base class to load generic binary textures formats (rgbe, hdr, ...) * * Sub classes have to implement the parse() method which will be used in load(). */ class DataTextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const texture = new DataTexture(); const loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.setRequestHeader( this.requestHeader ); loader.setPath( this.path ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( buffer ) { let texData; try { texData = scope.parse( buffer ); } catch ( error ) { if ( onError !== undefined ) { onError( error ); } else { console.error( error ); return; } } if ( texData.image !== undefined ) { texture.image = texData.image; } else if ( texData.data !== undefined ) { texture.image.width = texData.width; texture.image.height = texData.height; texture.image.data = texData.data; } texture.wrapS = texData.wrapS !== undefined ? texData.wrapS : ClampToEdgeWrapping; texture.wrapT = texData.wrapT !== undefined ? texData.wrapT : ClampToEdgeWrapping; texture.magFilter = texData.magFilter !== undefined ? texData.magFilter : LinearFilter; texture.minFilter = texData.minFilter !== undefined ? texData.minFilter : LinearFilter; texture.anisotropy = texData.anisotropy !== undefined ? texData.anisotropy : 1; if ( texData.colorSpace !== undefined ) { texture.colorSpace = texData.colorSpace; } if ( texData.flipY !== undefined ) { texture.flipY = texData.flipY; } if ( texData.format !== undefined ) { texture.format = texData.format; } if ( texData.type !== undefined ) { texture.type = texData.type; } if ( texData.mipmaps !== undefined ) { texture.mipmaps = texData.mipmaps; texture.minFilter = LinearMipmapLinearFilter; // presumably... } if ( texData.mipmapCount === 1 ) { texture.minFilter = LinearFilter; } if ( texData.generateMipmaps !== undefined ) { texture.generateMipmaps = texData.generateMipmaps; } texture.needsUpdate = true; if ( onLoad ) onLoad( texture, texData ); }, onProgress, onError ); return texture; } } class TextureLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const texture = new Texture(); const loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); loader.setPath( this.path ); loader.load( url, function ( image ) { texture.image = image; texture.needsUpdate = true; if ( onLoad !== undefined ) { onLoad( texture ); } }, onProgress, onError ); return texture; } } class Light extends Object3D { constructor( color, intensity = 1 ) { super(); this.isLight = true; this.type = 'Light'; this.color = new Color( color ); this.intensity = intensity; } dispose() { // Empty here in base class; some subclasses override. } copy( source, recursive ) { super.copy( source, recursive ); this.color.copy( source.color ); this.intensity = source.intensity; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.color = this.color.getHex(); data.object.intensity = this.intensity; if ( this.groundColor !== undefined ) data.object.groundColor = this.groundColor.getHex(); if ( this.distance !== undefined ) data.object.distance = this.distance; if ( this.angle !== undefined ) data.object.angle = this.angle; if ( this.decay !== undefined ) data.object.decay = this.decay; if ( this.penumbra !== undefined ) data.object.penumbra = this.penumbra; if ( this.shadow !== undefined ) data.object.shadow = this.shadow.toJSON(); if ( this.target !== undefined ) data.object.target = this.target.uuid; return data; } } class HemisphereLight extends Light { constructor( skyColor, groundColor, intensity ) { super( skyColor, intensity ); this.isHemisphereLight = true; this.type = 'HemisphereLight'; this.position.copy( Object3D.DEFAULT_UP ); this.updateMatrix(); this.groundColor = new Color( groundColor ); } copy( source, recursive ) { super.copy( source, recursive ); this.groundColor.copy( source.groundColor ); return this; } } const _projScreenMatrix$1 = /*@__PURE__*/ new Matrix4(); const _lightPositionWorld$1 = /*@__PURE__*/ new Vector3(); const _lookTarget$1 = /*@__PURE__*/ new Vector3(); class LightShadow { constructor( camera ) { this.camera = camera; this.intensity = 1; this.bias = 0; this.normalBias = 0; this.radius = 1; this.blurSamples = 8; this.mapSize = new Vector2( 512, 512 ); this.map = null; this.mapPass = null; this.matrix = new Matrix4(); this.autoUpdate = true; this.needsUpdate = false; this._frustum = new Frustum(); this._frameExtents = new Vector2( 1, 1 ); this._viewportCount = 1; this._viewports = [ new Vector4( 0, 0, 1, 1 ) ]; } getViewportCount() { return this._viewportCount; } getFrustum() { return this._frustum; } updateMatrices( light ) { const shadowCamera = this.camera; const shadowMatrix = this.matrix; _lightPositionWorld$1.setFromMatrixPosition( light.matrixWorld ); shadowCamera.position.copy( _lightPositionWorld$1 ); _lookTarget$1.setFromMatrixPosition( light.target.matrixWorld ); shadowCamera.lookAt( _lookTarget$1 ); shadowCamera.updateMatrixWorld(); _projScreenMatrix$1.multiplyMatrices( shadowCamera.projectionMatrix, shadowCamera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( _projScreenMatrix$1 ); shadowMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); shadowMatrix.multiply( _projScreenMatrix$1 ); } getViewport( viewportIndex ) { return this._viewports[ viewportIndex ]; } getFrameExtents() { return this._frameExtents; } dispose() { if ( this.map ) { this.map.dispose(); } if ( this.mapPass ) { this.mapPass.dispose(); } } copy( source ) { this.camera = source.camera.clone(); this.intensity = source.intensity; this.bias = source.bias; this.radius = source.radius; this.mapSize.copy( source.mapSize ); return this; } clone() { return new this.constructor().copy( this ); } toJSON() { const object = {}; if ( this.intensity !== 1 ) object.intensity = this.intensity; if ( this.bias !== 0 ) object.bias = this.bias; if ( this.normalBias !== 0 ) object.normalBias = this.normalBias; if ( this.radius !== 1 ) object.radius = this.radius; if ( this.mapSize.x !== 512 || this.mapSize.y !== 512 ) object.mapSize = this.mapSize.toArray(); object.camera = this.camera.toJSON( false ).object; delete object.camera.matrix; return object; } } class SpotLightShadow extends LightShadow { constructor() { super( new PerspectiveCamera( 50, 1, 0.5, 500 ) ); this.isSpotLightShadow = true; this.focus = 1; } updateMatrices( light ) { const camera = this.camera; const fov = RAD2DEG * 2 * light.angle * this.focus; const aspect = this.mapSize.width / this.mapSize.height; const far = light.distance || camera.far; if ( fov !== camera.fov || aspect !== camera.aspect || far !== camera.far ) { camera.fov = fov; camera.aspect = aspect; camera.far = far; camera.updateProjectionMatrix(); } super.updateMatrices( light ); } copy( source ) { super.copy( source ); this.focus = source.focus; return this; } } class SpotLight extends Light { constructor( color, intensity, distance = 0, angle = Math.PI / 3, penumbra = 0, decay = 2 ) { super( color, intensity ); this.isSpotLight = true; this.type = 'SpotLight'; this.position.copy( Object3D.DEFAULT_UP ); this.updateMatrix(); this.target = new Object3D(); this.distance = distance; this.angle = angle; this.penumbra = penumbra; this.decay = decay; this.map = null; this.shadow = new SpotLightShadow(); } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // by convention for a spotlight, luminous power (lm) = π * luminous intensity (cd) return this.intensity * Math.PI; } set power( power ) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / Math.PI; } dispose() { this.shadow.dispose(); } copy( source, recursive ) { super.copy( source, recursive ); this.distance = source.distance; this.angle = source.angle; this.penumbra = source.penumbra; this.decay = source.decay; this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } const _projScreenMatrix = /*@__PURE__*/ new Matrix4(); const _lightPositionWorld = /*@__PURE__*/ new Vector3(); const _lookTarget = /*@__PURE__*/ new Vector3(); class PointLightShadow extends LightShadow { constructor() { super( new PerspectiveCamera( 90, 1, 0.5, 500 ) ); this.isPointLightShadow = true; this._frameExtents = new Vector2( 4, 2 ); this._viewportCount = 6; this._viewports = [ // These viewports map a cube-map onto a 2D texture with the // following orientation: // // xzXZ // y Y // // X - Positive x direction // x - Negative x direction // Y - Positive y direction // y - Negative y direction // Z - Positive z direction // z - Negative z direction // positive X new Vector4( 2, 1, 1, 1 ), // negative X new Vector4( 0, 1, 1, 1 ), // positive Z new Vector4( 3, 1, 1, 1 ), // negative Z new Vector4( 1, 1, 1, 1 ), // positive Y new Vector4( 3, 0, 1, 1 ), // negative Y new Vector4( 1, 0, 1, 1 ) ]; this._cubeDirections = [ new Vector3( 1, 0, 0 ), new Vector3( -1, 0, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, -1 ), new Vector3( 0, 1, 0 ), new Vector3( 0, -1, 0 ) ]; this._cubeUps = [ new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 1, 0 ), new Vector3( 0, 0, 1 ), new Vector3( 0, 0, -1 ) ]; } updateMatrices( light, viewportIndex = 0 ) { const camera = this.camera; const shadowMatrix = this.matrix; const far = light.distance || camera.far; if ( far !== camera.far ) { camera.far = far; camera.updateProjectionMatrix(); } _lightPositionWorld.setFromMatrixPosition( light.matrixWorld ); camera.position.copy( _lightPositionWorld ); _lookTarget.copy( camera.position ); _lookTarget.add( this._cubeDirections[ viewportIndex ] ); camera.up.copy( this._cubeUps[ viewportIndex ] ); camera.lookAt( _lookTarget ); camera.updateMatrixWorld(); shadowMatrix.makeTranslation( - _lightPositionWorld.x, - _lightPositionWorld.y, - _lightPositionWorld.z ); _projScreenMatrix.multiplyMatrices( camera.projectionMatrix, camera.matrixWorldInverse ); this._frustum.setFromProjectionMatrix( _projScreenMatrix ); } } class PointLight extends Light { constructor( color, intensity, distance = 0, decay = 2 ) { super( color, intensity ); this.isPointLight = true; this.type = 'PointLight'; this.distance = distance; this.decay = decay; this.shadow = new PointLightShadow(); } get power() { // compute the light's luminous power (in lumens) from its intensity (in candela) // for an isotropic light source, luminous power (lm) = 4 π luminous intensity (cd) return this.intensity * 4 * Math.PI; } set power( power ) { // set the light's intensity (in candela) from the desired luminous power (in lumens) this.intensity = power / ( 4 * Math.PI ); } dispose() { this.shadow.dispose(); } copy( source, recursive ) { super.copy( source, recursive ); this.distance = source.distance; this.decay = source.decay; this.shadow = source.shadow.clone(); return this; } } class DirectionalLightShadow extends LightShadow { constructor() { super( new OrthographicCamera( -5, 5, 5, -5, 0.5, 500 ) ); this.isDirectionalLightShadow = true; } } class DirectionalLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.isDirectionalLight = true; this.type = 'DirectionalLight'; this.position.copy( Object3D.DEFAULT_UP ); this.updateMatrix(); this.target = new Object3D(); this.shadow = new DirectionalLightShadow(); } dispose() { this.shadow.dispose(); } copy( source ) { super.copy( source ); this.target = source.target.clone(); this.shadow = source.shadow.clone(); return this; } } class AmbientLight extends Light { constructor( color, intensity ) { super( color, intensity ); this.isAmbientLight = true; this.type = 'AmbientLight'; } } class RectAreaLight extends Light { constructor( color, intensity, width = 10, height = 10 ) { super( color, intensity ); this.isRectAreaLight = true; this.type = 'RectAreaLight'; this.width = width; this.height = height; } get power() { // compute the light's luminous power (in lumens) from its intensity (in nits) return this.intensity * this.width * this.height * Math.PI; } set power( power ) { // set the light's intensity (in nits) from the desired luminous power (in lumens) this.intensity = power / ( this.width * this.height * Math.PI ); } copy( source ) { super.copy( source ); this.width = source.width; this.height = source.height; return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.width = this.width; data.object.height = this.height; return data; } } /** * Primary reference: * https://graphics.stanford.edu/papers/envmap/envmap.pdf * * Secondary reference: * https://www.ppsloan.org/publications/StupidSH36.pdf */ // 3-band SH defined by 9 coefficients class SphericalHarmonics3 { constructor() { this.isSphericalHarmonics3 = true; this.coefficients = []; for ( let i = 0; i < 9; i ++ ) { this.coefficients.push( new Vector3() ); } } set( coefficients ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].copy( coefficients[ i ] ); } return this; } zero() { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].set( 0, 0, 0 ); } return this; } // get the radiance in the direction of the normal // target is a Vector3 getAt( normal, target ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.282095 ); // band 1 target.addScaledVector( coeff[ 1 ], 0.488603 * y ); target.addScaledVector( coeff[ 2 ], 0.488603 * z ); target.addScaledVector( coeff[ 3 ], 0.488603 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 1.092548 * ( x * y ) ); target.addScaledVector( coeff[ 5 ], 1.092548 * ( y * z ) ); target.addScaledVector( coeff[ 6 ], 0.315392 * ( 3.0 * z * z - 1.0 ) ); target.addScaledVector( coeff[ 7 ], 1.092548 * ( x * z ) ); target.addScaledVector( coeff[ 8 ], 0.546274 * ( x * x - y * y ) ); return target; } // get the irradiance (radiance convolved with cosine lobe) in the direction of the normal // target is a Vector3 // https://graphics.stanford.edu/papers/envmap/envmap.pdf getIrradianceAt( normal, target ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; const coeff = this.coefficients; // band 0 target.copy( coeff[ 0 ] ).multiplyScalar( 0.886227 ); // π * 0.282095 // band 1 target.addScaledVector( coeff[ 1 ], 2.0 * 0.511664 * y ); // ( 2 * π / 3 ) * 0.488603 target.addScaledVector( coeff[ 2 ], 2.0 * 0.511664 * z ); target.addScaledVector( coeff[ 3 ], 2.0 * 0.511664 * x ); // band 2 target.addScaledVector( coeff[ 4 ], 2.0 * 0.429043 * x * y ); // ( π / 4 ) * 1.092548 target.addScaledVector( coeff[ 5 ], 2.0 * 0.429043 * y * z ); target.addScaledVector( coeff[ 6 ], 0.743125 * z * z - 0.247708 ); // ( π / 4 ) * 0.315392 * 3 target.addScaledVector( coeff[ 7 ], 2.0 * 0.429043 * x * z ); target.addScaledVector( coeff[ 8 ], 0.429043 * ( x * x - y * y ) ); // ( π / 4 ) * 0.546274 return target; } add( sh ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].add( sh.coefficients[ i ] ); } return this; } addScaledSH( sh, s ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].addScaledVector( sh.coefficients[ i ], s ); } return this; } scale( s ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].multiplyScalar( s ); } return this; } lerp( sh, alpha ) { for ( let i = 0; i < 9; i ++ ) { this.coefficients[ i ].lerp( sh.coefficients[ i ], alpha ); } return this; } equals( sh ) { for ( let i = 0; i < 9; i ++ ) { if ( ! this.coefficients[ i ].equals( sh.coefficients[ i ] ) ) { return false; } } return true; } copy( sh ) { return this.set( sh.coefficients ); } clone() { return new this.constructor().copy( this ); } fromArray( array, offset = 0 ) { const coefficients = this.coefficients; for ( let i = 0; i < 9; i ++ ) { coefficients[ i ].fromArray( array, offset + ( i * 3 ) ); } return this; } toArray( array = [], offset = 0 ) { const coefficients = this.coefficients; for ( let i = 0; i < 9; i ++ ) { coefficients[ i ].toArray( array, offset + ( i * 3 ) ); } return array; } // evaluate the basis functions // shBasis is an Array[ 9 ] static getBasisAt( normal, shBasis ) { // normal is assumed to be unit length const x = normal.x, y = normal.y, z = normal.z; // band 0 shBasis[ 0 ] = 0.282095; // band 1 shBasis[ 1 ] = 0.488603 * y; shBasis[ 2 ] = 0.488603 * z; shBasis[ 3 ] = 0.488603 * x; // band 2 shBasis[ 4 ] = 1.092548 * x * y; shBasis[ 5 ] = 1.092548 * y * z; shBasis[ 6 ] = 0.315392 * ( 3 * z * z - 1 ); shBasis[ 7 ] = 1.092548 * x * z; shBasis[ 8 ] = 0.546274 * ( x * x - y * y ); } } class LightProbe extends Light { constructor( sh = new SphericalHarmonics3(), intensity = 1 ) { super( undefined, intensity ); this.isLightProbe = true; this.sh = sh; } copy( source ) { super.copy( source ); this.sh.copy( source.sh ); return this; } fromJSON( json ) { this.intensity = json.intensity; // TODO: Move this bit to Light.fromJSON(); this.sh.fromArray( json.sh ); return this; } toJSON( meta ) { const data = super.toJSON( meta ); data.object.sh = this.sh.toArray(); return data; } } class MaterialLoader extends Loader { constructor( manager ) { super( manager ); this.textures = {}; } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( json ) { const textures = this.textures; function getTexture( name ) { if ( textures[ name ] === undefined ) { console.warn( 'THREE.MaterialLoader: Undefined texture', name ); } return textures[ name ]; } const material = this.createMaterialFromType( json.type ); if ( json.uuid !== undefined ) material.uuid = json.uuid; if ( json.name !== undefined ) material.name = json.name; if ( json.color !== undefined && material.color !== undefined ) material.color.setHex( json.color ); if ( json.roughness !== undefined ) material.roughness = json.roughness; if ( json.metalness !== undefined ) material.metalness = json.metalness; if ( json.sheen !== undefined ) material.sheen = json.sheen; if ( json.sheenColor !== undefined ) material.sheenColor = new Color().setHex( json.sheenColor ); if ( json.sheenRoughness !== undefined ) material.sheenRoughness = json.sheenRoughness; if ( json.emissive !== undefined && material.emissive !== undefined ) material.emissive.setHex( json.emissive ); if ( json.specular !== undefined && material.specular !== undefined ) material.specular.setHex( json.specular ); if ( json.specularIntensity !== undefined ) material.specularIntensity = json.specularIntensity; if ( json.specularColor !== undefined && material.specularColor !== undefined ) material.specularColor.setHex( json.specularColor ); if ( json.shininess !== undefined ) material.shininess = json.shininess; if ( json.clearcoat !== undefined ) material.clearcoat = json.clearcoat; if ( json.clearcoatRoughness !== undefined ) material.clearcoatRoughness = json.clearcoatRoughness; if ( json.dispersion !== undefined ) material.dispersion = json.dispersion; if ( json.iridescence !== undefined ) material.iridescence = json.iridescence; if ( json.iridescenceIOR !== undefined ) material.iridescenceIOR = json.iridescenceIOR; if ( json.iridescenceThicknessRange !== undefined ) material.iridescenceThicknessRange = json.iridescenceThicknessRange; if ( json.transmission !== undefined ) material.transmission = json.transmission; if ( json.thickness !== undefined ) material.thickness = json.thickness; if ( json.attenuationDistance !== undefined ) material.attenuationDistance = json.attenuationDistance; if ( json.attenuationColor !== undefined && material.attenuationColor !== undefined ) material.attenuationColor.setHex( json.attenuationColor ); if ( json.anisotropy !== undefined ) material.anisotropy = json.anisotropy; if ( json.anisotropyRotation !== undefined ) material.anisotropyRotation = json.anisotropyRotation; if ( json.fog !== undefined ) material.fog = json.fog; if ( json.flatShading !== undefined ) material.flatShading = json.flatShading; if ( json.blending !== undefined ) material.blending = json.blending; if ( json.combine !== undefined ) material.combine = json.combine; if ( json.side !== undefined ) material.side = json.side; if ( json.shadowSide !== undefined ) material.shadowSide = json.shadowSide; if ( json.opacity !== undefined ) material.opacity = json.opacity; if ( json.transparent !== undefined ) material.transparent = json.transparent; if ( json.alphaTest !== undefined ) material.alphaTest = json.alphaTest; if ( json.alphaHash !== undefined ) material.alphaHash = json.alphaHash; if ( json.depthFunc !== undefined ) material.depthFunc = json.depthFunc; if ( json.depthTest !== undefined ) material.depthTest = json.depthTest; if ( json.depthWrite !== undefined ) material.depthWrite = json.depthWrite; if ( json.colorWrite !== undefined ) material.colorWrite = json.colorWrite; if ( json.blendSrc !== undefined ) material.blendSrc = json.blendSrc; if ( json.blendDst !== undefined ) material.blendDst = json.blendDst; if ( json.blendEquation !== undefined ) material.blendEquation = json.blendEquation; if ( json.blendSrcAlpha !== undefined ) material.blendSrcAlpha = json.blendSrcAlpha; if ( json.blendDstAlpha !== undefined ) material.blendDstAlpha = json.blendDstAlpha; if ( json.blendEquationAlpha !== undefined ) material.blendEquationAlpha = json.blendEquationAlpha; if ( json.blendColor !== undefined && material.blendColor !== undefined ) material.blendColor.setHex( json.blendColor ); if ( json.blendAlpha !== undefined ) material.blendAlpha = json.blendAlpha; if ( json.stencilWriteMask !== undefined ) material.stencilWriteMask = json.stencilWriteMask; if ( json.stencilFunc !== undefined ) material.stencilFunc = json.stencilFunc; if ( json.stencilRef !== undefined ) material.stencilRef = json.stencilRef; if ( json.stencilFuncMask !== undefined ) material.stencilFuncMask = json.stencilFuncMask; if ( json.stencilFail !== undefined ) material.stencilFail = json.stencilFail; if ( json.stencilZFail !== undefined ) material.stencilZFail = json.stencilZFail; if ( json.stencilZPass !== undefined ) material.stencilZPass = json.stencilZPass; if ( json.stencilWrite !== undefined ) material.stencilWrite = json.stencilWrite; if ( json.wireframe !== undefined ) material.wireframe = json.wireframe; if ( json.wireframeLinewidth !== undefined ) material.wireframeLinewidth = json.wireframeLinewidth; if ( json.wireframeLinecap !== undefined ) material.wireframeLinecap = json.wireframeLinecap; if ( json.wireframeLinejoin !== undefined ) material.wireframeLinejoin = json.wireframeLinejoin; if ( json.rotation !== undefined ) material.rotation = json.rotation; if ( json.linewidth !== undefined ) material.linewidth = json.linewidth; if ( json.dashSize !== undefined ) material.dashSize = json.dashSize; if ( json.gapSize !== undefined ) material.gapSize = json.gapSize; if ( json.scale !== undefined ) material.scale = json.scale; if ( json.polygonOffset !== undefined ) material.polygonOffset = json.polygonOffset; if ( json.polygonOffsetFactor !== undefined ) material.polygonOffsetFactor = json.polygonOffsetFactor; if ( json.polygonOffsetUnits !== undefined ) material.polygonOffsetUnits = json.polygonOffsetUnits; if ( json.dithering !== undefined ) material.dithering = json.dithering; if ( json.alphaToCoverage !== undefined ) material.alphaToCoverage = json.alphaToCoverage; if ( json.premultipliedAlpha !== undefined ) material.premultipliedAlpha = json.premultipliedAlpha; if ( json.forceSinglePass !== undefined ) material.forceSinglePass = json.forceSinglePass; if ( json.visible !== undefined ) material.visible = json.visible; if ( json.toneMapped !== undefined ) material.toneMapped = json.toneMapped; if ( json.userData !== undefined ) material.userData = json.userData; if ( json.vertexColors !== undefined ) { if ( typeof json.vertexColors === 'number' ) { material.vertexColors = ( json.vertexColors > 0 ) ? true : false; } else { material.vertexColors = json.vertexColors; } } // Shader Material if ( json.uniforms !== undefined ) { for ( const name in json.uniforms ) { const uniform = json.uniforms[ name ]; material.uniforms[ name ] = {}; switch ( uniform.type ) { case 't': material.uniforms[ name ].value = getTexture( uniform.value ); break; case 'c': material.uniforms[ name ].value = new Color().setHex( uniform.value ); break; case 'v2': material.uniforms[ name ].value = new Vector2().fromArray( uniform.value ); break; case 'v3': material.uniforms[ name ].value = new Vector3().fromArray( uniform.value ); break; case 'v4': material.uniforms[ name ].value = new Vector4().fromArray( uniform.value ); break; case 'm3': material.uniforms[ name ].value = new Matrix3().fromArray( uniform.value ); break; case 'm4': material.uniforms[ name ].value = new Matrix4().fromArray( uniform.value ); break; default: material.uniforms[ name ].value = uniform.value; } } } if ( json.defines !== undefined ) material.defines = json.defines; if ( json.vertexShader !== undefined ) material.vertexShader = json.vertexShader; if ( json.fragmentShader !== undefined ) material.fragmentShader = json.fragmentShader; if ( json.glslVersion !== undefined ) material.glslVersion = json.glslVersion; if ( json.extensions !== undefined ) { for ( const key in json.extensions ) { material.extensions[ key ] = json.extensions[ key ]; } } if ( json.lights !== undefined ) material.lights = json.lights; if ( json.clipping !== undefined ) material.clipping = json.clipping; // for PointsMaterial if ( json.size !== undefined ) material.size = json.size; if ( json.sizeAttenuation !== undefined ) material.sizeAttenuation = json.sizeAttenuation; // maps if ( json.map !== undefined ) material.map = getTexture( json.map ); if ( json.matcap !== undefined ) material.matcap = getTexture( json.matcap ); if ( json.alphaMap !== undefined ) material.alphaMap = getTexture( json.alphaMap ); if ( json.bumpMap !== undefined ) material.bumpMap = getTexture( json.bumpMap ); if ( json.bumpScale !== undefined ) material.bumpScale = json.bumpScale; if ( json.normalMap !== undefined ) material.normalMap = getTexture( json.normalMap ); if ( json.normalMapType !== undefined ) material.normalMapType = json.normalMapType; if ( json.normalScale !== undefined ) { let normalScale = json.normalScale; if ( Array.isArray( normalScale ) === false ) { // Blender exporter used to export a scalar. See #7459 normalScale = [ normalScale, normalScale ]; } material.normalScale = new Vector2().fromArray( normalScale ); } if ( json.displacementMap !== undefined ) material.displacementMap = getTexture( json.displacementMap ); if ( json.displacementScale !== undefined ) material.displacementScale = json.displacementScale; if ( json.displacementBias !== undefined ) material.displacementBias = json.displacementBias; if ( json.roughnessMap !== undefined ) material.roughnessMap = getTexture( json.roughnessMap ); if ( json.metalnessMap !== undefined ) material.metalnessMap = getTexture( json.metalnessMap ); if ( json.emissiveMap !== undefined ) material.emissiveMap = getTexture( json.emissiveMap ); if ( json.emissiveIntensity !== undefined ) material.emissiveIntensity = json.emissiveIntensity; if ( json.specularMap !== undefined ) material.specularMap = getTexture( json.specularMap ); if ( json.specularIntensityMap !== undefined ) material.specularIntensityMap = getTexture( json.specularIntensityMap ); if ( json.specularColorMap !== undefined ) material.specularColorMap = getTexture( json.specularColorMap ); if ( json.envMap !== undefined ) material.envMap = getTexture( json.envMap ); if ( json.envMapRotation !== undefined ) material.envMapRotation.fromArray( json.envMapRotation ); if ( json.envMapIntensity !== undefined ) material.envMapIntensity = json.envMapIntensity; if ( json.reflectivity !== undefined ) material.reflectivity = json.reflectivity; if ( json.refractionRatio !== undefined ) material.refractionRatio = json.refractionRatio; if ( json.lightMap !== undefined ) material.lightMap = getTexture( json.lightMap ); if ( json.lightMapIntensity !== undefined ) material.lightMapIntensity = json.lightMapIntensity; if ( json.aoMap !== undefined ) material.aoMap = getTexture( json.aoMap ); if ( json.aoMapIntensity !== undefined ) material.aoMapIntensity = json.aoMapIntensity; if ( json.gradientMap !== undefined ) material.gradientMap = getTexture( json.gradientMap ); if ( json.clearcoatMap !== undefined ) material.clearcoatMap = getTexture( json.clearcoatMap ); if ( json.clearcoatRoughnessMap !== undefined ) material.clearcoatRoughnessMap = getTexture( json.clearcoatRoughnessMap ); if ( json.clearcoatNormalMap !== undefined ) material.clearcoatNormalMap = getTexture( json.clearcoatNormalMap ); if ( json.clearcoatNormalScale !== undefined ) material.clearcoatNormalScale = new Vector2().fromArray( json.clearcoatNormalScale ); if ( json.iridescenceMap !== undefined ) material.iridescenceMap = getTexture( json.iridescenceMap ); if ( json.iridescenceThicknessMap !== undefined ) material.iridescenceThicknessMap = getTexture( json.iridescenceThicknessMap ); if ( json.transmissionMap !== undefined ) material.transmissionMap = getTexture( json.transmissionMap ); if ( json.thicknessMap !== undefined ) material.thicknessMap = getTexture( json.thicknessMap ); if ( json.anisotropyMap !== undefined ) material.anisotropyMap = getTexture( json.anisotropyMap ); if ( json.sheenColorMap !== undefined ) material.sheenColorMap = getTexture( json.sheenColorMap ); if ( json.sheenRoughnessMap !== undefined ) material.sheenRoughnessMap = getTexture( json.sheenRoughnessMap ); return material; } setTextures( value ) { this.textures = value; return this; } createMaterialFromType( type ) { return MaterialLoader.createMaterialFromType( type ); } static createMaterialFromType( type ) { const materialLib = { ShadowMaterial, SpriteMaterial, RawShaderMaterial, ShaderMaterial, PointsMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MeshPhongMaterial, MeshToonMaterial, MeshNormalMaterial, MeshLambertMaterial, MeshDepthMaterial, MeshDistanceMaterial, MeshBasicMaterial, MeshMatcapMaterial, LineDashedMaterial, LineBasicMaterial, Material }; return new materialLib[ type ](); } } class LoaderUtils { static decodeText( array ) { // @deprecated, r165 console.warn( 'THREE.LoaderUtils: decodeText() has been deprecated with r165 and will be removed with r175. Use TextDecoder instead.' ); if ( typeof TextDecoder !== 'undefined' ) { return new TextDecoder().decode( array ); } // Avoid the String.fromCharCode.apply(null, array) shortcut, which // throws a "maximum call stack size exceeded" error for large arrays. let s = ''; for ( let i = 0, il = array.length; i < il; i ++ ) { // Implicitly assumes little-endian. s += String.fromCharCode( array[ i ] ); } try { // merges multi-byte utf-8 characters. return decodeURIComponent( escape( s ) ); } catch ( e ) { // see #16358 return s; } } static extractUrlBase( url ) { const index = url.lastIndexOf( '/' ); if ( index === -1 ) return './'; return url.slice( 0, index + 1 ); } static resolveURL( url, path ) { // Invalid URL if ( typeof url !== 'string' || url === '' ) return ''; // Host Relative URL if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) { path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' ); } // Absolute URL http://,https://,// if ( /^(https?:)?\/\//i.test( url ) ) return url; // Data URI if ( /^data:.*,.*$/i.test( url ) ) return url; // Blob URL if ( /^blob:.*$/i.test( url ) ) return url; // Relative URL return path + url; } } class InstancedBufferGeometry extends BufferGeometry { constructor() { super(); this.isInstancedBufferGeometry = true; this.type = 'InstancedBufferGeometry'; this.instanceCount = Infinity; } copy( source ) { super.copy( source ); this.instanceCount = source.instanceCount; return this; } toJSON() { const data = super.toJSON(); data.instanceCount = this.instanceCount; data.isInstancedBufferGeometry = true; return data; } } class BufferGeometryLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( scope.manager ); loader.setPath( scope.path ); loader.setRequestHeader( scope.requestHeader ); loader.setWithCredentials( scope.withCredentials ); loader.load( url, function ( text ) { try { onLoad( scope.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } }, onProgress, onError ); } parse( json ) { const interleavedBufferMap = {}; const arrayBufferMap = {}; function getInterleavedBuffer( json, uuid ) { if ( interleavedBufferMap[ uuid ] !== undefined ) return interleavedBufferMap[ uuid ]; const interleavedBuffers = json.interleavedBuffers; const interleavedBuffer = interleavedBuffers[ uuid ]; const buffer = getArrayBuffer( json, interleavedBuffer.buffer ); const array = getTypedArray( interleavedBuffer.type, buffer ); const ib = new InterleavedBuffer( array, interleavedBuffer.stride ); ib.uuid = interleavedBuffer.uuid; interleavedBufferMap[ uuid ] = ib; return ib; } function getArrayBuffer( json, uuid ) { if ( arrayBufferMap[ uuid ] !== undefined ) return arrayBufferMap[ uuid ]; const arrayBuffers = json.arrayBuffers; const arrayBuffer = arrayBuffers[ uuid ]; const ab = new Uint32Array( arrayBuffer ).buffer; arrayBufferMap[ uuid ] = ab; return ab; } const geometry = json.isInstancedBufferGeometry ? new InstancedBufferGeometry() : new BufferGeometry(); const index = json.data.index; if ( index !== undefined ) { const typedArray = getTypedArray( index.type, index.array ); geometry.setIndex( new BufferAttribute( typedArray, 1 ) ); } const attributes = json.data.attributes; for ( const key in attributes ) { const attribute = attributes[ key ]; let bufferAttribute; if ( attribute.isInterleavedBufferAttribute ) { const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); } else { const typedArray = getTypedArray( attribute.type, attribute.array ); const bufferAttributeConstr = attribute.isInstancedBufferAttribute ? InstancedBufferAttribute : BufferAttribute; bufferAttribute = new bufferAttributeConstr( typedArray, attribute.itemSize, attribute.normalized ); } if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name; if ( attribute.usage !== undefined ) bufferAttribute.setUsage( attribute.usage ); geometry.setAttribute( key, bufferAttribute ); } const morphAttributes = json.data.morphAttributes; if ( morphAttributes ) { for ( const key in morphAttributes ) { const attributeArray = morphAttributes[ key ]; const array = []; for ( let i = 0, il = attributeArray.length; i < il; i ++ ) { const attribute = attributeArray[ i ]; let bufferAttribute; if ( attribute.isInterleavedBufferAttribute ) { const interleavedBuffer = getInterleavedBuffer( json.data, attribute.data ); bufferAttribute = new InterleavedBufferAttribute( interleavedBuffer, attribute.itemSize, attribute.offset, attribute.normalized ); } else { const typedArray = getTypedArray( attribute.type, attribute.array ); bufferAttribute = new BufferAttribute( typedArray, attribute.itemSize, attribute.normalized ); } if ( attribute.name !== undefined ) bufferAttribute.name = attribute.name; array.push( bufferAttribute ); } geometry.morphAttributes[ key ] = array; } } const morphTargetsRelative = json.data.morphTargetsRelative; if ( morphTargetsRelative ) { geometry.morphTargetsRelative = true; } const groups = json.data.groups || json.data.drawcalls || json.data.offsets; if ( groups !== undefined ) { for ( let i = 0, n = groups.length; i !== n; ++ i ) { const group = groups[ i ]; geometry.addGroup( group.start, group.count, group.materialIndex ); } } const boundingSphere = json.data.boundingSphere; if ( boundingSphere !== undefined ) { const center = new Vector3(); if ( boundingSphere.center !== undefined ) { center.fromArray( boundingSphere.center ); } geometry.boundingSphere = new Sphere( center, boundingSphere.radius ); } if ( json.name ) geometry.name = json.name; if ( json.userData ) geometry.userData = json.userData; return geometry; } } class ObjectLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; this.resourcePath = this.resourcePath || path; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) { let json = null; try { json = JSON.parse( text ); } catch ( error ) { if ( onError !== undefined ) onError( error ); console.error( 'THREE:ObjectLoader: Can\'t parse ' + url + '.', error.message ); return; } const metadata = json.metadata; if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { if ( onError !== undefined ) onError( new Error( 'THREE.ObjectLoader: Can\'t load ' + url ) ); console.error( 'THREE.ObjectLoader: Can\'t load ' + url ); return; } scope.parse( json, onLoad ); }, onProgress, onError ); } async loadAsync( url, onProgress ) { const scope = this; const path = ( this.path === '' ) ? LoaderUtils.extractUrlBase( url ) : this.path; this.resourcePath = this.resourcePath || path; const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); const text = await loader.loadAsync( url, onProgress ); const json = JSON.parse( text ); const metadata = json.metadata; if ( metadata === undefined || metadata.type === undefined || metadata.type.toLowerCase() === 'geometry' ) { throw new Error( 'THREE.ObjectLoader: Can\'t load ' + url ); } return await scope.parseAsync( json ); } parse( json, onLoad ) { const animations = this.parseAnimations( json.animations ); const shapes = this.parseShapes( json.shapes ); const geometries = this.parseGeometries( json.geometries, shapes ); const images = this.parseImages( json.images, function () { if ( onLoad !== undefined ) onLoad( object ); } ); const textures = this.parseTextures( json.textures, images ); const materials = this.parseMaterials( json.materials, textures ); const object = this.parseObject( json.object, geometries, materials, textures, animations ); const skeletons = this.parseSkeletons( json.skeletons, object ); this.bindSkeletons( object, skeletons ); this.bindLightTargets( object ); // if ( onLoad !== undefined ) { let hasImages = false; for ( const uuid in images ) { if ( images[ uuid ].data instanceof HTMLImageElement ) { hasImages = true; break; } } if ( hasImages === false ) onLoad( object ); } return object; } async parseAsync( json ) { const animations = this.parseAnimations( json.animations ); const shapes = this.parseShapes( json.shapes ); const geometries = this.parseGeometries( json.geometries, shapes ); const images = await this.parseImagesAsync( json.images ); const textures = this.parseTextures( json.textures, images ); const materials = this.parseMaterials( json.materials, textures ); const object = this.parseObject( json.object, geometries, materials, textures, animations ); const skeletons = this.parseSkeletons( json.skeletons, object ); this.bindSkeletons( object, skeletons ); this.bindLightTargets( object ); return object; } parseShapes( json ) { const shapes = {}; if ( json !== undefined ) { for ( let i = 0, l = json.length; i < l; i ++ ) { const shape = new Shape().fromJSON( json[ i ] ); shapes[ shape.uuid ] = shape; } } return shapes; } parseSkeletons( json, object ) { const skeletons = {}; const bones = {}; // generate bone lookup table object.traverse( function ( child ) { if ( child.isBone ) bones[ child.uuid ] = child; } ); // create skeletons if ( json !== undefined ) { for ( let i = 0, l = json.length; i < l; i ++ ) { const skeleton = new Skeleton().fromJSON( json[ i ], bones ); skeletons[ skeleton.uuid ] = skeleton; } } return skeletons; } parseGeometries( json, shapes ) { const geometries = {}; if ( json !== undefined ) { const bufferGeometryLoader = new BufferGeometryLoader(); for ( let i = 0, l = json.length; i < l; i ++ ) { let geometry; const data = json[ i ]; switch ( data.type ) { case 'BufferGeometry': case 'InstancedBufferGeometry': geometry = bufferGeometryLoader.parse( data ); break; default: if ( data.type in Geometries ) { geometry = Geometries[ data.type ].fromJSON( data, shapes ); } else { console.warn( `THREE.ObjectLoader: Unsupported geometry type "${ data.type }"` ); } } geometry.uuid = data.uuid; if ( data.name !== undefined ) geometry.name = data.name; if ( data.userData !== undefined ) geometry.userData = data.userData; geometries[ data.uuid ] = geometry; } } return geometries; } parseMaterials( json, textures ) { const cache = {}; // MultiMaterial const materials = {}; if ( json !== undefined ) { const loader = new MaterialLoader(); loader.setTextures( textures ); for ( let i = 0, l = json.length; i < l; i ++ ) { const data = json[ i ]; if ( cache[ data.uuid ] === undefined ) { cache[ data.uuid ] = loader.parse( data ); } materials[ data.uuid ] = cache[ data.uuid ]; } } return materials; } parseAnimations( json ) { const animations = {}; if ( json !== undefined ) { for ( let i = 0; i < json.length; i ++ ) { const data = json[ i ]; const clip = AnimationClip.parse( data ); animations[ clip.uuid ] = clip; } } return animations; } parseImages( json, onLoad ) { const scope = this; const images = {}; let loader; function loadImage( url ) { scope.manager.itemStart( url ); return loader.load( url, function () { scope.manager.itemEnd( url ); }, undefined, function () { scope.manager.itemError( url ); scope.manager.itemEnd( url ); } ); } function deserializeImage( image ) { if ( typeof image === 'string' ) { const url = image; const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url; return loadImage( path ); } else { if ( image.data ) { return { data: getTypedArray( image.type, image.data ), width: image.width, height: image.height }; } else { return null; } } } if ( json !== undefined && json.length > 0 ) { const manager = new LoadingManager( onLoad ); loader = new ImageLoader( manager ); loader.setCrossOrigin( this.crossOrigin ); for ( let i = 0, il = json.length; i < il; i ++ ) { const image = json[ i ]; const url = image.url; if ( Array.isArray( url ) ) { // load array of images e.g CubeTexture const imageArray = []; for ( let j = 0, jl = url.length; j < jl; j ++ ) { const currentUrl = url[ j ]; const deserializedImage = deserializeImage( currentUrl ); if ( deserializedImage !== null ) { if ( deserializedImage instanceof HTMLImageElement ) { imageArray.push( deserializedImage ); } else { // special case: handle array of data textures for cube textures imageArray.push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) ); } } } images[ image.uuid ] = new Source( imageArray ); } else { // load single image const deserializedImage = deserializeImage( image.url ); images[ image.uuid ] = new Source( deserializedImage ); } } } return images; } async parseImagesAsync( json ) { const scope = this; const images = {}; let loader; async function deserializeImage( image ) { if ( typeof image === 'string' ) { const url = image; const path = /^(\/\/)|([a-z]+:(\/\/)?)/i.test( url ) ? url : scope.resourcePath + url; return await loader.loadAsync( path ); } else { if ( image.data ) { return { data: getTypedArray( image.type, image.data ), width: image.width, height: image.height }; } else { return null; } } } if ( json !== undefined && json.length > 0 ) { loader = new ImageLoader( this.manager ); loader.setCrossOrigin( this.crossOrigin ); for ( let i = 0, il = json.length; i < il; i ++ ) { const image = json[ i ]; const url = image.url; if ( Array.isArray( url ) ) { // load array of images e.g CubeTexture const imageArray = []; for ( let j = 0, jl = url.length; j < jl; j ++ ) { const currentUrl = url[ j ]; const deserializedImage = await deserializeImage( currentUrl ); if ( deserializedImage !== null ) { if ( deserializedImage instanceof HTMLImageElement ) { imageArray.push( deserializedImage ); } else { // special case: handle array of data textures for cube textures imageArray.push( new DataTexture( deserializedImage.data, deserializedImage.width, deserializedImage.height ) ); } } } images[ image.uuid ] = new Source( imageArray ); } else { // load single image const deserializedImage = await deserializeImage( image.url ); images[ image.uuid ] = new Source( deserializedImage ); } } } return images; } parseTextures( json, images ) { function parseConstant( value, type ) { if ( typeof value === 'number' ) return value; console.warn( 'THREE.ObjectLoader.parseTexture: Constant should be in numeric form.', value ); return type[ value ]; } const textures = {}; if ( json !== undefined ) { for ( let i = 0, l = json.length; i < l; i ++ ) { const data = json[ i ]; if ( data.image === undefined ) { console.warn( 'THREE.ObjectLoader: No "image" specified for', data.uuid ); } if ( images[ data.image ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined image', data.image ); } const source = images[ data.image ]; const image = source.data; let texture; if ( Array.isArray( image ) ) { texture = new CubeTexture(); if ( image.length === 6 ) texture.needsUpdate = true; } else { if ( image && image.data ) { texture = new DataTexture(); } else { texture = new Texture(); } if ( image ) texture.needsUpdate = true; // textures can have undefined image data } texture.source = source; texture.uuid = data.uuid; if ( data.name !== undefined ) texture.name = data.name; if ( data.mapping !== undefined ) texture.mapping = parseConstant( data.mapping, TEXTURE_MAPPING ); if ( data.channel !== undefined ) texture.channel = data.channel; if ( data.offset !== undefined ) texture.offset.fromArray( data.offset ); if ( data.repeat !== undefined ) texture.repeat.fromArray( data.repeat ); if ( data.center !== undefined ) texture.center.fromArray( data.center ); if ( data.rotation !== undefined ) texture.rotation = data.rotation; if ( data.wrap !== undefined ) { texture.wrapS = parseConstant( data.wrap[ 0 ], TEXTURE_WRAPPING ); texture.wrapT = parseConstant( data.wrap[ 1 ], TEXTURE_WRAPPING ); } if ( data.format !== undefined ) texture.format = data.format; if ( data.internalFormat !== undefined ) texture.internalFormat = data.internalFormat; if ( data.type !== undefined ) texture.type = data.type; if ( data.colorSpace !== undefined ) texture.colorSpace = data.colorSpace; if ( data.minFilter !== undefined ) texture.minFilter = parseConstant( data.minFilter, TEXTURE_FILTER ); if ( data.magFilter !== undefined ) texture.magFilter = parseConstant( data.magFilter, TEXTURE_FILTER ); if ( data.anisotropy !== undefined ) texture.anisotropy = data.anisotropy; if ( data.flipY !== undefined ) texture.flipY = data.flipY; if ( data.generateMipmaps !== undefined ) texture.generateMipmaps = data.generateMipmaps; if ( data.premultiplyAlpha !== undefined ) texture.premultiplyAlpha = data.premultiplyAlpha; if ( data.unpackAlignment !== undefined ) texture.unpackAlignment = data.unpackAlignment; if ( data.compareFunction !== undefined ) texture.compareFunction = data.compareFunction; if ( data.userData !== undefined ) texture.userData = data.userData; textures[ data.uuid ] = texture; } } return textures; } parseObject( data, geometries, materials, textures, animations ) { let object; function getGeometry( name ) { if ( geometries[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined geometry', name ); } return geometries[ name ]; } function getMaterial( name ) { if ( name === undefined ) return undefined; if ( Array.isArray( name ) ) { const array = []; for ( let i = 0, l = name.length; i < l; i ++ ) { const uuid = name[ i ]; if ( materials[ uuid ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', uuid ); } array.push( materials[ uuid ] ); } return array; } if ( materials[ name ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined material', name ); } return materials[ name ]; } function getTexture( uuid ) { if ( textures[ uuid ] === undefined ) { console.warn( 'THREE.ObjectLoader: Undefined texture', uuid ); } return textures[ uuid ]; } let geometry, material; switch ( data.type ) { case 'Scene': object = new Scene(); if ( data.background !== undefined ) { if ( Number.isInteger( data.background ) ) { object.background = new Color( data.background ); } else { object.background = getTexture( data.background ); } } if ( data.environment !== undefined ) { object.environment = getTexture( data.environment ); } if ( data.fog !== undefined ) { if ( data.fog.type === 'Fog' ) { object.fog = new Fog( data.fog.color, data.fog.near, data.fog.far ); } else if ( data.fog.type === 'FogExp2' ) { object.fog = new FogExp2( data.fog.color, data.fog.density ); } if ( data.fog.name !== '' ) { object.fog.name = data.fog.name; } } if ( data.backgroundBlurriness !== undefined ) object.backgroundBlurriness = data.backgroundBlurriness; if ( data.backgroundIntensity !== undefined ) object.backgroundIntensity = data.backgroundIntensity; if ( data.backgroundRotation !== undefined ) object.backgroundRotation.fromArray( data.backgroundRotation ); if ( data.environmentIntensity !== undefined ) object.environmentIntensity = data.environmentIntensity; if ( data.environmentRotation !== undefined ) object.environmentRotation.fromArray( data.environmentRotation ); break; case 'PerspectiveCamera': object = new PerspectiveCamera( data.fov, data.aspect, data.near, data.far ); if ( data.focus !== undefined ) object.focus = data.focus; if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.filmGauge !== undefined ) object.filmGauge = data.filmGauge; if ( data.filmOffset !== undefined ) object.filmOffset = data.filmOffset; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); break; case 'OrthographicCamera': object = new OrthographicCamera( data.left, data.right, data.top, data.bottom, data.near, data.far ); if ( data.zoom !== undefined ) object.zoom = data.zoom; if ( data.view !== undefined ) object.view = Object.assign( {}, data.view ); break; case 'AmbientLight': object = new AmbientLight( data.color, data.intensity ); break; case 'DirectionalLight': object = new DirectionalLight( data.color, data.intensity ); object.target = data.target || ''; break; case 'PointLight': object = new PointLight( data.color, data.intensity, data.distance, data.decay ); break; case 'RectAreaLight': object = new RectAreaLight( data.color, data.intensity, data.width, data.height ); break; case 'SpotLight': object = new SpotLight( data.color, data.intensity, data.distance, data.angle, data.penumbra, data.decay ); object.target = data.target || ''; break; case 'HemisphereLight': object = new HemisphereLight( data.color, data.groundColor, data.intensity ); break; case 'LightProbe': object = new LightProbe().fromJSON( data ); break; case 'SkinnedMesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); object = new SkinnedMesh( geometry, material ); if ( data.bindMode !== undefined ) object.bindMode = data.bindMode; if ( data.bindMatrix !== undefined ) object.bindMatrix.fromArray( data.bindMatrix ); if ( data.skeleton !== undefined ) object.skeleton = data.skeleton; break; case 'Mesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); object = new Mesh( geometry, material ); break; case 'InstancedMesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); const count = data.count; const instanceMatrix = data.instanceMatrix; const instanceColor = data.instanceColor; object = new InstancedMesh( geometry, material, count ); object.instanceMatrix = new InstancedBufferAttribute( new Float32Array( instanceMatrix.array ), 16 ); if ( instanceColor !== undefined ) object.instanceColor = new InstancedBufferAttribute( new Float32Array( instanceColor.array ), instanceColor.itemSize ); break; case 'BatchedMesh': geometry = getGeometry( data.geometry ); material = getMaterial( data.material ); object = new BatchedMesh( data.maxInstanceCount, data.maxVertexCount, data.maxIndexCount, material ); object.geometry = geometry; object.perObjectFrustumCulled = data.perObjectFrustumCulled; object.sortObjects = data.sortObjects; object._drawRanges = data.drawRanges; object._reservedRanges = data.reservedRanges; object._visibility = data.visibility; object._active = data.active; object._bounds = data.bounds.map( bound => { const box = new Box3(); box.min.fromArray( bound.boxMin ); box.max.fromArray( bound.boxMax ); const sphere = new Sphere(); sphere.radius = bound.sphereRadius; sphere.center.fromArray( bound.sphereCenter ); return { boxInitialized: bound.boxInitialized, box: box, sphereInitialized: bound.sphereInitialized, sphere: sphere }; } ); object._maxInstanceCount = data.maxInstanceCount; object._maxVertexCount = data.maxVertexCount; object._maxIndexCount = data.maxIndexCount; object._geometryInitialized = data.geometryInitialized; object._geometryCount = data.geometryCount; object._matricesTexture = getTexture( data.matricesTexture.uuid ); if ( data.colorsTexture !== undefined ) object._colorsTexture = getTexture( data.colorsTexture.uuid ); break; case 'LOD': object = new LOD(); break; case 'Line': object = new Line( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'LineLoop': object = new LineLoop( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'LineSegments': object = new LineSegments( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'PointCloud': case 'Points': object = new Points( getGeometry( data.geometry ), getMaterial( data.material ) ); break; case 'Sprite': object = new Sprite( getMaterial( data.material ) ); break; case 'Group': object = new Group(); break; case 'Bone': object = new Bone(); break; default: object = new Object3D(); } object.uuid = data.uuid; if ( data.name !== undefined ) object.name = data.name; if ( data.matrix !== undefined ) { object.matrix.fromArray( data.matrix ); if ( data.matrixAutoUpdate !== undefined ) object.matrixAutoUpdate = data.matrixAutoUpdate; if ( object.matrixAutoUpdate ) object.matrix.decompose( object.position, object.quaternion, object.scale ); } else { if ( data.position !== undefined ) object.position.fromArray( data.position ); if ( data.rotation !== undefined ) object.rotation.fromArray( data.rotation ); if ( data.quaternion !== undefined ) object.quaternion.fromArray( data.quaternion ); if ( data.scale !== undefined ) object.scale.fromArray( data.scale ); } if ( data.up !== undefined ) object.up.fromArray( data.up ); if ( data.castShadow !== undefined ) object.castShadow = data.castShadow; if ( data.receiveShadow !== undefined ) object.receiveShadow = data.receiveShadow; if ( data.shadow ) { if ( data.shadow.intensity !== undefined ) object.shadow.intensity = data.shadow.intensity; if ( data.shadow.bias !== undefined ) object.shadow.bias = data.shadow.bias; if ( data.shadow.normalBias !== undefined ) object.shadow.normalBias = data.shadow.normalBias; if ( data.shadow.radius !== undefined ) object.shadow.radius = data.shadow.radius; if ( data.shadow.mapSize !== undefined ) object.shadow.mapSize.fromArray( data.shadow.mapSize ); if ( data.shadow.camera !== undefined ) object.shadow.camera = this.parseObject( data.shadow.camera ); } if ( data.visible !== undefined ) object.visible = data.visible; if ( data.frustumCulled !== undefined ) object.frustumCulled = data.frustumCulled; if ( data.renderOrder !== undefined ) object.renderOrder = data.renderOrder; if ( data.userData !== undefined ) object.userData = data.userData; if ( data.layers !== undefined ) object.layers.mask = data.layers; if ( data.children !== undefined ) { const children = data.children; for ( let i = 0; i < children.length; i ++ ) { object.add( this.parseObject( children[ i ], geometries, materials, textures, animations ) ); } } if ( data.animations !== undefined ) { const objectAnimations = data.animations; for ( let i = 0; i < objectAnimations.length; i ++ ) { const uuid = objectAnimations[ i ]; object.animations.push( animations[ uuid ] ); } } if ( data.type === 'LOD' ) { if ( data.autoUpdate !== undefined ) object.autoUpdate = data.autoUpdate; const levels = data.levels; for ( let l = 0; l < levels.length; l ++ ) { const level = levels[ l ]; const child = object.getObjectByProperty( 'uuid', level.object ); if ( child !== undefined ) { object.addLevel( child, level.distance, level.hysteresis ); } } } return object; } bindSkeletons( object, skeletons ) { if ( Object.keys( skeletons ).length === 0 ) return; object.traverse( function ( child ) { if ( child.isSkinnedMesh === true && child.skeleton !== undefined ) { const skeleton = skeletons[ child.skeleton ]; if ( skeleton === undefined ) { console.warn( 'THREE.ObjectLoader: No skeleton found with UUID:', child.skeleton ); } else { child.bind( skeleton, child.bindMatrix ); } } } ); } bindLightTargets( object ) { object.traverse( function ( child ) { if ( child.isDirectionalLight || child.isSpotLight ) { const uuid = child.target; const target = object.getObjectByProperty( 'uuid', uuid ); if ( target !== undefined ) { child.target = target; } else { child.target = new Object3D(); } } } ); } } const TEXTURE_MAPPING = { UVMapping: UVMapping, CubeReflectionMapping: CubeReflectionMapping, CubeRefractionMapping: CubeRefractionMapping, EquirectangularReflectionMapping: EquirectangularReflectionMapping, EquirectangularRefractionMapping: EquirectangularRefractionMapping, CubeUVReflectionMapping: CubeUVReflectionMapping }; const TEXTURE_WRAPPING = { RepeatWrapping: RepeatWrapping, ClampToEdgeWrapping: ClampToEdgeWrapping, MirroredRepeatWrapping: MirroredRepeatWrapping }; const TEXTURE_FILTER = { NearestFilter: NearestFilter, NearestMipmapNearestFilter: NearestMipmapNearestFilter, NearestMipmapLinearFilter: NearestMipmapLinearFilter, LinearFilter: LinearFilter, LinearMipmapNearestFilter: LinearMipmapNearestFilter, LinearMipmapLinearFilter: LinearMipmapLinearFilter }; class ImageBitmapLoader extends Loader { constructor( manager ) { super( manager ); this.isImageBitmapLoader = true; if ( typeof createImageBitmap === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: createImageBitmap() not supported.' ); } if ( typeof fetch === 'undefined' ) { console.warn( 'THREE.ImageBitmapLoader: fetch() not supported.' ); } this.options = { premultiplyAlpha: 'none' }; } setOptions( options ) { this.options = options; return this; } load( url, onLoad, onProgress, onError ) { if ( url === undefined ) url = ''; if ( this.path !== undefined ) url = this.path + url; url = this.manager.resolveURL( url ); const scope = this; const cached = Cache.get( url ); if ( cached !== undefined ) { scope.manager.itemStart( url ); // If cached is a promise, wait for it to resolve if ( cached.then ) { cached.then( imageBitmap => { if ( onLoad ) onLoad( imageBitmap ); scope.manager.itemEnd( url ); } ).catch( e => { if ( onError ) onError( e ); } ); return; } // If cached is not a promise (i.e., it's already an imageBitmap) setTimeout( function () { if ( onLoad ) onLoad( cached ); scope.manager.itemEnd( url ); }, 0 ); return cached; } const fetchOptions = {}; fetchOptions.credentials = ( this.crossOrigin === 'anonymous' ) ? 'same-origin' : 'include'; fetchOptions.headers = this.requestHeader; const promise = fetch( url, fetchOptions ).then( function ( res ) { return res.blob(); } ).then( function ( blob ) { return createImageBitmap( blob, Object.assign( scope.options, { colorSpaceConversion: 'none' } ) ); } ).then( function ( imageBitmap ) { Cache.add( url, imageBitmap ); if ( onLoad ) onLoad( imageBitmap ); scope.manager.itemEnd( url ); return imageBitmap; } ).catch( function ( e ) { if ( onError ) onError( e ); Cache.remove( url ); scope.manager.itemError( url ); scope.manager.itemEnd( url ); } ); Cache.add( url, promise ); scope.manager.itemStart( url ); } } let _context; class AudioContext { static getContext() { if ( _context === undefined ) { _context = new ( window.AudioContext || window.webkitAudioContext )(); } return _context; } static setContext( value ) { _context = value; } } class AudioLoader extends Loader { constructor( manager ) { super( manager ); } load( url, onLoad, onProgress, onError ) { const scope = this; const loader = new FileLoader( this.manager ); loader.setResponseType( 'arraybuffer' ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( buffer ) { try { // Create a copy of the buffer. The `decodeAudioData` method // detaches the buffer when complete, preventing reuse. const bufferCopy = buffer.slice( 0 ); const context = AudioContext.getContext(); context.decodeAudioData( bufferCopy, function ( audioBuffer ) { onLoad( audioBuffer ); } ).catch( handleError ); } catch ( e ) { handleError( e ); } }, onProgress, onError ); function handleError( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } scope.manager.itemError( url ); } } } const _eyeRight = /*@__PURE__*/ new Matrix4(); const _eyeLeft = /*@__PURE__*/ new Matrix4(); const _projectionMatrix = /*@__PURE__*/ new Matrix4(); class StereoCamera { constructor() { this.type = 'StereoCamera'; this.aspect = 1; this.eyeSep = 0.064; this.cameraL = new PerspectiveCamera(); this.cameraL.layers.enable( 1 ); this.cameraL.matrixAutoUpdate = false; this.cameraR = new PerspectiveCamera(); this.cameraR.layers.enable( 2 ); this.cameraR.matrixAutoUpdate = false; this._cache = { focus: null, fov: null, aspect: null, near: null, far: null, zoom: null, eyeSep: null }; } update( camera ) { const cache = this._cache; const needsUpdate = cache.focus !== camera.focus || cache.fov !== camera.fov || cache.aspect !== camera.aspect * this.aspect || cache.near !== camera.near || cache.far !== camera.far || cache.zoom !== camera.zoom || cache.eyeSep !== this.eyeSep; if ( needsUpdate ) { cache.focus = camera.focus; cache.fov = camera.fov; cache.aspect = camera.aspect * this.aspect; cache.near = camera.near; cache.far = camera.far; cache.zoom = camera.zoom; cache.eyeSep = this.eyeSep; // Off-axis stereoscopic effect based on // http://paulbourke.net/stereographics/stereorender/ _projectionMatrix.copy( camera.projectionMatrix ); const eyeSepHalf = cache.eyeSep / 2; const eyeSepOnProjection = eyeSepHalf * cache.near / cache.focus; const ymax = ( cache.near * Math.tan( DEG2RAD * cache.fov * 0.5 ) ) / cache.zoom; let xmin, xmax; // translate xOffset _eyeLeft.elements[ 12 ] = - eyeSepHalf; _eyeRight.elements[ 12 ] = eyeSepHalf; // for left eye xmin = - ymax * cache.aspect + eyeSepOnProjection; xmax = ymax * cache.aspect + eyeSepOnProjection; _projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); _projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraL.projectionMatrix.copy( _projectionMatrix ); // for right eye xmin = - ymax * cache.aspect - eyeSepOnProjection; xmax = ymax * cache.aspect - eyeSepOnProjection; _projectionMatrix.elements[ 0 ] = 2 * cache.near / ( xmax - xmin ); _projectionMatrix.elements[ 8 ] = ( xmax + xmin ) / ( xmax - xmin ); this.cameraR.projectionMatrix.copy( _projectionMatrix ); } this.cameraL.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeLeft ); this.cameraR.matrixWorld.copy( camera.matrixWorld ).multiply( _eyeRight ); } } class Clock { constructor( autoStart = true ) { this.autoStart = autoStart; this.startTime = 0; this.oldTime = 0; this.elapsedTime = 0; this.running = false; } start() { this.startTime = now(); this.oldTime = this.startTime; this.elapsedTime = 0; this.running = true; } stop() { this.getElapsedTime(); this.running = false; this.autoStart = false; } getElapsedTime() { this.getDelta(); return this.elapsedTime; } getDelta() { let diff = 0; if ( this.autoStart && ! this.running ) { this.start(); return 0; } if ( this.running ) { const newTime = now(); diff = ( newTime - this.oldTime ) / 1000; this.oldTime = newTime; this.elapsedTime += diff; } return diff; } } function now() { return performance.now(); } const _position$1 = /*@__PURE__*/ new Vector3(); const _quaternion$1 = /*@__PURE__*/ new Quaternion(); const _scale$1 = /*@__PURE__*/ new Vector3(); const _orientation$1 = /*@__PURE__*/ new Vector3(); class AudioListener extends Object3D { constructor() { super(); this.type = 'AudioListener'; this.context = AudioContext.getContext(); this.gain = this.context.createGain(); this.gain.connect( this.context.destination ); this.filter = null; this.timeDelta = 0; // private this._clock = new Clock(); } getInput() { return this.gain; } removeFilter() { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); this.gain.connect( this.context.destination ); this.filter = null; } return this; } getFilter() { return this.filter; } setFilter( value ) { if ( this.filter !== null ) { this.gain.disconnect( this.filter ); this.filter.disconnect( this.context.destination ); } else { this.gain.disconnect( this.context.destination ); } this.filter = value; this.gain.connect( this.filter ); this.filter.connect( this.context.destination ); return this; } getMasterVolume() { return this.gain.gain.value; } setMasterVolume( value ) { this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); return this; } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); const listener = this.context.listener; const up = this.up; this.timeDelta = this._clock.getDelta(); this.matrixWorld.decompose( _position$1, _quaternion$1, _scale$1 ); if ( ! Number.isFinite( _position$1.x ) || ! Number.isFinite( _position$1.y ) || ! Number.isFinite( _position$1.z ) ) return; _orientation$1.set( 0, 0, -1 ).applyQuaternion( _quaternion$1 ); if ( listener.positionX ) { // code path for Chrome (see #14393) const endTime = this.context.currentTime + this.timeDelta; listener.positionX.linearRampToValueAtTime( _position$1.x, endTime ); listener.positionY.linearRampToValueAtTime( _position$1.y, endTime ); listener.positionZ.linearRampToValueAtTime( _position$1.z, endTime ); listener.forwardX.linearRampToValueAtTime( _orientation$1.x, endTime ); listener.forwardY.linearRampToValueAtTime( _orientation$1.y, endTime ); listener.forwardZ.linearRampToValueAtTime( _orientation$1.z, endTime ); listener.upX.linearRampToValueAtTime( up.x, endTime ); listener.upY.linearRampToValueAtTime( up.y, endTime ); listener.upZ.linearRampToValueAtTime( up.z, endTime ); } else { listener.setPosition( _position$1.x, _position$1.y, _position$1.z ); listener.setOrientation( _orientation$1.x, _orientation$1.y, _orientation$1.z, up.x, up.y, up.z ); } } } class Audio extends Object3D { constructor( listener ) { super(); this.type = 'Audio'; this.listener = listener; this.context = listener.context; this.gain = this.context.createGain(); this.gain.connect( listener.getInput() ); this.autoplay = false; this.buffer = null; this.detune = 0; this.loop = false; this.loopStart = 0; this.loopEnd = 0; this.offset = 0; this.duration = undefined; this.playbackRate = 1; this.isPlaying = false; this.hasPlaybackControl = true; this.source = null; this.sourceType = 'empty'; this._startedAt = 0; this._progress = 0; this._connected = false; this.filters = []; } getOutput() { return this.gain; } setNodeSource( audioNode ) { this.hasPlaybackControl = false; this.sourceType = 'audioNode'; this.source = audioNode; this.connect(); return this; } setMediaElementSource( mediaElement ) { this.hasPlaybackControl = false; this.sourceType = 'mediaNode'; this.source = this.context.createMediaElementSource( mediaElement ); this.connect(); return this; } setMediaStreamSource( mediaStream ) { this.hasPlaybackControl = false; this.sourceType = 'mediaStreamNode'; this.source = this.context.createMediaStreamSource( mediaStream ); this.connect(); return this; } setBuffer( audioBuffer ) { this.buffer = audioBuffer; this.sourceType = 'buffer'; if ( this.autoplay ) this.play(); return this; } play( delay = 0 ) { if ( this.isPlaying === true ) { console.warn( 'THREE.Audio: Audio is already playing.' ); return; } if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this._startedAt = this.context.currentTime + delay; const source = this.context.createBufferSource(); source.buffer = this.buffer; source.loop = this.loop; source.loopStart = this.loopStart; source.loopEnd = this.loopEnd; source.onended = this.onEnded.bind( this ); source.start( this._startedAt, this._progress + this.offset, this.duration ); this.isPlaying = true; this.source = source; this.setDetune( this.detune ); this.setPlaybackRate( this.playbackRate ); return this.connect(); } pause() { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } if ( this.isPlaying === true ) { // update current progress this._progress += Math.max( this.context.currentTime - this._startedAt, 0 ) * this.playbackRate; if ( this.loop === true ) { // ensure _progress does not exceed duration with looped audios this._progress = this._progress % ( this.duration || ( this.buffer ? this.buffer.duration : Number.MAX_VALUE ) ); } this.source.stop(); this.source.onended = null; this.isPlaying = false; } return this; } stop( delay = 0 ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this._progress = 0; if ( this.source !== null ) { this.source.stop( this.context.currentTime + delay ); this.source.onended = null; } this.isPlaying = false; return this; } connect() { if ( this.filters.length > 0 ) { this.source.connect( this.filters[ 0 ] ); for ( let i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].connect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].connect( this.getOutput() ); } else { this.source.connect( this.getOutput() ); } this._connected = true; return this; } disconnect() { if ( this._connected === false ) { return; } if ( this.filters.length > 0 ) { this.source.disconnect( this.filters[ 0 ] ); for ( let i = 1, l = this.filters.length; i < l; i ++ ) { this.filters[ i - 1 ].disconnect( this.filters[ i ] ); } this.filters[ this.filters.length - 1 ].disconnect( this.getOutput() ); } else { this.source.disconnect( this.getOutput() ); } this._connected = false; return this; } getFilters() { return this.filters; } setFilters( value ) { if ( ! value ) value = []; if ( this._connected === true ) { this.disconnect(); this.filters = value.slice(); this.connect(); } else { this.filters = value.slice(); } return this; } setDetune( value ) { this.detune = value; if ( this.isPlaying === true && this.source.detune !== undefined ) { this.source.detune.setTargetAtTime( this.detune, this.context.currentTime, 0.01 ); } return this; } getDetune() { return this.detune; } getFilter() { return this.getFilters()[ 0 ]; } setFilter( filter ) { return this.setFilters( filter ? [ filter ] : [] ); } setPlaybackRate( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.playbackRate = value; if ( this.isPlaying === true ) { this.source.playbackRate.setTargetAtTime( this.playbackRate, this.context.currentTime, 0.01 ); } return this; } getPlaybackRate() { return this.playbackRate; } onEnded() { this.isPlaying = false; } getLoop() { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return false; } return this.loop; } setLoop( value ) { if ( this.hasPlaybackControl === false ) { console.warn( 'THREE.Audio: this Audio has no playback control.' ); return; } this.loop = value; if ( this.isPlaying === true ) { this.source.loop = this.loop; } return this; } setLoopStart( value ) { this.loopStart = value; return this; } setLoopEnd( value ) { this.loopEnd = value; return this; } getVolume() { return this.gain.gain.value; } setVolume( value ) { this.gain.gain.setTargetAtTime( value, this.context.currentTime, 0.01 ); return this; } } const _position = /*@__PURE__*/ new Vector3(); const _quaternion = /*@__PURE__*/ new Quaternion(); const _scale = /*@__PURE__*/ new Vector3(); const _orientation = /*@__PURE__*/ new Vector3(); class PositionalAudio extends Audio { constructor( listener ) { super( listener ); this.panner = this.context.createPanner(); this.panner.panningModel = 'HRTF'; this.panner.connect( this.gain ); } connect() { super.connect(); this.panner.connect( this.gain ); } disconnect() { super.disconnect(); this.panner.disconnect( this.gain ); } getOutput() { return this.panner; } getRefDistance() { return this.panner.refDistance; } setRefDistance( value ) { this.panner.refDistance = value; return this; } getRolloffFactor() { return this.panner.rolloffFactor; } setRolloffFactor( value ) { this.panner.rolloffFactor = value; return this; } getDistanceModel() { return this.panner.distanceModel; } setDistanceModel( value ) { this.panner.distanceModel = value; return this; } getMaxDistance() { return this.panner.maxDistance; } setMaxDistance( value ) { this.panner.maxDistance = value; return this; } setDirectionalCone( coneInnerAngle, coneOuterAngle, coneOuterGain ) { this.panner.coneInnerAngle = coneInnerAngle; this.panner.coneOuterAngle = coneOuterAngle; this.panner.coneOuterGain = coneOuterGain; return this; } updateMatrixWorld( force ) { super.updateMatrixWorld( force ); if ( this.hasPlaybackControl === true && this.isPlaying === false ) return; this.matrixWorld.decompose( _position, _quaternion, _scale ); _orientation.set( 0, 0, 1 ).applyQuaternion( _quaternion ); const panner = this.panner; if ( panner.positionX ) { // code path for Chrome and Firefox (see #14393) const endTime = this.context.currentTime + this.listener.timeDelta; panner.positionX.linearRampToValueAtTime( _position.x, endTime ); panner.positionY.linearRampToValueAtTime( _position.y, endTime ); panner.positionZ.linearRampToValueAtTime( _position.z, endTime ); panner.orientationX.linearRampToValueAtTime( _orientation.x, endTime ); panner.orientationY.linearRampToValueAtTime( _orientation.y, endTime ); panner.orientationZ.linearRampToValueAtTime( _orientation.z, endTime ); } else { panner.setPosition( _position.x, _position.y, _position.z ); panner.setOrientation( _orientation.x, _orientation.y, _orientation.z ); } } } class AudioAnalyser { constructor( audio, fftSize = 2048 ) { this.analyser = audio.context.createAnalyser(); this.analyser.fftSize = fftSize; this.data = new Uint8Array( this.analyser.frequencyBinCount ); audio.getOutput().connect( this.analyser ); } getFrequencyData() { this.analyser.getByteFrequencyData( this.data ); return this.data; } getAverageFrequency() { let value = 0; const data = this.getFrequencyData(); for ( let i = 0; i < data.length; i ++ ) { value += data[ i ]; } return value / data.length; } } class PropertyMixer { constructor( binding, typeName, valueSize ) { this.binding = binding; this.valueSize = valueSize; let mixFunction, mixFunctionAdditive, setIdentity; // buffer layout: [ incoming | accu0 | accu1 | orig | addAccu | (optional work) ] // // interpolators can use .buffer as their .result // the data then goes to 'incoming' // // 'accu0' and 'accu1' are used frame-interleaved for // the cumulative result and are compared to detect // changes // // 'orig' stores the original state of the property // // 'add' is used for additive cumulative results // // 'work' is optional and is only present for quaternion types. It is used // to store intermediate quaternion multiplication results switch ( typeName ) { case 'quaternion': mixFunction = this._slerp; mixFunctionAdditive = this._slerpAdditive; setIdentity = this._setAdditiveIdentityQuaternion; this.buffer = new Float64Array( valueSize * 6 ); this._workIndex = 5; break; case 'string': case 'bool': mixFunction = this._select; // Use the regular mix function and for additive on these types, // additive is not relevant for non-numeric types mixFunctionAdditive = this._select; setIdentity = this._setAdditiveIdentityOther; this.buffer = new Array( valueSize * 5 ); break; default: mixFunction = this._lerp; mixFunctionAdditive = this._lerpAdditive; setIdentity = this._setAdditiveIdentityNumeric; this.buffer = new Float64Array( valueSize * 5 ); } this._mixBufferRegion = mixFunction; this._mixBufferRegionAdditive = mixFunctionAdditive; this._setIdentity = setIdentity; this._origIndex = 3; this._addIndex = 4; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; this.useCount = 0; this.referenceCount = 0; } // accumulate data in the 'incoming' region into 'accu' accumulate( accuIndex, weight ) { // note: happily accumulating nothing when weight = 0, the caller knows // the weight and shouldn't have made the call in the first place const buffer = this.buffer, stride = this.valueSize, offset = accuIndex * stride + stride; let currentWeight = this.cumulativeWeight; if ( currentWeight === 0 ) { // accuN := incoming * weight for ( let i = 0; i !== stride; ++ i ) { buffer[ offset + i ] = buffer[ i ]; } currentWeight = weight; } else { // accuN := accuN + incoming * weight currentWeight += weight; const mix = weight / currentWeight; this._mixBufferRegion( buffer, offset, 0, mix, stride ); } this.cumulativeWeight = currentWeight; } // accumulate data in the 'incoming' region into 'add' accumulateAdditive( weight ) { const buffer = this.buffer, stride = this.valueSize, offset = stride * this._addIndex; if ( this.cumulativeWeightAdditive === 0 ) { // add = identity this._setIdentity(); } // add := add + incoming * weight this._mixBufferRegionAdditive( buffer, offset, 0, weight, stride ); this.cumulativeWeightAdditive += weight; } // apply the state of 'accu' to the binding when accus differ apply( accuIndex ) { const stride = this.valueSize, buffer = this.buffer, offset = accuIndex * stride + stride, weight = this.cumulativeWeight, weightAdditive = this.cumulativeWeightAdditive, binding = this.binding; this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; if ( weight < 1 ) { // accuN := accuN + original * ( 1 - cumulativeWeight ) const originalValueOffset = stride * this._origIndex; this._mixBufferRegion( buffer, offset, originalValueOffset, 1 - weight, stride ); } if ( weightAdditive > 0 ) { // accuN := accuN + additive accuN this._mixBufferRegionAdditive( buffer, offset, this._addIndex * stride, 1, stride ); } for ( let i = stride, e = stride + stride; i !== e; ++ i ) { if ( buffer[ i ] !== buffer[ i + stride ] ) { // value has changed -> update scene graph binding.setValue( buffer, offset ); break; } } } // remember the state of the bound property and copy it to both accus saveOriginalState() { const binding = this.binding; const buffer = this.buffer, stride = this.valueSize, originalValueOffset = stride * this._origIndex; binding.getValue( buffer, originalValueOffset ); // accu[0..1] := orig -- initially detect changes against the original for ( let i = stride, e = originalValueOffset; i !== e; ++ i ) { buffer[ i ] = buffer[ originalValueOffset + ( i % stride ) ]; } // Add to identity for additive this._setIdentity(); this.cumulativeWeight = 0; this.cumulativeWeightAdditive = 0; } // apply the state previously taken via 'saveOriginalState' to the binding restoreOriginalState() { const originalValueOffset = this.valueSize * 3; this.binding.setValue( this.buffer, originalValueOffset ); } _setAdditiveIdentityNumeric() { const startIndex = this._addIndex * this.valueSize; const endIndex = startIndex + this.valueSize; for ( let i = startIndex; i < endIndex; i ++ ) { this.buffer[ i ] = 0; } } _setAdditiveIdentityQuaternion() { this._setAdditiveIdentityNumeric(); this.buffer[ this._addIndex * this.valueSize + 3 ] = 1; } _setAdditiveIdentityOther() { const startIndex = this._origIndex * this.valueSize; const targetIndex = this._addIndex * this.valueSize; for ( let i = 0; i < this.valueSize; i ++ ) { this.buffer[ targetIndex + i ] = this.buffer[ startIndex + i ]; } } // mix functions _select( buffer, dstOffset, srcOffset, t, stride ) { if ( t >= 0.5 ) { for ( let i = 0; i !== stride; ++ i ) { buffer[ dstOffset + i ] = buffer[ srcOffset + i ]; } } } _slerp( buffer, dstOffset, srcOffset, t ) { Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, srcOffset, t ); } _slerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { const workOffset = this._workIndex * stride; // Store result in intermediate buffer offset Quaternion.multiplyQuaternionsFlat( buffer, workOffset, buffer, dstOffset, buffer, srcOffset ); // Slerp to the intermediate result Quaternion.slerpFlat( buffer, dstOffset, buffer, dstOffset, buffer, workOffset, t ); } _lerp( buffer, dstOffset, srcOffset, t, stride ) { const s = 1 - t; for ( let i = 0; i !== stride; ++ i ) { const j = dstOffset + i; buffer[ j ] = buffer[ j ] * s + buffer[ srcOffset + i ] * t; } } _lerpAdditive( buffer, dstOffset, srcOffset, t, stride ) { for ( let i = 0; i !== stride; ++ i ) { const j = dstOffset + i; buffer[ j ] = buffer[ j ] + buffer[ srcOffset + i ] * t; } } } // Characters [].:/ are reserved for track binding syntax. const _RESERVED_CHARS_RE = '\\[\\]\\.:\\/'; const _reservedRe = new RegExp( '[' + _RESERVED_CHARS_RE + ']', 'g' ); // Attempts to allow node names from any language. ES5's `\w` regexp matches // only latin characters, and the unicode \p{L} is not yet supported. So // instead, we exclude reserved characters and match everything else. const _wordChar = '[^' + _RESERVED_CHARS_RE + ']'; const _wordCharOrDot = '[^' + _RESERVED_CHARS_RE.replace( '\\.', '' ) + ']'; // Parent directories, delimited by '/' or ':'. Currently unused, but must // be matched to parse the rest of the track name. const _directoryRe = /*@__PURE__*/ /((?:WC+[\/:])*)/.source.replace( 'WC', _wordChar ); // Target node. May contain word characters (a-zA-Z0-9_) and '.' or '-'. const _nodeRe = /*@__PURE__*/ /(WCOD+)?/.source.replace( 'WCOD', _wordCharOrDot ); // Object on target node, and accessor. May not contain reserved // characters. Accessor may contain any character except closing bracket. const _objectRe = /*@__PURE__*/ /(?:\.(WC+)(?:\[(.+)\])?)?/.source.replace( 'WC', _wordChar ); // Property and accessor. May not contain reserved characters. Accessor may // contain any non-bracket characters. const _propertyRe = /*@__PURE__*/ /\.(WC+)(?:\[(.+)\])?/.source.replace( 'WC', _wordChar ); const _trackRe = new RegExp( '' + '^' + _directoryRe + _nodeRe + _objectRe + _propertyRe + '$' ); const _supportedObjectNames = [ 'material', 'materials', 'bones', 'map' ]; class Composite { constructor( targetGroup, path, optionalParsedPath ) { const parsedPath = optionalParsedPath || PropertyBinding.parseTrackName( path ); this._targetGroup = targetGroup; this._bindings = targetGroup.subscribe_( path, parsedPath ); } getValue( array, offset ) { this.bind(); // bind all binding const firstValidIndex = this._targetGroup.nCachedObjects_, binding = this._bindings[ firstValidIndex ]; // and only call .getValue on the first if ( binding !== undefined ) binding.getValue( array, offset ); } setValue( array, offset ) { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].setValue( array, offset ); } } bind() { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].bind(); } } unbind() { const bindings = this._bindings; for ( let i = this._targetGroup.nCachedObjects_, n = bindings.length; i !== n; ++ i ) { bindings[ i ].unbind(); } } } // Note: This class uses a State pattern on a per-method basis: // 'bind' sets 'this.getValue' / 'setValue' and shadows the // prototype version of these methods with one that represents // the bound state. When the property is not found, the methods // become no-ops. class PropertyBinding { constructor( rootNode, path, parsedPath ) { this.path = path; this.parsedPath = parsedPath || PropertyBinding.parseTrackName( path ); this.node = PropertyBinding.findNode( rootNode, this.parsedPath.nodeName ); this.rootNode = rootNode; // initial state of these methods that calls 'bind' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } static create( root, path, parsedPath ) { if ( ! ( root && root.isAnimationObjectGroup ) ) { return new PropertyBinding( root, path, parsedPath ); } else { return new PropertyBinding.Composite( root, path, parsedPath ); } } /** * Replaces spaces with underscores and removes unsupported characters from * node names, to ensure compatibility with parseTrackName(). * * @param {string} name Node name to be sanitized. * @return {string} */ static sanitizeNodeName( name ) { return name.replace( /\s/g, '_' ).replace( _reservedRe, '' ); } static parseTrackName( trackName ) { const matches = _trackRe.exec( trackName ); if ( matches === null ) { throw new Error( 'PropertyBinding: Cannot parse trackName: ' + trackName ); } const results = { // directoryName: matches[ 1 ], // (tschw) currently unused nodeName: matches[ 2 ], objectName: matches[ 3 ], objectIndex: matches[ 4 ], propertyName: matches[ 5 ], // required propertyIndex: matches[ 6 ] }; const lastDot = results.nodeName && results.nodeName.lastIndexOf( '.' ); if ( lastDot !== undefined && lastDot !== -1 ) { const objectName = results.nodeName.substring( lastDot + 1 ); // Object names must be checked against an allowlist. Otherwise, there // is no way to parse 'foo.bar.baz': 'baz' must be a property, but // 'bar' could be the objectName, or part of a nodeName (which can // include '.' characters). if ( _supportedObjectNames.indexOf( objectName ) !== -1 ) { results.nodeName = results.nodeName.substring( 0, lastDot ); results.objectName = objectName; } } if ( results.propertyName === null || results.propertyName.length === 0 ) { throw new Error( 'PropertyBinding: can not parse propertyName from trackName: ' + trackName ); } return results; } static findNode( root, nodeName ) { if ( nodeName === undefined || nodeName === '' || nodeName === '.' || nodeName === -1 || nodeName === root.name || nodeName === root.uuid ) { return root; } // search into skeleton bones. if ( root.skeleton ) { const bone = root.skeleton.getBoneByName( nodeName ); if ( bone !== undefined ) { return bone; } } // search into node subtree. if ( root.children ) { const searchNodeSubtree = function ( children, checkByUserDataName ) { for ( let i = 0; i < children.length; i ++ ) { const childNode = children[ i ]; if ( ! checkByUserDataName && ( childNode.name === nodeName || childNode.uuid === nodeName ) ) { return childNode; } else if ( checkByUserDataName && childNode.userData && childNode.userData.name === nodeName ) { return childNode; } const result = searchNodeSubtree( childNode.children, checkByUserDataName ); if ( result ) return result; } return null; }; const subTreeNode = searchNodeSubtree( root.children ); if ( subTreeNode ) { return subTreeNode; } else { // Search again by userData.name, as set by GLTFLoader. // We don't want to do that in a single pass to avoid incorrect matches. const subTreeNode = searchNodeSubtree( root.children, true ); if ( subTreeNode ) { return subTreeNode; } } } return null; } // these are used to "bind" a nonexistent property _getValue_unavailable() {} _setValue_unavailable() {} // Getters _getValue_direct( buffer, offset ) { buffer[ offset ] = this.targetObject[ this.propertyName ]; } _getValue_array( buffer, offset ) { const source = this.resolvedProperty; for ( let i = 0, n = source.length; i !== n; ++ i ) { buffer[ offset ++ ] = source[ i ]; } } _getValue_arrayElement( buffer, offset ) { buffer[ offset ] = this.resolvedProperty[ this.propertyIndex ]; } _getValue_toArray( buffer, offset ) { this.resolvedProperty.toArray( buffer, offset ); } // Direct _setValue_direct( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; } _setValue_direct_setNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.needsUpdate = true; } _setValue_direct_setMatrixWorldNeedsUpdate( buffer, offset ) { this.targetObject[ this.propertyName ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } // EntireArray _setValue_array( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } } _setValue_array_setNeedsUpdate( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.needsUpdate = true; } _setValue_array_setMatrixWorldNeedsUpdate( buffer, offset ) { const dest = this.resolvedProperty; for ( let i = 0, n = dest.length; i !== n; ++ i ) { dest[ i ] = buffer[ offset ++ ]; } this.targetObject.matrixWorldNeedsUpdate = true; } // ArrayElement _setValue_arrayElement( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; } _setValue_arrayElement_setNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.needsUpdate = true; } _setValue_arrayElement_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty[ this.propertyIndex ] = buffer[ offset ]; this.targetObject.matrixWorldNeedsUpdate = true; } // HasToFromArray _setValue_fromArray( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); } _setValue_fromArray_setNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.needsUpdate = true; } _setValue_fromArray_setMatrixWorldNeedsUpdate( buffer, offset ) { this.resolvedProperty.fromArray( buffer, offset ); this.targetObject.matrixWorldNeedsUpdate = true; } _getValue_unbound( targetArray, offset ) { this.bind(); this.getValue( targetArray, offset ); } _setValue_unbound( sourceArray, offset ) { this.bind(); this.setValue( sourceArray, offset ); } // create getter / setter pair for a property in the scene graph bind() { let targetObject = this.node; const parsedPath = this.parsedPath; const objectName = parsedPath.objectName; const propertyName = parsedPath.propertyName; let propertyIndex = parsedPath.propertyIndex; if ( ! targetObject ) { targetObject = PropertyBinding.findNode( this.rootNode, parsedPath.nodeName ); this.node = targetObject; } // set fail state so we can just 'return' on error this.getValue = this._getValue_unavailable; this.setValue = this._setValue_unavailable; // ensure there is a value node if ( ! targetObject ) { console.warn( 'THREE.PropertyBinding: No target node found for track: ' + this.path + '.' ); return; } if ( objectName ) { let objectIndex = parsedPath.objectIndex; // special cases were we need to reach deeper into the hierarchy to get the face materials.... switch ( objectName ) { case 'materials': if ( ! targetObject.material ) { console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); return; } if ( ! targetObject.material.materials ) { console.error( 'THREE.PropertyBinding: Can not bind to material.materials as node.material does not have a materials array.', this ); return; } targetObject = targetObject.material.materials; break; case 'bones': if ( ! targetObject.skeleton ) { console.error( 'THREE.PropertyBinding: Can not bind to bones as node does not have a skeleton.', this ); return; } // potential future optimization: skip this if propertyIndex is already an integer // and convert the integer string to a true integer. targetObject = targetObject.skeleton.bones; // support resolving morphTarget names into indices. for ( let i = 0; i < targetObject.length; i ++ ) { if ( targetObject[ i ].name === objectIndex ) { objectIndex = i; break; } } break; case 'map': if ( 'map' in targetObject ) { targetObject = targetObject.map; break; } if ( ! targetObject.material ) { console.error( 'THREE.PropertyBinding: Can not bind to material as node does not have a material.', this ); return; } if ( ! targetObject.material.map ) { console.error( 'THREE.PropertyBinding: Can not bind to material.map as node.material does not have a map.', this ); return; } targetObject = targetObject.material.map; break; default: if ( targetObject[ objectName ] === undefined ) { console.error( 'THREE.PropertyBinding: Can not bind to objectName of node undefined.', this ); return; } targetObject = targetObject[ objectName ]; } if ( objectIndex !== undefined ) { if ( targetObject[ objectIndex ] === undefined ) { console.error( 'THREE.PropertyBinding: Trying to bind to objectIndex of objectName, but is undefined.', this, targetObject ); return; } targetObject = targetObject[ objectIndex ]; } } // resolve property const nodeProperty = targetObject[ propertyName ]; if ( nodeProperty === undefined ) { const nodeName = parsedPath.nodeName; console.error( 'THREE.PropertyBinding: Trying to update property for track: ' + nodeName + '.' + propertyName + ' but it wasn\'t found.', targetObject ); return; } // determine versioning scheme let versioning = this.Versioning.None; this.targetObject = targetObject; if ( targetObject.needsUpdate !== undefined ) { // material versioning = this.Versioning.NeedsUpdate; } else if ( targetObject.matrixWorldNeedsUpdate !== undefined ) { // node transform versioning = this.Versioning.MatrixWorldNeedsUpdate; } // determine how the property gets bound let bindingType = this.BindingType.Direct; if ( propertyIndex !== undefined ) { // access a sub element of the property array (only primitives are supported right now) if ( propertyName === 'morphTargetInfluences' ) { // potential optimization, skip this if propertyIndex is already an integer, and convert the integer string to a true integer. // support resolving morphTarget names into indices. if ( ! targetObject.geometry ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.', this ); return; } if ( ! targetObject.geometry.morphAttributes ) { console.error( 'THREE.PropertyBinding: Can not bind to morphTargetInfluences because node does not have a geometry.morphAttributes.', this ); return; } if ( targetObject.morphTargetDictionary[ propertyIndex ] !== undefined ) { propertyIndex = targetObject.morphTargetDictionary[ propertyIndex ]; } } bindingType = this.BindingType.ArrayElement; this.resolvedProperty = nodeProperty; this.propertyIndex = propertyIndex; } else if ( nodeProperty.fromArray !== undefined && nodeProperty.toArray !== undefined ) { // must use copy for Object3D.Euler/Quaternion bindingType = this.BindingType.HasFromToArray; this.resolvedProperty = nodeProperty; } else if ( Array.isArray( nodeProperty ) ) { bindingType = this.BindingType.EntireArray; this.resolvedProperty = nodeProperty; } else { this.propertyName = propertyName; } // select getter / setter this.getValue = this.GetterByBindingType[ bindingType ]; this.setValue = this.SetterByBindingTypeAndVersioning[ bindingType ][ versioning ]; } unbind() { this.node = null; // back to the prototype version of getValue / setValue // note: avoiding to mutate the shape of 'this' via 'delete' this.getValue = this._getValue_unbound; this.setValue = this._setValue_unbound; } } PropertyBinding.Composite = Composite; PropertyBinding.prototype.BindingType = { Direct: 0, EntireArray: 1, ArrayElement: 2, HasFromToArray: 3 }; PropertyBinding.prototype.Versioning = { None: 0, NeedsUpdate: 1, MatrixWorldNeedsUpdate: 2 }; PropertyBinding.prototype.GetterByBindingType = [ PropertyBinding.prototype._getValue_direct, PropertyBinding.prototype._getValue_array, PropertyBinding.prototype._getValue_arrayElement, PropertyBinding.prototype._getValue_toArray, ]; PropertyBinding.prototype.SetterByBindingTypeAndVersioning = [ [ // Direct PropertyBinding.prototype._setValue_direct, PropertyBinding.prototype._setValue_direct_setNeedsUpdate, PropertyBinding.prototype._setValue_direct_setMatrixWorldNeedsUpdate, ], [ // EntireArray PropertyBinding.prototype._setValue_array, PropertyBinding.prototype._setValue_array_setNeedsUpdate, PropertyBinding.prototype._setValue_array_setMatrixWorldNeedsUpdate, ], [ // ArrayElement PropertyBinding.prototype._setValue_arrayElement, PropertyBinding.prototype._setValue_arrayElement_setNeedsUpdate, PropertyBinding.prototype._setValue_arrayElement_setMatrixWorldNeedsUpdate, ], [ // HasToFromArray PropertyBinding.prototype._setValue_fromArray, PropertyBinding.prototype._setValue_fromArray_setNeedsUpdate, PropertyBinding.prototype._setValue_fromArray_setMatrixWorldNeedsUpdate, ] ]; /** * * A group of objects that receives a shared animation state. * * Usage: * * - Add objects you would otherwise pass as 'root' to the * constructor or the .clipAction method of AnimationMixer. * * - Instead pass this object as 'root'. * * - You can also add and remove objects later when the mixer * is running. * * Note: * * Objects of this class appear as one object to the mixer, * so cache control of the individual objects must be done * on the group. * * Limitation: * * - The animated properties must be compatible among the * all objects in the group. * * - A single property can either be controlled through a * target group or directly, but not both. */ class AnimationObjectGroup { constructor() { this.isAnimationObjectGroup = true; this.uuid = generateUUID(); // cached objects followed by the active ones this._objects = Array.prototype.slice.call( arguments ); this.nCachedObjects_ = 0; // threshold // note: read by PropertyBinding.Composite const indices = {}; this._indicesByUUID = indices; // for bookkeeping for ( let i = 0, n = arguments.length; i !== n; ++ i ) { indices[ arguments[ i ].uuid ] = i; } this._paths = []; // inside: string this._parsedPaths = []; // inside: { we don't care, here } this._bindings = []; // inside: Array< PropertyBinding > this._bindingsIndicesByPath = {}; // inside: indices in these arrays const scope = this; this.stats = { objects: { get total() { return scope._objects.length; }, get inUse() { return this.total - scope.nCachedObjects_; } }, get bindingsPerObject() { return scope._bindings.length; } }; } add() { const objects = this._objects, indicesByUUID = this._indicesByUUID, paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, nBindings = bindings.length; let knownObject = undefined, nObjects = objects.length, nCachedObjects = this.nCachedObjects_; for ( let i = 0, n = arguments.length; i !== n; ++ i ) { const object = arguments[ i ], uuid = object.uuid; let index = indicesByUUID[ uuid ]; if ( index === undefined ) { // unknown object -> add it to the ACTIVE region index = nObjects ++; indicesByUUID[ uuid ] = index; objects.push( object ); // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { bindings[ j ].push( new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ) ); } } else if ( index < nCachedObjects ) { knownObject = objects[ index ]; // move existing object to the ACTIVE region const firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ]; indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; indicesByUUID[ uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = object; // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ]; let binding = bindingsForPath[ index ]; bindingsForPath[ index ] = lastCached; if ( binding === undefined ) { // since we do not bother to create new bindings // for objects that are cached, the binding may // or may not exist binding = new PropertyBinding( object, paths[ j ], parsedPaths[ j ] ); } bindingsForPath[ firstActiveIndex ] = binding; } } else if ( objects[ index ] !== knownObject ) { console.error( 'THREE.AnimationObjectGroup: Different objects with the same UUID ' + 'detected. Clean the caches or recreate your infrastructure when reloading scenes.' ); } // else the object is already where we want it to be } // for arguments this.nCachedObjects_ = nCachedObjects; } remove() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_; for ( let i = 0, n = arguments.length; i !== n; ++ i ) { const object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined && index >= nCachedObjects ) { // move existing object into the CACHED region const lastCachedIndex = nCachedObjects ++, firstActiveObject = objects[ lastCachedIndex ]; indicesByUUID[ firstActiveObject.uuid ] = index; objects[ index ] = firstActiveObject; indicesByUUID[ uuid ] = lastCachedIndex; objects[ lastCachedIndex ] = object; // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ], firstActive = bindingsForPath[ lastCachedIndex ], binding = bindingsForPath[ index ]; bindingsForPath[ index ] = firstActive; bindingsForPath[ lastCachedIndex ] = binding; } } } // for arguments this.nCachedObjects_ = nCachedObjects; } // remove & forget uncache() { const objects = this._objects, indicesByUUID = this._indicesByUUID, bindings = this._bindings, nBindings = bindings.length; let nCachedObjects = this.nCachedObjects_, nObjects = objects.length; for ( let i = 0, n = arguments.length; i !== n; ++ i ) { const object = arguments[ i ], uuid = object.uuid, index = indicesByUUID[ uuid ]; if ( index !== undefined ) { delete indicesByUUID[ uuid ]; if ( index < nCachedObjects ) { // object is cached, shrink the CACHED region const firstActiveIndex = -- nCachedObjects, lastCachedObject = objects[ firstActiveIndex ], lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; // last cached object takes this object's place indicesByUUID[ lastCachedObject.uuid ] = index; objects[ index ] = lastCachedObject; // last object goes to the activated slot and pop indicesByUUID[ lastObject.uuid ] = firstActiveIndex; objects[ firstActiveIndex ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ], lastCached = bindingsForPath[ firstActiveIndex ], last = bindingsForPath[ lastIndex ]; bindingsForPath[ index ] = lastCached; bindingsForPath[ firstActiveIndex ] = last; bindingsForPath.pop(); } } else { // object is active, just swap with the last and pop const lastIndex = -- nObjects, lastObject = objects[ lastIndex ]; if ( lastIndex > 0 ) { indicesByUUID[ lastObject.uuid ] = index; } objects[ index ] = lastObject; objects.pop(); // accounting is done, now do the same for all bindings for ( let j = 0, m = nBindings; j !== m; ++ j ) { const bindingsForPath = bindings[ j ]; bindingsForPath[ index ] = bindingsForPath[ lastIndex ]; bindingsForPath.pop(); } } // cached or active } // if object is known } // for arguments this.nCachedObjects_ = nCachedObjects; } // Internal interface used by befriended PropertyBinding.Composite: subscribe_( path, parsedPath ) { // returns an array of bindings for the given path that is changed // according to the contained objects in the group const indicesByPath = this._bindingsIndicesByPath; let index = indicesByPath[ path ]; const bindings = this._bindings; if ( index !== undefined ) return bindings[ index ]; const paths = this._paths, parsedPaths = this._parsedPaths, objects = this._objects, nObjects = objects.length, nCachedObjects = this.nCachedObjects_, bindingsForPath = new Array( nObjects ); index = bindings.length; indicesByPath[ path ] = index; paths.push( path ); parsedPaths.push( parsedPath ); bindings.push( bindingsForPath ); for ( let i = nCachedObjects, n = objects.length; i !== n; ++ i ) { const object = objects[ i ]; bindingsForPath[ i ] = new PropertyBinding( object, path, parsedPath ); } return bindingsForPath; } unsubscribe_( path ) { // tells the group to forget about a property path and no longer // update the array previously obtained with 'subscribe_' const indicesByPath = this._bindingsIndicesByPath, index = indicesByPath[ path ]; if ( index !== undefined ) { const paths = this._paths, parsedPaths = this._parsedPaths, bindings = this._bindings, lastBindingsIndex = bindings.length - 1, lastBindings = bindings[ lastBindingsIndex ], lastBindingsPath = path[ lastBindingsIndex ]; indicesByPath[ lastBindingsPath ] = index; bindings[ index ] = lastBindings; bindings.pop(); parsedPaths[ index ] = parsedPaths[ lastBindingsIndex ]; parsedPaths.pop(); paths[ index ] = paths[ lastBindingsIndex ]; paths.pop(); } } } class AnimationAction { constructor( mixer, clip, localRoot = null, blendMode = clip.blendMode ) { this._mixer = mixer; this._clip = clip; this._localRoot = localRoot; this.blendMode = blendMode; const tracks = clip.tracks, nTracks = tracks.length, interpolants = new Array( nTracks ); const interpolantSettings = { endingStart: ZeroCurvatureEnding, endingEnd: ZeroCurvatureEnding }; for ( let i = 0; i !== nTracks; ++ i ) { const interpolant = tracks[ i ].createInterpolant( null ); interpolants[ i ] = interpolant; interpolant.settings = interpolantSettings; } this._interpolantSettings = interpolantSettings; this._interpolants = interpolants; // bound by the mixer // inside: PropertyMixer (managed by the mixer) this._propertyBindings = new Array( nTracks ); this._cacheIndex = null; // for the memory manager this._byClipCacheIndex = null; // for the memory manager this._timeScaleInterpolant = null; this._weightInterpolant = null; this.loop = LoopRepeat; this._loopCount = -1; // global mixer time when the action is to be started // it's set back to 'null' upon start of the action this._startTime = null; // scaled local time of the action // gets clamped or wrapped to 0..clip.duration according to loop this.time = 0; this.timeScale = 1; this._effectiveTimeScale = 1; this.weight = 1; this._effectiveWeight = 1; this.repetitions = Infinity; // no. of repetitions when looping this.paused = false; // true -> zero effective time scale this.enabled = true; // false -> zero effective weight this.clampWhenFinished = false;// keep feeding the last frame? this.zeroSlopeAtStart = true;// for smooth interpolation w/o separate this.zeroSlopeAtEnd = true;// clips for start, loop and end } // State & Scheduling play() { this._mixer._activateAction( this ); return this; } stop() { this._mixer._deactivateAction( this ); return this.reset(); } reset() { this.paused = false; this.enabled = true; this.time = 0; // restart clip this._loopCount = -1;// forget previous loops this._startTime = null;// forget scheduling return this.stopFading().stopWarping(); } isRunning() { return this.enabled && ! this.paused && this.timeScale !== 0 && this._startTime === null && this._mixer._isActiveAction( this ); } // return true when play has been called isScheduled() { return this._mixer._isActiveAction( this ); } startAt( time ) { this._startTime = time; return this; } setLoop( mode, repetitions ) { this.loop = mode; this.repetitions = repetitions; return this; } // Weight // set the weight stopping any scheduled fading // although .enabled = false yields an effective weight of zero, this // method does *not* change .enabled, because it would be confusing setEffectiveWeight( weight ) { this.weight = weight; // note: same logic as when updated at runtime this._effectiveWeight = this.enabled ? weight : 0; return this.stopFading(); } // return the weight considering fading and .enabled getEffectiveWeight() { return this._effectiveWeight; } fadeIn( duration ) { return this._scheduleFading( duration, 0, 1 ); } fadeOut( duration ) { return this._scheduleFading( duration, 1, 0 ); } crossFadeFrom( fadeOutAction, duration, warp ) { fadeOutAction.fadeOut( duration ); this.fadeIn( duration ); if ( warp ) { const fadeInDuration = this._clip.duration, fadeOutDuration = fadeOutAction._clip.duration, startEndRatio = fadeOutDuration / fadeInDuration, endStartRatio = fadeInDuration / fadeOutDuration; fadeOutAction.warp( 1.0, startEndRatio, duration ); this.warp( endStartRatio, 1.0, duration ); } return this; } crossFadeTo( fadeInAction, duration, warp ) { return fadeInAction.crossFadeFrom( this, duration, warp ); } stopFading() { const weightInterpolant = this._weightInterpolant; if ( weightInterpolant !== null ) { this._weightInterpolant = null; this._mixer._takeBackControlInterpolant( weightInterpolant ); } return this; } // Time Scale Control // set the time scale stopping any scheduled warping // although .paused = true yields an effective time scale of zero, this // method does *not* change .paused, because it would be confusing setEffectiveTimeScale( timeScale ) { this.timeScale = timeScale; this._effectiveTimeScale = this.paused ? 0 : timeScale; return this.stopWarping(); } // return the time scale considering warping and .paused getEffectiveTimeScale() { return this._effectiveTimeScale; } setDuration( duration ) { this.timeScale = this._clip.duration / duration; return this.stopWarping(); } syncWith( action ) { this.time = action.time; this.timeScale = action.timeScale; return this.stopWarping(); } halt( duration ) { return this.warp( this._effectiveTimeScale, 0, duration ); } warp( startTimeScale, endTimeScale, duration ) { const mixer = this._mixer, now = mixer.time, timeScale = this.timeScale; let interpolant = this._timeScaleInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._timeScaleInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; times[ 1 ] = now + duration; values[ 0 ] = startTimeScale / timeScale; values[ 1 ] = endTimeScale / timeScale; return this; } stopWarping() { const timeScaleInterpolant = this._timeScaleInterpolant; if ( timeScaleInterpolant !== null ) { this._timeScaleInterpolant = null; this._mixer._takeBackControlInterpolant( timeScaleInterpolant ); } return this; } // Object Accessors getMixer() { return this._mixer; } getClip() { return this._clip; } getRoot() { return this._localRoot || this._mixer._root; } // Interna _update( time, deltaTime, timeDirection, accuIndex ) { // called by the mixer if ( ! this.enabled ) { // call ._updateWeight() to update ._effectiveWeight this._updateWeight( time ); return; } const startTime = this._startTime; if ( startTime !== null ) { // check for scheduled start of action const timeRunning = ( time - startTime ) * timeDirection; if ( timeRunning < 0 || timeDirection === 0 ) { deltaTime = 0; } else { this._startTime = null; // unschedule deltaTime = timeDirection * timeRunning; } } // apply time scale and advance time deltaTime *= this._updateTimeScale( time ); const clipTime = this._updateTime( deltaTime ); // note: _updateTime may disable the action resulting in // an effective weight of 0 const weight = this._updateWeight( time ); if ( weight > 0 ) { const interpolants = this._interpolants; const propertyMixers = this._propertyBindings; switch ( this.blendMode ) { case AdditiveAnimationBlendMode: for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulateAdditive( weight ); } break; case NormalAnimationBlendMode: default: for ( let j = 0, m = interpolants.length; j !== m; ++ j ) { interpolants[ j ].evaluate( clipTime ); propertyMixers[ j ].accumulate( accuIndex, weight ); } } } } _updateWeight( time ) { let weight = 0; if ( this.enabled ) { weight = this.weight; const interpolant = this._weightInterpolant; if ( interpolant !== null ) { const interpolantValue = interpolant.evaluate( time )[ 0 ]; weight *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopFading(); if ( interpolantValue === 0 ) { // faded out, disable this.enabled = false; } } } } this._effectiveWeight = weight; return weight; } _updateTimeScale( time ) { let timeScale = 0; if ( ! this.paused ) { timeScale = this.timeScale; const interpolant = this._timeScaleInterpolant; if ( interpolant !== null ) { const interpolantValue = interpolant.evaluate( time )[ 0 ]; timeScale *= interpolantValue; if ( time > interpolant.parameterPositions[ 1 ] ) { this.stopWarping(); if ( timeScale === 0 ) { // motion has halted, pause this.paused = true; } else { // warp done - apply final time scale this.timeScale = timeScale; } } } } this._effectiveTimeScale = timeScale; return timeScale; } _updateTime( deltaTime ) { const duration = this._clip.duration; const loop = this.loop; let time = this.time + deltaTime; let loopCount = this._loopCount; const pingPong = ( loop === LoopPingPong ); if ( deltaTime === 0 ) { if ( loopCount === -1 ) return time; return ( pingPong && ( loopCount & 1 ) === 1 ) ? duration - time : time; } if ( loop === LoopOnce ) { if ( loopCount === -1 ) { // just started this._loopCount = 0; this._setEndings( true, true, false ); } handle_stop: { if ( time >= duration ) { time = duration; } else if ( time < 0 ) { time = 0; } else { this.time = time; break handle_stop; } if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime < 0 ? -1 : 1 } ); } } else { // repetitive Repeat or PingPong if ( loopCount === -1 ) { // just started if ( deltaTime >= 0 ) { loopCount = 0; this._setEndings( true, this.repetitions === 0, pingPong ); } else { // when looping in reverse direction, the initial // transition through zero counts as a repetition, // so leave loopCount at -1 this._setEndings( this.repetitions === 0, true, pingPong ); } } if ( time >= duration || time < 0 ) { // wrap around const loopDelta = Math.floor( time / duration ); // signed time -= duration * loopDelta; loopCount += Math.abs( loopDelta ); const pending = this.repetitions - loopCount; if ( pending <= 0 ) { // have to stop (switch state, clamp time, fire event) if ( this.clampWhenFinished ) this.paused = true; else this.enabled = false; time = deltaTime > 0 ? duration : 0; this.time = time; this._mixer.dispatchEvent( { type: 'finished', action: this, direction: deltaTime > 0 ? 1 : -1 } ); } else { // keep running if ( pending === 1 ) { // entering the last round const atStart = deltaTime < 0; this._setEndings( atStart, ! atStart, pingPong ); } else { this._setEndings( false, false, pingPong ); } this._loopCount = loopCount; this.time = time; this._mixer.dispatchEvent( { type: 'loop', action: this, loopDelta: loopDelta } ); } } else { this.time = time; } if ( pingPong && ( loopCount & 1 ) === 1 ) { // invert time for the "pong round" return duration - time; } } return time; } _setEndings( atStart, atEnd, pingPong ) { const settings = this._interpolantSettings; if ( pingPong ) { settings.endingStart = ZeroSlopeEnding; settings.endingEnd = ZeroSlopeEnding; } else { // assuming for LoopOnce atStart == atEnd == true if ( atStart ) { settings.endingStart = this.zeroSlopeAtStart ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingStart = WrapAroundEnding; } if ( atEnd ) { settings.endingEnd = this.zeroSlopeAtEnd ? ZeroSlopeEnding : ZeroCurvatureEnding; } else { settings.endingEnd = WrapAroundEnding; } } } _scheduleFading( duration, weightNow, weightThen ) { const mixer = this._mixer, now = mixer.time; let interpolant = this._weightInterpolant; if ( interpolant === null ) { interpolant = mixer._lendControlInterpolant(); this._weightInterpolant = interpolant; } const times = interpolant.parameterPositions, values = interpolant.sampleValues; times[ 0 ] = now; values[ 0 ] = weightNow; times[ 1 ] = now + duration; values[ 1 ] = weightThen; return this; } } const _controlInterpolantsResultBuffer = new Float32Array( 1 ); class AnimationMixer extends EventDispatcher { constructor( root ) { super(); this._root = root; this._initMemoryManager(); this._accuIndex = 0; this.time = 0; this.timeScale = 1.0; } _bindAction( action, prototypeAction ) { const root = action._localRoot || this._root, tracks = action._clip.tracks, nTracks = tracks.length, bindings = action._propertyBindings, interpolants = action._interpolants, rootUuid = root.uuid, bindingsByRoot = this._bindingsByRootAndName; let bindingsByName = bindingsByRoot[ rootUuid ]; if ( bindingsByName === undefined ) { bindingsByName = {}; bindingsByRoot[ rootUuid ] = bindingsByName; } for ( let i = 0; i !== nTracks; ++ i ) { const track = tracks[ i ], trackName = track.name; let binding = bindingsByName[ trackName ]; if ( binding !== undefined ) { ++ binding.referenceCount; bindings[ i ] = binding; } else { binding = bindings[ i ]; if ( binding !== undefined ) { // existing binding, make sure the cache knows if ( binding._cacheIndex === null ) { ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); } continue; } const path = prototypeAction && prototypeAction. _propertyBindings[ i ].binding.parsedPath; binding = new PropertyMixer( PropertyBinding.create( root, trackName, path ), track.ValueTypeName, track.getValueSize() ); ++ binding.referenceCount; this._addInactiveBinding( binding, rootUuid, trackName ); bindings[ i ] = binding; } interpolants[ i ].resultBuffer = binding.buffer; } } _activateAction( action ) { if ( ! this._isActiveAction( action ) ) { if ( action._cacheIndex === null ) { // this action has been forgotten by the cache, but the user // appears to be still using it -> rebind const rootUuid = ( action._localRoot || this._root ).uuid, clipUuid = action._clip.uuid, actionsForClip = this._actionsByClip[ clipUuid ]; this._bindAction( action, actionsForClip && actionsForClip.knownActions[ 0 ] ); this._addInactiveAction( action, clipUuid, rootUuid ); } const bindings = action._propertyBindings; // increment reference counts / sort out state for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( binding.useCount ++ === 0 ) { this._lendBinding( binding ); binding.saveOriginalState(); } } this._lendAction( action ); } } _deactivateAction( action ) { if ( this._isActiveAction( action ) ) { const bindings = action._propertyBindings; // decrement reference counts / sort out state for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( -- binding.useCount === 0 ) { binding.restoreOriginalState(); this._takeBackBinding( binding ); } } this._takeBackAction( action ); } } // Memory manager _initMemoryManager() { this._actions = []; // 'nActiveActions' followed by inactive ones this._nActiveActions = 0; this._actionsByClip = {}; // inside: // { // knownActions: Array< AnimationAction > - used as prototypes // actionByRoot: AnimationAction - lookup // } this._bindings = []; // 'nActiveBindings' followed by inactive ones this._nActiveBindings = 0; this._bindingsByRootAndName = {}; // inside: Map< name, PropertyMixer > this._controlInterpolants = []; // same game as above this._nActiveControlInterpolants = 0; const scope = this; this.stats = { actions: { get total() { return scope._actions.length; }, get inUse() { return scope._nActiveActions; } }, bindings: { get total() { return scope._bindings.length; }, get inUse() { return scope._nActiveBindings; } }, controlInterpolants: { get total() { return scope._controlInterpolants.length; }, get inUse() { return scope._nActiveControlInterpolants; } } }; } // Memory management for AnimationAction objects _isActiveAction( action ) { const index = action._cacheIndex; return index !== null && index < this._nActiveActions; } _addInactiveAction( action, clipUuid, rootUuid ) { const actions = this._actions, actionsByClip = this._actionsByClip; let actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip === undefined ) { actionsForClip = { knownActions: [ action ], actionByRoot: {} }; action._byClipCacheIndex = 0; actionsByClip[ clipUuid ] = actionsForClip; } else { const knownActions = actionsForClip.knownActions; action._byClipCacheIndex = knownActions.length; knownActions.push( action ); } action._cacheIndex = actions.length; actions.push( action ); actionsForClip.actionByRoot[ rootUuid ] = action; } _removeInactiveAction( action ) { const actions = this._actions, lastInactiveAction = actions[ actions.length - 1 ], cacheIndex = action._cacheIndex; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); action._cacheIndex = null; const clipUuid = action._clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ], knownActionsForClip = actionsForClip.knownActions, lastKnownAction = knownActionsForClip[ knownActionsForClip.length - 1 ], byClipCacheIndex = action._byClipCacheIndex; lastKnownAction._byClipCacheIndex = byClipCacheIndex; knownActionsForClip[ byClipCacheIndex ] = lastKnownAction; knownActionsForClip.pop(); action._byClipCacheIndex = null; const actionByRoot = actionsForClip.actionByRoot, rootUuid = ( action._localRoot || this._root ).uuid; delete actionByRoot[ rootUuid ]; if ( knownActionsForClip.length === 0 ) { delete actionsByClip[ clipUuid ]; } this._removeInactiveBindingsForAction( action ); } _removeInactiveBindingsForAction( action ) { const bindings = action._propertyBindings; for ( let i = 0, n = bindings.length; i !== n; ++ i ) { const binding = bindings[ i ]; if ( -- binding.referenceCount === 0 ) { this._removeInactiveBinding( binding ); } } } _lendAction( action ) { // [ active actions | inactive actions ] // [ active actions >| inactive actions ] // s a // <-swap-> // a s const actions = this._actions, prevIndex = action._cacheIndex, lastActiveIndex = this._nActiveActions ++, firstInactiveAction = actions[ lastActiveIndex ]; action._cacheIndex = lastActiveIndex; actions[ lastActiveIndex ] = action; firstInactiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = firstInactiveAction; } _takeBackAction( action ) { // [ active actions | inactive actions ] // [ active actions |< inactive actions ] // a s // <-swap-> // s a const actions = this._actions, prevIndex = action._cacheIndex, firstInactiveIndex = -- this._nActiveActions, lastActiveAction = actions[ firstInactiveIndex ]; action._cacheIndex = firstInactiveIndex; actions[ firstInactiveIndex ] = action; lastActiveAction._cacheIndex = prevIndex; actions[ prevIndex ] = lastActiveAction; } // Memory management for PropertyMixer objects _addInactiveBinding( binding, rootUuid, trackName ) { const bindingsByRoot = this._bindingsByRootAndName, bindings = this._bindings; let bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName === undefined ) { bindingByName = {}; bindingsByRoot[ rootUuid ] = bindingByName; } bindingByName[ trackName ] = binding; binding._cacheIndex = bindings.length; bindings.push( binding ); } _removeInactiveBinding( binding ) { const bindings = this._bindings, propBinding = binding.binding, rootUuid = propBinding.rootNode.uuid, trackName = propBinding.path, bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ], lastInactiveBinding = bindings[ bindings.length - 1 ], cacheIndex = binding._cacheIndex; lastInactiveBinding._cacheIndex = cacheIndex; bindings[ cacheIndex ] = lastInactiveBinding; bindings.pop(); delete bindingByName[ trackName ]; if ( Object.keys( bindingByName ).length === 0 ) { delete bindingsByRoot[ rootUuid ]; } } _lendBinding( binding ) { const bindings = this._bindings, prevIndex = binding._cacheIndex, lastActiveIndex = this._nActiveBindings ++, firstInactiveBinding = bindings[ lastActiveIndex ]; binding._cacheIndex = lastActiveIndex; bindings[ lastActiveIndex ] = binding; firstInactiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = firstInactiveBinding; } _takeBackBinding( binding ) { const bindings = this._bindings, prevIndex = binding._cacheIndex, firstInactiveIndex = -- this._nActiveBindings, lastActiveBinding = bindings[ firstInactiveIndex ]; binding._cacheIndex = firstInactiveIndex; bindings[ firstInactiveIndex ] = binding; lastActiveBinding._cacheIndex = prevIndex; bindings[ prevIndex ] = lastActiveBinding; } // Memory management of Interpolants for weight and time scale _lendControlInterpolant() { const interpolants = this._controlInterpolants, lastActiveIndex = this._nActiveControlInterpolants ++; let interpolant = interpolants[ lastActiveIndex ]; if ( interpolant === undefined ) { interpolant = new LinearInterpolant( new Float32Array( 2 ), new Float32Array( 2 ), 1, _controlInterpolantsResultBuffer ); interpolant.__cacheIndex = lastActiveIndex; interpolants[ lastActiveIndex ] = interpolant; } return interpolant; } _takeBackControlInterpolant( interpolant ) { const interpolants = this._controlInterpolants, prevIndex = interpolant.__cacheIndex, firstInactiveIndex = -- this._nActiveControlInterpolants, lastActiveInterpolant = interpolants[ firstInactiveIndex ]; interpolant.__cacheIndex = firstInactiveIndex; interpolants[ firstInactiveIndex ] = interpolant; lastActiveInterpolant.__cacheIndex = prevIndex; interpolants[ prevIndex ] = lastActiveInterpolant; } // return an action for a clip optionally using a custom root target // object (this method allocates a lot of dynamic memory in case a // previously unknown clip/root combination is specified) clipAction( clip, optionalRoot, blendMode ) { const root = optionalRoot || this._root, rootUuid = root.uuid; let clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip; const clipUuid = clipObject !== null ? clipObject.uuid : clip; const actionsForClip = this._actionsByClip[ clipUuid ]; let prototypeAction = null; if ( blendMode === undefined ) { if ( clipObject !== null ) { blendMode = clipObject.blendMode; } else { blendMode = NormalAnimationBlendMode; } } if ( actionsForClip !== undefined ) { const existingAction = actionsForClip.actionByRoot[ rootUuid ]; if ( existingAction !== undefined && existingAction.blendMode === blendMode ) { return existingAction; } // we know the clip, so we don't have to parse all // the bindings again but can just copy prototypeAction = actionsForClip.knownActions[ 0 ]; // also, take the clip from the prototype action if ( clipObject === null ) clipObject = prototypeAction._clip; } // clip must be known when specified via string if ( clipObject === null ) return null; // allocate all resources required to run it const newAction = new AnimationAction( this, clipObject, optionalRoot, blendMode ); this._bindAction( newAction, prototypeAction ); // and make the action known to the memory manager this._addInactiveAction( newAction, clipUuid, rootUuid ); return newAction; } // get an existing action existingAction( clip, optionalRoot ) { const root = optionalRoot || this._root, rootUuid = root.uuid, clipObject = typeof clip === 'string' ? AnimationClip.findByName( root, clip ) : clip, clipUuid = clipObject ? clipObject.uuid : clip, actionsForClip = this._actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { return actionsForClip.actionByRoot[ rootUuid ] || null; } return null; } // deactivates all previously scheduled actions stopAllAction() { const actions = this._actions, nActions = this._nActiveActions; for ( let i = nActions - 1; i >= 0; -- i ) { actions[ i ].stop(); } return this; } // advance the time and update apply the animation update( deltaTime ) { deltaTime *= this.timeScale; const actions = this._actions, nActions = this._nActiveActions, time = this.time += deltaTime, timeDirection = Math.sign( deltaTime ), accuIndex = this._accuIndex ^= 1; // run active actions for ( let i = 0; i !== nActions; ++ i ) { const action = actions[ i ]; action._update( time, deltaTime, timeDirection, accuIndex ); } // update scene graph const bindings = this._bindings, nBindings = this._nActiveBindings; for ( let i = 0; i !== nBindings; ++ i ) { bindings[ i ].apply( accuIndex ); } return this; } // Allows you to seek to a specific time in an animation. setTime( timeInSeconds ) { this.time = 0; // Zero out time attribute for AnimationMixer object; for ( let i = 0; i < this._actions.length; i ++ ) { this._actions[ i ].time = 0; // Zero out time attribute for all associated AnimationAction objects. } return this.update( timeInSeconds ); // Update used to set exact time. Returns "this" AnimationMixer object. } // return this mixer's root target object getRoot() { return this._root; } // free all resources specific to a particular clip uncacheClip( clip ) { const actions = this._actions, clipUuid = clip.uuid, actionsByClip = this._actionsByClip, actionsForClip = actionsByClip[ clipUuid ]; if ( actionsForClip !== undefined ) { // note: just calling _removeInactiveAction would mess up the // iteration state and also require updating the state we can // just throw away const actionsToRemove = actionsForClip.knownActions; for ( let i = 0, n = actionsToRemove.length; i !== n; ++ i ) { const action = actionsToRemove[ i ]; this._deactivateAction( action ); const cacheIndex = action._cacheIndex, lastInactiveAction = actions[ actions.length - 1 ]; action._cacheIndex = null; action._byClipCacheIndex = null; lastInactiveAction._cacheIndex = cacheIndex; actions[ cacheIndex ] = lastInactiveAction; actions.pop(); this._removeInactiveBindingsForAction( action ); } delete actionsByClip[ clipUuid ]; } } // free all resources specific to a particular root target object uncacheRoot( root ) { const rootUuid = root.uuid, actionsByClip = this._actionsByClip; for ( const clipUuid in actionsByClip ) { const actionByRoot = actionsByClip[ clipUuid ].actionByRoot, action = actionByRoot[ rootUuid ]; if ( action !== undefined ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } const bindingsByRoot = this._bindingsByRootAndName, bindingByName = bindingsByRoot[ rootUuid ]; if ( bindingByName !== undefined ) { for ( const trackName in bindingByName ) { const binding = bindingByName[ trackName ]; binding.restoreOriginalState(); this._removeInactiveBinding( binding ); } } } // remove a targeted clip from the cache uncacheAction( clip, optionalRoot ) { const action = this.existingAction( clip, optionalRoot ); if ( action !== null ) { this._deactivateAction( action ); this._removeInactiveAction( action ); } } } let Uniform$1 = class Uniform { constructor( value ) { this.value = value; } clone() { return new Uniform( this.value.clone === undefined ? this.value : this.value.clone() ); } }; let _id$1 = 0; class UniformsGroup extends EventDispatcher { constructor() { super(); this.isUniformsGroup = true; Object.defineProperty( this, 'id', { value: _id$1 ++ } ); this.name = ''; this.usage = StaticDrawUsage; this.uniforms = []; } add( uniform ) { this.uniforms.push( uniform ); return this; } remove( uniform ) { const index = this.uniforms.indexOf( uniform ); if ( index !== -1 ) this.uniforms.splice( index, 1 ); return this; } setName( name ) { this.name = name; return this; } setUsage( value ) { this.usage = value; return this; } dispose() { this.dispatchEvent( { type: 'dispose' } ); return this; } copy( source ) { this.name = source.name; this.usage = source.usage; const uniformsSource = source.uniforms; this.uniforms.length = 0; for ( let i = 0, l = uniformsSource.length; i < l; i ++ ) { const uniforms = Array.isArray( uniformsSource[ i ] ) ? uniformsSource[ i ] : [ uniformsSource[ i ] ]; for ( let j = 0; j < uniforms.length; j ++ ) { this.uniforms.push( uniforms[ j ].clone() ); } } return this; } clone() { return new this.constructor().copy( this ); } } class InstancedInterleavedBuffer extends InterleavedBuffer { constructor( array, stride, meshPerAttribute = 1 ) { super( array, stride ); this.isInstancedInterleavedBuffer = true; this.meshPerAttribute = meshPerAttribute; } copy( source ) { super.copy( source ); this.meshPerAttribute = source.meshPerAttribute; return this; } clone( data ) { const ib = super.clone( data ); ib.meshPerAttribute = this.meshPerAttribute; return ib; } toJSON( data ) { const json = super.toJSON( data ); json.isInstancedInterleavedBuffer = true; json.meshPerAttribute = this.meshPerAttribute; return json; } } class GLBufferAttribute { constructor( buffer, type, itemSize, elementSize, count ) { this.isGLBufferAttribute = true; this.name = ''; this.buffer = buffer; this.type = type; this.itemSize = itemSize; this.elementSize = elementSize; this.count = count; this.version = 0; } set needsUpdate( value ) { if ( value === true ) this.version ++; } setBuffer( buffer ) { this.buffer = buffer; return this; } setType( type, elementSize ) { this.type = type; this.elementSize = elementSize; return this; } setItemSize( itemSize ) { this.itemSize = itemSize; return this; } setCount( count ) { this.count = count; return this; } } const _matrix = /*@__PURE__*/ new Matrix4(); class Raycaster { constructor( origin, direction, near = 0, far = Infinity ) { this.ray = new Ray( origin, direction ); // direction is assumed to be normalized (for accurate distance calculations) this.near = near; this.far = far; this.camera = null; this.layers = new Layers(); this.params = { Mesh: {}, Line: { threshold: 1 }, LOD: {}, Points: { threshold: 1 }, Sprite: {} }; } set( origin, direction ) { // direction is assumed to be normalized (for accurate distance calculations) this.ray.set( origin, direction ); } setFromCamera( coords, camera ) { if ( camera.isPerspectiveCamera ) { this.ray.origin.setFromMatrixPosition( camera.matrixWorld ); this.ray.direction.set( coords.x, coords.y, 0.5 ).unproject( camera ).sub( this.ray.origin ).normalize(); this.camera = camera; } else if ( camera.isOrthographicCamera ) { this.ray.origin.set( coords.x, coords.y, ( camera.near + camera.far ) / ( camera.near - camera.far ) ).unproject( camera ); // set origin in plane of camera this.ray.direction.set( 0, 0, -1 ).transformDirection( camera.matrixWorld ); this.camera = camera; } else { console.error( 'THREE.Raycaster: Unsupported camera type: ' + camera.type ); } } setFromXRController( controller ) { _matrix.identity().extractRotation( controller.matrixWorld ); this.ray.origin.setFromMatrixPosition( controller.matrixWorld ); this.ray.direction.set( 0, 0, -1 ).applyMatrix4( _matrix ); return this; } intersectObject( object, recursive = true, intersects = [] ) { intersect( object, this, intersects, recursive ); intersects.sort( ascSort ); return intersects; } intersectObjects( objects, recursive = true, intersects = [] ) { for ( let i = 0, l = objects.length; i < l; i ++ ) { intersect( objects[ i ], this, intersects, recursive ); } intersects.sort( ascSort ); return intersects; } } function ascSort( a, b ) { return a.distance - b.distance; } function intersect( object, raycaster, intersects, recursive ) { let propagate = true; if ( object.layers.test( raycaster.layers ) ) { const result = object.raycast( raycaster, intersects ); if ( result === false ) propagate = false; } if ( propagate === true && recursive === true ) { const children = object.children; for ( let i = 0, l = children.length; i < l; i ++ ) { intersect( children[ i ], raycaster, intersects, true ); } } } /** * Ref: https://en.wikipedia.org/wiki/Spherical_coordinate_system * * phi (the polar angle) is measured from the positive y-axis. The positive y-axis is up. * theta (the azimuthal angle) is measured from the positive z-axis. */ class Spherical { constructor( radius = 1, phi = 0, theta = 0 ) { this.radius = radius; this.phi = phi; // polar angle this.theta = theta; // azimuthal angle return this; } set( radius, phi, theta ) { this.radius = radius; this.phi = phi; this.theta = theta; return this; } copy( other ) { this.radius = other.radius; this.phi = other.phi; this.theta = other.theta; return this; } // restrict phi to be between EPS and PI-EPS makeSafe() { const EPS = 0.000001; this.phi = Math.max( EPS, Math.min( Math.PI - EPS, this.phi ) ); return this; } setFromVector3( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); } setFromCartesianCoords( x, y, z ) { this.radius = Math.sqrt( x * x + y * y + z * z ); if ( this.radius === 0 ) { this.theta = 0; this.phi = 0; } else { this.theta = Math.atan2( x, z ); this.phi = Math.acos( clamp$1( y / this.radius, -1, 1 ) ); } return this; } clone() { return new this.constructor().copy( this ); } } /** * Ref: https://en.wikipedia.org/wiki/Cylindrical_coordinate_system */ class Cylindrical { constructor( radius = 1, theta = 0, y = 0 ) { this.radius = radius; // distance from the origin to a point in the x-z plane this.theta = theta; // counterclockwise angle in the x-z plane measured in radians from the positive z-axis this.y = y; // height above the x-z plane return this; } set( radius, theta, y ) { this.radius = radius; this.theta = theta; this.y = y; return this; } copy( other ) { this.radius = other.radius; this.theta = other.theta; this.y = other.y; return this; } setFromVector3( v ) { return this.setFromCartesianCoords( v.x, v.y, v.z ); } setFromCartesianCoords( x, y, z ) { this.radius = Math.sqrt( x * x + z * z ); this.theta = Math.atan2( x, z ); this.y = y; return this; } clone() { return new this.constructor().copy( this ); } } class Matrix2 { constructor( n11, n12, n21, n22 ) { Matrix2.prototype.isMatrix2 = true; this.elements = [ 1, 0, 0, 1, ]; if ( n11 !== undefined ) { this.set( n11, n12, n21, n22 ); } } identity() { this.set( 1, 0, 0, 1, ); return this; } fromArray( array, offset = 0 ) { for ( let i = 0; i < 4; i ++ ) { this.elements[ i ] = array[ i + offset ]; } return this; } set( n11, n12, n21, n22 ) { const te = this.elements; te[ 0 ] = n11; te[ 2 ] = n12; te[ 1 ] = n21; te[ 3 ] = n22; return this; } } const _vector$4 = /*@__PURE__*/ new Vector2(); class Box2 { constructor( min = new Vector2( + Infinity, + Infinity ), max = new Vector2( - Infinity, - Infinity ) ) { this.isBox2 = true; this.min = min; this.max = max; } set( min, max ) { this.min.copy( min ); this.max.copy( max ); return this; } setFromPoints( points ) { this.makeEmpty(); for ( let i = 0, il = points.length; i < il; i ++ ) { this.expandByPoint( points[ i ] ); } return this; } setFromCenterAndSize( center, size ) { const halfSize = _vector$4.copy( size ).multiplyScalar( 0.5 ); this.min.copy( center ).sub( halfSize ); this.max.copy( center ).add( halfSize ); return this; } clone() { return new this.constructor().copy( this ); } copy( box ) { this.min.copy( box.min ); this.max.copy( box.max ); return this; } makeEmpty() { this.min.x = this.min.y = + Infinity; this.max.x = this.max.y = - Infinity; return this; } isEmpty() { // this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes return ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ); } getCenter( target ) { return this.isEmpty() ? target.set( 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 ); } getSize( target ) { return this.isEmpty() ? target.set( 0, 0 ) : target.subVectors( this.max, this.min ); } expandByPoint( point ) { this.min.min( point ); this.max.max( point ); return this; } expandByVector( vector ) { this.min.sub( vector ); this.max.add( vector ); return this; } expandByScalar( scalar ) { this.min.addScalar( - scalar ); this.max.addScalar( scalar ); return this; } containsPoint( point ) { return point.x >= this.min.x && point.x <= this.max.x && point.y >= this.min.y && point.y <= this.max.y; } containsBox( box ) { return this.min.x <= box.min.x && box.max.x <= this.max.x && this.min.y <= box.min.y && box.max.y <= this.max.y; } getParameter( point, target ) { // This can potentially have a divide by zero if the box // has a size dimension of 0. return target.set( ( point.x - this.min.x ) / ( this.max.x - this.min.x ), ( point.y - this.min.y ) / ( this.max.y - this.min.y ) ); } intersectsBox( box ) { // using 4 splitting planes to rule out intersections return box.max.x >= this.min.x && box.min.x <= this.max.x && box.max.y >= this.min.y && box.min.y <= this.max.y; } clampPoint( point, target ) { return target.copy( point ).clamp( this.min, this.max ); } distanceToPoint( point ) { return this.clampPoint( point, _vector$4 ).distanceTo( point ); } intersect( box ) { this.min.max( box.min ); this.max.min( box.max ); if ( this.isEmpty() ) this.makeEmpty(); return this; } union( box ) { this.min.min( box.min ); this.max.max( box.max ); return this; } translate( offset ) { this.min.add( offset ); this.max.add( offset ); return this; } equals( box ) { return box.min.equals( this.min ) && box.max.equals( this.max ); } } const _startP = /*@__PURE__*/ new Vector3(); const _startEnd = /*@__PURE__*/ new Vector3(); class Line3 { constructor( start = new Vector3(), end = new Vector3() ) { this.start = start; this.end = end; } set( start, end ) { this.start.copy( start ); this.end.copy( end ); return this; } copy( line ) { this.start.copy( line.start ); this.end.copy( line.end ); return this; } getCenter( target ) { return target.addVectors( this.start, this.end ).multiplyScalar( 0.5 ); } delta( target ) { return target.subVectors( this.end, this.start ); } distanceSq() { return this.start.distanceToSquared( this.end ); } distance() { return this.start.distanceTo( this.end ); } at( t, target ) { return this.delta( target ).multiplyScalar( t ).add( this.start ); } closestPointToPointParameter( point, clampToLine ) { _startP.subVectors( point, this.start ); _startEnd.subVectors( this.end, this.start ); const startEnd2 = _startEnd.dot( _startEnd ); const startEnd_startP = _startEnd.dot( _startP ); let t = startEnd_startP / startEnd2; if ( clampToLine ) { t = clamp$1( t, 0, 1 ); } return t; } closestPointToPoint( point, clampToLine, target ) { const t = this.closestPointToPointParameter( point, clampToLine ); return this.delta( target ).multiplyScalar( t ).add( this.start ); } applyMatrix4( matrix ) { this.start.applyMatrix4( matrix ); this.end.applyMatrix4( matrix ); return this; } equals( line ) { return line.start.equals( this.start ) && line.end.equals( this.end ); } clone() { return new this.constructor().copy( this ); } } const _vector$3 = /*@__PURE__*/ new Vector3(); class SpotLightHelper extends Object3D { constructor( light, color ) { super(); this.light = light; this.matrixAutoUpdate = false; this.color = color; this.type = 'SpotLightHelper'; const geometry = new BufferGeometry(); const positions = [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, 1 ]; for ( let i = 0, j = 1, l = 32; i < l; i ++, j ++ ) { const p1 = ( i / l ) * Math.PI * 2; const p2 = ( j / l ) * Math.PI * 2; positions.push( Math.cos( p1 ), Math.sin( p1 ), 1, Math.cos( p2 ), Math.sin( p2 ), 1 ); } geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); const material = new LineBasicMaterial( { fog: false, toneMapped: false } ); this.cone = new LineSegments( geometry, material ); this.add( this.cone ); this.update(); } dispose() { this.cone.geometry.dispose(); this.cone.material.dispose(); } update() { this.light.updateWorldMatrix( true, false ); this.light.target.updateWorldMatrix( true, false ); // update the local matrix based on the parent and light target transforms if ( this.parent ) { this.parent.updateWorldMatrix( true ); this.matrix .copy( this.parent.matrixWorld ) .invert() .multiply( this.light.matrixWorld ); } else { this.matrix.copy( this.light.matrixWorld ); } this.matrixWorld.copy( this.light.matrixWorld ); const coneLength = this.light.distance ? this.light.distance : 1000; const coneWidth = coneLength * Math.tan( this.light.angle ); this.cone.scale.set( coneWidth, coneWidth, coneLength ); _vector$3.setFromMatrixPosition( this.light.target.matrixWorld ); this.cone.lookAt( _vector$3 ); if ( this.color !== undefined ) { this.cone.material.color.set( this.color ); } else { this.cone.material.color.copy( this.light.color ); } } } const _vector$2 = /*@__PURE__*/ new Vector3(); const _boneMatrix = /*@__PURE__*/ new Matrix4(); const _matrixWorldInv = /*@__PURE__*/ new Matrix4(); class SkeletonHelper extends LineSegments { constructor( object ) { const bones = getBoneList( object ); const geometry = new BufferGeometry(); const vertices = []; const colors = []; const color1 = new Color( 0, 0, 1 ); const color2 = new Color( 0, 1, 0 ); for ( let i = 0; i < bones.length; i ++ ) { const bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { vertices.push( 0, 0, 0 ); vertices.push( 0, 0, 0 ); colors.push( color1.r, color1.g, color1.b ); colors.push( color2.r, color2.g, color2.b ); } } geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, depthTest: false, depthWrite: false, toneMapped: false, transparent: true } ); super( geometry, material ); this.isSkeletonHelper = true; this.type = 'SkeletonHelper'; this.root = object; this.bones = bones; this.matrix = object.matrixWorld; this.matrixAutoUpdate = false; } updateMatrixWorld( force ) { const bones = this.bones; const geometry = this.geometry; const position = geometry.getAttribute( 'position' ); _matrixWorldInv.copy( this.root.matrixWorld ).invert(); for ( let i = 0, j = 0; i < bones.length; i ++ ) { const bone = bones[ i ]; if ( bone.parent && bone.parent.isBone ) { _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.matrixWorld ); _vector$2.setFromMatrixPosition( _boneMatrix ); position.setXYZ( j, _vector$2.x, _vector$2.y, _vector$2.z ); _boneMatrix.multiplyMatrices( _matrixWorldInv, bone.parent.matrixWorld ); _vector$2.setFromMatrixPosition( _boneMatrix ); position.setXYZ( j + 1, _vector$2.x, _vector$2.y, _vector$2.z ); j += 2; } } geometry.getAttribute( 'position' ).needsUpdate = true; super.updateMatrixWorld( force ); } dispose() { this.geometry.dispose(); this.material.dispose(); } } function getBoneList( object ) { const boneList = []; if ( object.isBone === true ) { boneList.push( object ); } for ( let i = 0; i < object.children.length; i ++ ) { boneList.push.apply( boneList, getBoneList( object.children[ i ] ) ); } return boneList; } class PointLightHelper extends Mesh { constructor( light, sphereSize, color ) { const geometry = new SphereGeometry( sphereSize, 4, 2 ); const material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); super( geometry, material ); this.light = light; this.color = color; this.type = 'PointLightHelper'; this.matrix = this.light.matrixWorld; this.matrixAutoUpdate = false; this.update(); /* // TODO: delete this comment? const distanceGeometry = new THREE.IcosahedronGeometry( 1, 2 ); const distanceMaterial = new THREE.MeshBasicMaterial( { color: hexColor, fog: false, wireframe: true, opacity: 0.1, transparent: true } ); this.lightSphere = new THREE.Mesh( bulbGeometry, bulbMaterial ); this.lightDistance = new THREE.Mesh( distanceGeometry, distanceMaterial ); const d = light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.scale.set( d, d, d ); } this.add( this.lightDistance ); */ } dispose() { this.geometry.dispose(); this.material.dispose(); } update() { this.light.updateWorldMatrix( true, false ); if ( this.color !== undefined ) { this.material.color.set( this.color ); } else { this.material.color.copy( this.light.color ); } /* const d = this.light.distance; if ( d === 0.0 ) { this.lightDistance.visible = false; } else { this.lightDistance.visible = true; this.lightDistance.scale.set( d, d, d ); } */ } } const _vector$1 = /*@__PURE__*/ new Vector3(); const _color1 = /*@__PURE__*/ new Color(); const _color2 = /*@__PURE__*/ new Color(); class HemisphereLightHelper extends Object3D { constructor( light, size, color ) { super(); this.light = light; this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; this.type = 'HemisphereLightHelper'; const geometry = new OctahedronGeometry( size ); geometry.rotateY( Math.PI * 0.5 ); this.material = new MeshBasicMaterial( { wireframe: true, fog: false, toneMapped: false } ); if ( this.color === undefined ) this.material.vertexColors = true; const position = geometry.getAttribute( 'position' ); const colors = new Float32Array( position.count * 3 ); geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) ); this.add( new Mesh( geometry, this.material ) ); this.update(); } dispose() { this.children[ 0 ].geometry.dispose(); this.children[ 0 ].material.dispose(); } update() { const mesh = this.children[ 0 ]; if ( this.color !== undefined ) { this.material.color.set( this.color ); } else { const colors = mesh.geometry.getAttribute( 'color' ); _color1.copy( this.light.color ); _color2.copy( this.light.groundColor ); for ( let i = 0, l = colors.count; i < l; i ++ ) { const color = ( i < ( l / 2 ) ) ? _color1 : _color2; colors.setXYZ( i, color.r, color.g, color.b ); } colors.needsUpdate = true; } this.light.updateWorldMatrix( true, false ); mesh.lookAt( _vector$1.setFromMatrixPosition( this.light.matrixWorld ).negate() ); } } class GridHelper extends LineSegments { constructor( size = 10, divisions = 10, color1 = 0x444444, color2 = 0x888888 ) { color1 = new Color( color1 ); color2 = new Color( color2 ); const center = divisions / 2; const step = size / divisions; const halfSize = size / 2; const vertices = [], colors = []; for ( let i = 0, j = 0, k = - halfSize; i <= divisions; i ++, k += step ) { vertices.push( - halfSize, 0, k, halfSize, 0, k ); vertices.push( k, 0, - halfSize, k, 0, halfSize ); const color = i === center ? color1 : color2; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; color.toArray( colors, j ); j += 3; } const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); super( geometry, material ); this.type = 'GridHelper'; } dispose() { this.geometry.dispose(); this.material.dispose(); } } class PolarGridHelper extends LineSegments { constructor( radius = 10, sectors = 16, rings = 8, divisions = 64, color1 = 0x444444, color2 = 0x888888 ) { color1 = new Color( color1 ); color2 = new Color( color2 ); const vertices = []; const colors = []; // create the sectors if ( sectors > 1 ) { for ( let i = 0; i < sectors; i ++ ) { const v = ( i / sectors ) * ( Math.PI * 2 ); const x = Math.sin( v ) * radius; const z = Math.cos( v ) * radius; vertices.push( 0, 0, 0 ); vertices.push( x, 0, z ); const color = ( i & 1 ) ? color1 : color2; colors.push( color.r, color.g, color.b ); colors.push( color.r, color.g, color.b ); } } // create the rings for ( let i = 0; i < rings; i ++ ) { const color = ( i & 1 ) ? color1 : color2; const r = radius - ( radius / rings * i ); for ( let j = 0; j < divisions; j ++ ) { // first vertex let v = ( j / divisions ) * ( Math.PI * 2 ); let x = Math.sin( v ) * r; let z = Math.cos( v ) * r; vertices.push( x, 0, z ); colors.push( color.r, color.g, color.b ); // second vertex v = ( ( j + 1 ) / divisions ) * ( Math.PI * 2 ); x = Math.sin( v ) * r; z = Math.cos( v ) * r; vertices.push( x, 0, z ); colors.push( color.r, color.g, color.b ); } } const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); super( geometry, material ); this.type = 'PolarGridHelper'; } dispose() { this.geometry.dispose(); this.material.dispose(); } } const _v1 = /*@__PURE__*/ new Vector3(); const _v2 = /*@__PURE__*/ new Vector3(); const _v3 = /*@__PURE__*/ new Vector3(); class DirectionalLightHelper extends Object3D { constructor( light, size, color ) { super(); this.light = light; this.matrix = light.matrixWorld; this.matrixAutoUpdate = false; this.color = color; this.type = 'DirectionalLightHelper'; if ( size === undefined ) size = 1; let geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( [ - size, size, 0, size, size, 0, size, - size, 0, - size, - size, 0, - size, size, 0 ], 3 ) ); const material = new LineBasicMaterial( { fog: false, toneMapped: false } ); this.lightPlane = new Line( geometry, material ); this.add( this.lightPlane ); geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 0, 1 ], 3 ) ); this.targetLine = new Line( geometry, material ); this.add( this.targetLine ); this.update(); } dispose() { this.lightPlane.geometry.dispose(); this.lightPlane.material.dispose(); this.targetLine.geometry.dispose(); this.targetLine.material.dispose(); } update() { this.light.updateWorldMatrix( true, false ); this.light.target.updateWorldMatrix( true, false ); _v1.setFromMatrixPosition( this.light.matrixWorld ); _v2.setFromMatrixPosition( this.light.target.matrixWorld ); _v3.subVectors( _v2, _v1 ); this.lightPlane.lookAt( _v2 ); if ( this.color !== undefined ) { this.lightPlane.material.color.set( this.color ); this.targetLine.material.color.set( this.color ); } else { this.lightPlane.material.color.copy( this.light.color ); this.targetLine.material.color.copy( this.light.color ); } this.targetLine.lookAt( _v2 ); this.targetLine.scale.z = _v3.length(); } } const _vector = /*@__PURE__*/ new Vector3(); const _camera$1 = /*@__PURE__*/ new Camera(); /** * - shows frustum, line of sight and up of the camera * - suitable for fast updates * - based on frustum visualization in lightgl.js shadowmap example * https://github.com/evanw/lightgl.js/blob/master/tests/shadowmap.html */ class CameraHelper extends LineSegments { constructor( camera ) { const geometry = new BufferGeometry(); const material = new LineBasicMaterial( { color: 0xffffff, vertexColors: true, toneMapped: false } ); const vertices = []; const colors = []; const pointMap = {}; // near addLine( 'n1', 'n2' ); addLine( 'n2', 'n4' ); addLine( 'n4', 'n3' ); addLine( 'n3', 'n1' ); // far addLine( 'f1', 'f2' ); addLine( 'f2', 'f4' ); addLine( 'f4', 'f3' ); addLine( 'f3', 'f1' ); // sides addLine( 'n1', 'f1' ); addLine( 'n2', 'f2' ); addLine( 'n3', 'f3' ); addLine( 'n4', 'f4' ); // cone addLine( 'p', 'n1' ); addLine( 'p', 'n2' ); addLine( 'p', 'n3' ); addLine( 'p', 'n4' ); // up addLine( 'u1', 'u2' ); addLine( 'u2', 'u3' ); addLine( 'u3', 'u1' ); // target addLine( 'c', 't' ); addLine( 'p', 'c' ); // cross addLine( 'cn1', 'cn2' ); addLine( 'cn3', 'cn4' ); addLine( 'cf1', 'cf2' ); addLine( 'cf3', 'cf4' ); function addLine( a, b ) { addPoint( a ); addPoint( b ); } function addPoint( id ) { vertices.push( 0, 0, 0 ); colors.push( 0, 0, 0 ); if ( pointMap[ id ] === undefined ) { pointMap[ id ] = []; } pointMap[ id ].push( ( vertices.length / 3 ) - 1 ); } geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); super( geometry, material ); this.type = 'CameraHelper'; this.camera = camera; if ( this.camera.updateProjectionMatrix ) this.camera.updateProjectionMatrix(); this.matrix = camera.matrixWorld; this.matrixAutoUpdate = false; this.pointMap = pointMap; this.update(); // colors const colorFrustum = new Color( 0xffaa00 ); const colorCone = new Color( 0xff0000 ); const colorUp = new Color( 0x00aaff ); const colorTarget = new Color( 0xffffff ); const colorCross = new Color( 0x333333 ); this.setColors( colorFrustum, colorCone, colorUp, colorTarget, colorCross ); } setColors( frustum, cone, up, target, cross ) { const geometry = this.geometry; const colorAttribute = geometry.getAttribute( 'color' ); // near colorAttribute.setXYZ( 0, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 1, frustum.r, frustum.g, frustum.b ); // n1, n2 colorAttribute.setXYZ( 2, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 3, frustum.r, frustum.g, frustum.b ); // n2, n4 colorAttribute.setXYZ( 4, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 5, frustum.r, frustum.g, frustum.b ); // n4, n3 colorAttribute.setXYZ( 6, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 7, frustum.r, frustum.g, frustum.b ); // n3, n1 // far colorAttribute.setXYZ( 8, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 9, frustum.r, frustum.g, frustum.b ); // f1, f2 colorAttribute.setXYZ( 10, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 11, frustum.r, frustum.g, frustum.b ); // f2, f4 colorAttribute.setXYZ( 12, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 13, frustum.r, frustum.g, frustum.b ); // f4, f3 colorAttribute.setXYZ( 14, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 15, frustum.r, frustum.g, frustum.b ); // f3, f1 // sides colorAttribute.setXYZ( 16, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 17, frustum.r, frustum.g, frustum.b ); // n1, f1 colorAttribute.setXYZ( 18, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 19, frustum.r, frustum.g, frustum.b ); // n2, f2 colorAttribute.setXYZ( 20, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 21, frustum.r, frustum.g, frustum.b ); // n3, f3 colorAttribute.setXYZ( 22, frustum.r, frustum.g, frustum.b ); colorAttribute.setXYZ( 23, frustum.r, frustum.g, frustum.b ); // n4, f4 // cone colorAttribute.setXYZ( 24, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 25, cone.r, cone.g, cone.b ); // p, n1 colorAttribute.setXYZ( 26, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 27, cone.r, cone.g, cone.b ); // p, n2 colorAttribute.setXYZ( 28, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 29, cone.r, cone.g, cone.b ); // p, n3 colorAttribute.setXYZ( 30, cone.r, cone.g, cone.b ); colorAttribute.setXYZ( 31, cone.r, cone.g, cone.b ); // p, n4 // up colorAttribute.setXYZ( 32, up.r, up.g, up.b ); colorAttribute.setXYZ( 33, up.r, up.g, up.b ); // u1, u2 colorAttribute.setXYZ( 34, up.r, up.g, up.b ); colorAttribute.setXYZ( 35, up.r, up.g, up.b ); // u2, u3 colorAttribute.setXYZ( 36, up.r, up.g, up.b ); colorAttribute.setXYZ( 37, up.r, up.g, up.b ); // u3, u1 // target colorAttribute.setXYZ( 38, target.r, target.g, target.b ); colorAttribute.setXYZ( 39, target.r, target.g, target.b ); // c, t colorAttribute.setXYZ( 40, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 41, cross.r, cross.g, cross.b ); // p, c // cross colorAttribute.setXYZ( 42, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 43, cross.r, cross.g, cross.b ); // cn1, cn2 colorAttribute.setXYZ( 44, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 45, cross.r, cross.g, cross.b ); // cn3, cn4 colorAttribute.setXYZ( 46, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 47, cross.r, cross.g, cross.b ); // cf1, cf2 colorAttribute.setXYZ( 48, cross.r, cross.g, cross.b ); colorAttribute.setXYZ( 49, cross.r, cross.g, cross.b ); // cf3, cf4 colorAttribute.needsUpdate = true; } update() { const geometry = this.geometry; const pointMap = this.pointMap; const w = 1, h = 1; // we need just camera projection matrix inverse // world matrix must be identity _camera$1.projectionMatrixInverse.copy( this.camera.projectionMatrixInverse ); // center / target setPoint( 'c', pointMap, geometry, _camera$1, 0, 0, -1 ); setPoint( 't', pointMap, geometry, _camera$1, 0, 0, 1 ); // near setPoint( 'n1', pointMap, geometry, _camera$1, -1, -1, -1 ); setPoint( 'n2', pointMap, geometry, _camera$1, w, -1, -1 ); setPoint( 'n3', pointMap, geometry, _camera$1, -1, h, -1 ); setPoint( 'n4', pointMap, geometry, _camera$1, w, h, -1 ); // far setPoint( 'f1', pointMap, geometry, _camera$1, -1, -1, 1 ); setPoint( 'f2', pointMap, geometry, _camera$1, w, -1, 1 ); setPoint( 'f3', pointMap, geometry, _camera$1, -1, h, 1 ); setPoint( 'f4', pointMap, geometry, _camera$1, w, h, 1 ); // up setPoint( 'u1', pointMap, geometry, _camera$1, w * 0.7, h * 1.1, -1 ); setPoint( 'u2', pointMap, geometry, _camera$1, -1 * 0.7, h * 1.1, -1 ); setPoint( 'u3', pointMap, geometry, _camera$1, 0, h * 2, -1 ); // cross setPoint( 'cf1', pointMap, geometry, _camera$1, -1, 0, 1 ); setPoint( 'cf2', pointMap, geometry, _camera$1, w, 0, 1 ); setPoint( 'cf3', pointMap, geometry, _camera$1, 0, -1, 1 ); setPoint( 'cf4', pointMap, geometry, _camera$1, 0, h, 1 ); setPoint( 'cn1', pointMap, geometry, _camera$1, -1, 0, -1 ); setPoint( 'cn2', pointMap, geometry, _camera$1, w, 0, -1 ); setPoint( 'cn3', pointMap, geometry, _camera$1, 0, -1, -1 ); setPoint( 'cn4', pointMap, geometry, _camera$1, 0, h, -1 ); geometry.getAttribute( 'position' ).needsUpdate = true; } dispose() { this.geometry.dispose(); this.material.dispose(); } } function setPoint( point, pointMap, geometry, camera, x, y, z ) { _vector.set( x, y, z ).unproject( camera ); const points = pointMap[ point ]; if ( points !== undefined ) { const position = geometry.getAttribute( 'position' ); for ( let i = 0, l = points.length; i < l; i ++ ) { position.setXYZ( points[ i ], _vector.x, _vector.y, _vector.z ); } } } const _box = /*@__PURE__*/ new Box3(); class BoxHelper extends LineSegments { constructor( object, color = 0xffff00 ) { const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); const positions = new Float32Array( 8 * 3 ); const geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) ); super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.object = object; this.type = 'BoxHelper'; this.matrixAutoUpdate = false; this.update(); } update( object ) { if ( object !== undefined ) { console.warn( 'THREE.BoxHelper: .update() has no longer arguments.' ); } if ( this.object !== undefined ) { _box.setFromObject( this.object ); } if ( _box.isEmpty() ) return; const min = _box.min; const max = _box.max; /* 5____4 1/___0/| | 6__|_7 2/___3/ 0: max.x, max.y, max.z 1: min.x, max.y, max.z 2: min.x, min.y, max.z 3: max.x, min.y, max.z 4: max.x, max.y, min.z 5: min.x, max.y, min.z 6: min.x, min.y, min.z 7: max.x, min.y, min.z */ const position = this.geometry.attributes.position; const array = position.array; array[ 0 ] = max.x; array[ 1 ] = max.y; array[ 2 ] = max.z; array[ 3 ] = min.x; array[ 4 ] = max.y; array[ 5 ] = max.z; array[ 6 ] = min.x; array[ 7 ] = min.y; array[ 8 ] = max.z; array[ 9 ] = max.x; array[ 10 ] = min.y; array[ 11 ] = max.z; array[ 12 ] = max.x; array[ 13 ] = max.y; array[ 14 ] = min.z; array[ 15 ] = min.x; array[ 16 ] = max.y; array[ 17 ] = min.z; array[ 18 ] = min.x; array[ 19 ] = min.y; array[ 20 ] = min.z; array[ 21 ] = max.x; array[ 22 ] = min.y; array[ 23 ] = min.z; position.needsUpdate = true; this.geometry.computeBoundingSphere(); } setFromObject( object ) { this.object = object; this.update(); return this; } copy( source, recursive ) { super.copy( source, recursive ); this.object = source.object; return this; } dispose() { this.geometry.dispose(); this.material.dispose(); } } class Box3Helper extends LineSegments { constructor( box, color = 0xffff00 ) { const indices = new Uint16Array( [ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 0, 4, 1, 5, 2, 6, 3, 7 ] ); const positions = [ 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1 ]; const geometry = new BufferGeometry(); geometry.setIndex( new BufferAttribute( indices, 1 ) ); geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.box = box; this.type = 'Box3Helper'; this.geometry.computeBoundingSphere(); } updateMatrixWorld( force ) { const box = this.box; if ( box.isEmpty() ) return; box.getCenter( this.position ); box.getSize( this.scale ); this.scale.multiplyScalar( 0.5 ); super.updateMatrixWorld( force ); } dispose() { this.geometry.dispose(); this.material.dispose(); } } class PlaneHelper extends Line { constructor( plane, size = 1, hex = 0xffff00 ) { const color = hex; const positions = [ 1, -1, 0, -1, 1, 0, -1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0 ]; const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) ); geometry.computeBoundingSphere(); super( geometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.type = 'PlaneHelper'; this.plane = plane; this.size = size; const positions2 = [ 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, -1, 0 ]; const geometry2 = new BufferGeometry(); geometry2.setAttribute( 'position', new Float32BufferAttribute( positions2, 3 ) ); geometry2.computeBoundingSphere(); this.add( new Mesh( geometry2, new MeshBasicMaterial( { color: color, opacity: 0.2, transparent: true, depthWrite: false, toneMapped: false } ) ) ); } updateMatrixWorld( force ) { this.position.set( 0, 0, 0 ); this.scale.set( 0.5 * this.size, 0.5 * this.size, 1 ); this.lookAt( this.plane.normal ); this.translateZ( - this.plane.constant ); super.updateMatrixWorld( force ); } dispose() { this.geometry.dispose(); this.material.dispose(); this.children[ 0 ].geometry.dispose(); this.children[ 0 ].material.dispose(); } } const _axis = /*@__PURE__*/ new Vector3(); let _lineGeometry, _coneGeometry; class ArrowHelper extends Object3D { // dir is assumed to be normalized constructor( dir = new Vector3( 0, 0, 1 ), origin = new Vector3( 0, 0, 0 ), length = 1, color = 0xffff00, headLength = length * 0.2, headWidth = headLength * 0.2 ) { super(); this.type = 'ArrowHelper'; if ( _lineGeometry === undefined ) { _lineGeometry = new BufferGeometry(); _lineGeometry.setAttribute( 'position', new Float32BufferAttribute( [ 0, 0, 0, 0, 1, 0 ], 3 ) ); _coneGeometry = new CylinderGeometry( 0, 0.5, 1, 5, 1 ); _coneGeometry.translate( 0, -0.5, 0 ); } this.position.copy( origin ); this.line = new Line( _lineGeometry, new LineBasicMaterial( { color: color, toneMapped: false } ) ); this.line.matrixAutoUpdate = false; this.add( this.line ); this.cone = new Mesh( _coneGeometry, new MeshBasicMaterial( { color: color, toneMapped: false } ) ); this.cone.matrixAutoUpdate = false; this.add( this.cone ); this.setDirection( dir ); this.setLength( length, headLength, headWidth ); } setDirection( dir ) { // dir is assumed to be normalized if ( dir.y > 0.99999 ) { this.quaternion.set( 0, 0, 0, 1 ); } else if ( dir.y < -0.99999 ) { this.quaternion.set( 1, 0, 0, 0 ); } else { _axis.set( dir.z, 0, - dir.x ).normalize(); const radians = Math.acos( dir.y ); this.quaternion.setFromAxisAngle( _axis, radians ); } } setLength( length, headLength = length * 0.2, headWidth = headLength * 0.2 ) { this.line.scale.set( 1, Math.max( 0.0001, length - headLength ), 1 ); // see #17458 this.line.updateMatrix(); this.cone.scale.set( headWidth, headLength, headWidth ); this.cone.position.y = length; this.cone.updateMatrix(); } setColor( color ) { this.line.material.color.set( color ); this.cone.material.color.set( color ); } copy( source ) { super.copy( source, false ); this.line.copy( source.line ); this.cone.copy( source.cone ); return this; } dispose() { this.line.geometry.dispose(); this.line.material.dispose(); this.cone.geometry.dispose(); this.cone.material.dispose(); } } class AxesHelper extends LineSegments { constructor( size = 1 ) { const vertices = [ 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size, 0, 0, 0, 0, 0, 0, size ]; const colors = [ 1, 0, 0, 1, 0.6, 0, 0, 1, 0, 0.6, 1, 0, 0, 0, 1, 0, 0.6, 1 ]; const geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) ); geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) ); const material = new LineBasicMaterial( { vertexColors: true, toneMapped: false } ); super( geometry, material ); this.type = 'AxesHelper'; } setColors( xAxisColor, yAxisColor, zAxisColor ) { const color = new Color(); const array = this.geometry.attributes.color.array; color.set( xAxisColor ); color.toArray( array, 0 ); color.toArray( array, 3 ); color.set( yAxisColor ); color.toArray( array, 6 ); color.toArray( array, 9 ); color.set( zAxisColor ); color.toArray( array, 12 ); color.toArray( array, 15 ); this.geometry.attributes.color.needsUpdate = true; return this; } dispose() { this.geometry.dispose(); this.material.dispose(); } } class ShapePath { constructor() { this.type = 'ShapePath'; this.color = new Color(); this.subPaths = []; this.currentPath = null; } moveTo( x, y ) { this.currentPath = new Path(); this.subPaths.push( this.currentPath ); this.currentPath.moveTo( x, y ); return this; } lineTo( x, y ) { this.currentPath.lineTo( x, y ); return this; } quadraticCurveTo( aCPx, aCPy, aX, aY ) { this.currentPath.quadraticCurveTo( aCPx, aCPy, aX, aY ); return this; } bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ) { this.currentPath.bezierCurveTo( aCP1x, aCP1y, aCP2x, aCP2y, aX, aY ); return this; } splineThru( pts ) { this.currentPath.splineThru( pts ); return this; } toShapes( isCCW ) { function toShapesNoHoles( inSubpaths ) { const shapes = []; for ( let i = 0, l = inSubpaths.length; i < l; i ++ ) { const tmpPath = inSubpaths[ i ]; const tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); } return shapes; } function isPointInsidePolygon( inPt, inPolygon ) { const polyLen = inPolygon.length; // inPt on polygon contour => immediate success or // toggling of inside/outside at every single! intersection point of an edge // with the horizontal line through inPt, left of inPt // not counting lowerY endpoints of edges and whole edges on that line let inside = false; for ( let p = polyLen - 1, q = 0; q < polyLen; p = q ++ ) { let edgeLowPt = inPolygon[ p ]; let edgeHighPt = inPolygon[ q ]; let edgeDx = edgeHighPt.x - edgeLowPt.x; let edgeDy = edgeHighPt.y - edgeLowPt.y; if ( Math.abs( edgeDy ) > Number.EPSILON ) { // not parallel if ( edgeDy < 0 ) { edgeLowPt = inPolygon[ q ]; edgeDx = - edgeDx; edgeHighPt = inPolygon[ p ]; edgeDy = - edgeDy; } if ( ( inPt.y < edgeLowPt.y ) || ( inPt.y > edgeHighPt.y ) ) continue; if ( inPt.y === edgeLowPt.y ) { if ( inPt.x === edgeLowPt.x ) return true; // inPt is on contour ? // continue; // no intersection or edgeLowPt => doesn't count !!! } else { const perpEdge = edgeDy * ( inPt.x - edgeLowPt.x ) - edgeDx * ( inPt.y - edgeLowPt.y ); if ( perpEdge === 0 ) return true; // inPt is on contour ? if ( perpEdge < 0 ) continue; inside = ! inside; // true intersection left of inPt } } else { // parallel or collinear if ( inPt.y !== edgeLowPt.y ) continue; // parallel // edge lies on the same horizontal line as inPt if ( ( ( edgeHighPt.x <= inPt.x ) && ( inPt.x <= edgeLowPt.x ) ) || ( ( edgeLowPt.x <= inPt.x ) && ( inPt.x <= edgeHighPt.x ) ) ) return true; // inPt: Point on contour ! // continue; } } return inside; } const isClockWise = ShapeUtils.isClockWise; const subPaths = this.subPaths; if ( subPaths.length === 0 ) return []; let solid, tmpPath, tmpShape; const shapes = []; if ( subPaths.length === 1 ) { tmpPath = subPaths[ 0 ]; tmpShape = new Shape(); tmpShape.curves = tmpPath.curves; shapes.push( tmpShape ); return shapes; } let holesFirst = ! isClockWise( subPaths[ 0 ].getPoints() ); holesFirst = isCCW ? ! holesFirst : holesFirst; // console.log("Holes first", holesFirst); const betterShapeHoles = []; const newShapes = []; let newShapeHoles = []; let mainIdx = 0; let tmpPoints; newShapes[ mainIdx ] = undefined; newShapeHoles[ mainIdx ] = []; for ( let i = 0, l = subPaths.length; i < l; i ++ ) { tmpPath = subPaths[ i ]; tmpPoints = tmpPath.getPoints(); solid = isClockWise( tmpPoints ); solid = isCCW ? ! solid : solid; if ( solid ) { if ( ( ! holesFirst ) && ( newShapes[ mainIdx ] ) ) mainIdx ++; newShapes[ mainIdx ] = { s: new Shape(), p: tmpPoints }; newShapes[ mainIdx ].s.curves = tmpPath.curves; if ( holesFirst ) mainIdx ++; newShapeHoles[ mainIdx ] = []; //console.log('cw', i); } else { newShapeHoles[ mainIdx ].push( { h: tmpPath, p: tmpPoints[ 0 ] } ); //console.log('ccw', i); } } // only Holes? -> probably all Shapes with wrong orientation if ( ! newShapes[ 0 ] ) return toShapesNoHoles( subPaths ); if ( newShapes.length > 1 ) { let ambiguous = false; let toChange = 0; for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { betterShapeHoles[ sIdx ] = []; } for ( let sIdx = 0, sLen = newShapes.length; sIdx < sLen; sIdx ++ ) { const sho = newShapeHoles[ sIdx ]; for ( let hIdx = 0; hIdx < sho.length; hIdx ++ ) { const ho = sho[ hIdx ]; let hole_unassigned = true; for ( let s2Idx = 0; s2Idx < newShapes.length; s2Idx ++ ) { if ( isPointInsidePolygon( ho.p, newShapes[ s2Idx ].p ) ) { if ( sIdx !== s2Idx ) toChange ++; if ( hole_unassigned ) { hole_unassigned = false; betterShapeHoles[ s2Idx ].push( ho ); } else { ambiguous = true; } } } if ( hole_unassigned ) { betterShapeHoles[ sIdx ].push( ho ); } } } if ( toChange > 0 && ambiguous === false ) { newShapeHoles = betterShapeHoles; } } let tmpHoles; for ( let i = 0, il = newShapes.length; i < il; i ++ ) { tmpShape = newShapes[ i ].s; shapes.push( tmpShape ); tmpHoles = newShapeHoles[ i ]; for ( let j = 0, jl = tmpHoles.length; j < jl; j ++ ) { tmpShape.holes.push( tmpHoles[ j ].h ); } } //console.log("shape", shapes); return shapes; } } class Controls extends EventDispatcher { constructor( object, domElement = null ) { super(); this.object = object; this.domElement = domElement; this.enabled = true; this.state = -1; this.keys = {}; this.mouseButtons = { LEFT: null, MIDDLE: null, RIGHT: null }; this.touches = { ONE: null, TWO: null }; } connect() {} disconnect() {} dispose() {} update( /* delta */ ) {} } class WebGLMultipleRenderTargets extends WebGLRenderTarget { // @deprecated, r162 constructor( width = 1, height = 1, count = 1, options = {} ) { console.warn( 'THREE.WebGLMultipleRenderTargets has been deprecated and will be removed in r172. Use THREE.WebGLRenderTarget and set the "count" parameter to enable MRT.' ); super( width, height, { ...options, count } ); this.isWebGLMultipleRenderTargets = true; } get texture() { return this.textures; } } const refreshUniforms = [ 'alphaMap', 'alphaTest', 'anisotropy', 'anisotropyMap', 'anisotropyRotation', 'aoMap', 'attenuationColor', 'attenuationDistance', 'bumpMap', 'clearcoat', 'clearcoatMap', 'clearcoatNormalMap', 'clearcoatNormalScale', 'clearcoatRoughness', 'color', 'dispersion', 'displacementMap', 'emissive', 'emissiveMap', 'envMap', 'gradientMap', 'ior', 'iridescence', 'iridescenceIOR', 'iridescenceMap', 'iridescenceThicknessMap', 'lightMap', 'map', 'matcap', 'metalness', 'metalnessMap', 'normalMap', 'normalScale', 'opacity', 'roughness', 'roughnessMap', 'sheen', 'sheenColor', 'sheenColorMap', 'sheenRoughnessMap', 'shininess', 'specular', 'specularColor', 'specularColorMap', 'specularIntensity', 'specularIntensityMap', 'specularMap', 'thickness', 'transmission', 'transmissionMap' ]; class NodeMaterialObserver { constructor( builder ) { this.renderObjects = new WeakMap(); this.hasNode = this.containsNode( builder ); this.hasAnimation = builder.object.isSkinnedMesh === true; this.refreshUniforms = refreshUniforms; this.renderId = 0; } firstInitialization( renderObject ) { const hasInitialized = this.renderObjects.has( renderObject ); if ( hasInitialized === false ) { this.getRenderObjectData( renderObject ); return true; } return false; } getRenderObjectData( renderObject ) { let data = this.renderObjects.get( renderObject ); if ( data === undefined ) { data = { material: this.getMaterialData( renderObject.material ), worldMatrix: renderObject.object.matrixWorld.clone() }; if ( renderObject.object.center ) { data.center = renderObject.object.center.clone(); } if ( renderObject.object.morphTargetInfluences ) { data.morphTargetInfluences = renderObject.object.morphTargetInfluences.slice(); } if ( renderObject.bundle !== null ) { data.version = renderObject.bundle.version; } this.renderObjects.set( renderObject, data ); } return data; } containsNode( builder ) { const material = builder.material; for ( const property in material ) { if ( material[ property ] && material[ property ].isNode ) return true; } if ( builder.renderer.nodes.modelViewMatrix !== null || builder.renderer.nodes.modelNormalViewMatrix !== null ) return true; return false; } getMaterialData( material ) { const data = {}; for ( const property of this.refreshUniforms ) { const value = material[ property ]; if ( value === null || value === undefined ) continue; if ( typeof value === 'object' && value.clone !== undefined ) { if ( value.isTexture === true ) { data[ property ] = { id: value.id, version: value.version }; } else { data[ property ] = value.clone(); } } else { data[ property ] = value; } } return data; } equals( renderObject ) { const { object, material } = renderObject; const renderObjectData = this.getRenderObjectData( renderObject ); // world matrix if ( renderObjectData.worldMatrix.equals( object.matrixWorld ) !== true ) { renderObjectData.worldMatrix.copy( object.matrixWorld ); return false; } // material const materialData = renderObjectData.material; for ( const property in materialData ) { const value = materialData[ property ]; const mtlValue = material[ property ]; if ( value.equals !== undefined ) { if ( value.equals( mtlValue ) === false ) { value.copy( mtlValue ); return false; } } else if ( mtlValue.isTexture === true ) { if ( value.id !== mtlValue.id || value.version !== mtlValue.version ) { value.id = mtlValue.id; value.version = mtlValue.version; return false; } } else if ( value !== mtlValue ) { materialData[ property ] = mtlValue; return false; } } // morph targets if ( renderObjectData.morphTargetInfluences ) { let morphChanged = false; for ( let i = 0; i < renderObjectData.morphTargetInfluences.length; i ++ ) { if ( renderObjectData.morphTargetInfluences[ i ] !== object.morphTargetInfluences[ i ] ) { morphChanged = true; } } if ( morphChanged ) return true; } // center if ( renderObjectData.center ) { if ( renderObjectData.center.equals( object.center ) === false ) { renderObjectData.center.copy( object.center ); return true; } } // bundle if ( renderObject.bundle !== null ) { renderObjectData.version = renderObject.bundle.version; } return true; } needsRefresh( renderObject, nodeFrame ) { if ( this.hasNode || this.hasAnimation || this.firstInitialization( renderObject ) ) return true; const { renderId } = nodeFrame; if ( this.renderId !== renderId ) { this.renderId = renderId; return true; } const isStatic = renderObject.object.static === true; const isBundle = renderObject.bundle !== null && renderObject.bundle.static === true && this.getRenderObjectData( renderObject ).version === renderObject.bundle.version; if ( isStatic || isBundle ) return false; const notEqual = this.equals( renderObject ) !== true; return notEqual; } } // cyrb53 (c) 2018 bryc (github.com/bryc). License: Public domain. Attribution appreciated. // A fast and simple 64-bit (or 53-bit) string hash function with decent collision resistance. // Largely inspired by MurmurHash2/3, but with a focus on speed/simplicity. // See https://stackoverflow.com/questions/7616461/generate-a-hash-from-string-in-javascript/52171480#52171480 // https://github.com/bryc/code/blob/master/jshash/experimental/cyrb53.js function cyrb53( value, seed = 0 ) { let h1 = 0xdeadbeef ^ seed, h2 = 0x41c6ce57 ^ seed; if ( value instanceof Array ) { for ( let i = 0, val; i < value.length; i ++ ) { val = value[ i ]; h1 = Math.imul( h1 ^ val, 2654435761 ); h2 = Math.imul( h2 ^ val, 1597334677 ); } } else { for ( let i = 0, ch; i < value.length; i ++ ) { ch = value.charCodeAt( i ); h1 = Math.imul( h1 ^ ch, 2654435761 ); h2 = Math.imul( h2 ^ ch, 1597334677 ); } } h1 = Math.imul( h1 ^ ( h1 >>> 16 ), 2246822507 ); h1 ^= Math.imul( h2 ^ ( h2 >>> 13 ), 3266489909 ); h2 = Math.imul( h2 ^ ( h2 >>> 16 ), 2246822507 ); h2 ^= Math.imul( h1 ^ ( h1 >>> 13 ), 3266489909 ); return 4294967296 * ( 2097151 & h2 ) + ( h1 >>> 0 ); } const hashString = ( str ) => cyrb53( str ); const hashArray = ( array ) => cyrb53( array ); const hash$1 = ( ...params ) => cyrb53( params ); function getCacheKey( object, force = false ) { const values = []; if ( object.isNode === true ) { values.push( object.id ); object = object.getSelf(); } for ( const { property, childNode } of getNodeChildren( object ) ) { values.push( values, cyrb53( property.slice( 0, -4 ) ), childNode.getCacheKey( force ) ); } return cyrb53( values ); } function* getNodeChildren( node, toJSON = false ) { for ( const property in node ) { // Ignore private properties. if ( property.startsWith( '_' ) === true ) continue; const object = node[ property ]; if ( Array.isArray( object ) === true ) { for ( let i = 0; i < object.length; i ++ ) { const child = object[ i ]; if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) { yield { property, index: i, childNode: child }; } } } else if ( object && object.isNode === true ) { yield { property, childNode: object }; } else if ( typeof object === 'object' ) { for ( const subProperty in object ) { const child = object[ subProperty ]; if ( child && ( child.isNode === true || toJSON && typeof child.toJSON === 'function' ) ) { yield { property, index: subProperty, childNode: child }; } } } } } function getValueType( value ) { if ( value === undefined || value === null ) return null; const typeOf = typeof value; if ( value.isNode === true ) { return 'node'; } else if ( typeOf === 'number' ) { return 'float'; } else if ( typeOf === 'boolean' ) { return 'bool'; } else if ( typeOf === 'string' ) { return 'string'; } else if ( typeOf === 'function' ) { return 'shader'; } else if ( value.isVector2 === true ) { return 'vec2'; } else if ( value.isVector3 === true ) { return 'vec3'; } else if ( value.isVector4 === true ) { return 'vec4'; } else if ( value.isMatrix3 === true ) { return 'mat3'; } else if ( value.isMatrix4 === true ) { return 'mat4'; } else if ( value.isColor === true ) { return 'color'; } else if ( value instanceof ArrayBuffer ) { return 'ArrayBuffer'; } return null; } function getValueFromType( type, ...params ) { const last4 = type ? type.slice( -4 ) : undefined; if ( params.length === 1 ) { // ensure same behaviour as in NodeBuilder.format() if ( last4 === 'vec2' ) params = [ params[ 0 ], params[ 0 ] ]; else if ( last4 === 'vec3' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ] ]; else if ( last4 === 'vec4' ) params = [ params[ 0 ], params[ 0 ], params[ 0 ], params[ 0 ] ]; } if ( type === 'color' ) { return new Color( ...params ); } else if ( last4 === 'vec2' ) { return new Vector2( ...params ); } else if ( last4 === 'vec3' ) { return new Vector3( ...params ); } else if ( last4 === 'vec4' ) { return new Vector4( ...params ); } else if ( last4 === 'mat3' ) { return new Matrix3( ...params ); } else if ( last4 === 'mat4' ) { return new Matrix4( ...params ); } else if ( type === 'bool' ) { return params[ 0 ] || false; } else if ( ( type === 'float' ) || ( type === 'int' ) || ( type === 'uint' ) ) { return params[ 0 ] || 0; } else if ( type === 'string' ) { return params[ 0 ] || ''; } else if ( type === 'ArrayBuffer' ) { return base64ToArrayBuffer( params[ 0 ] ); } return null; } function arrayBufferToBase64( arrayBuffer ) { let chars = ''; const array = new Uint8Array( arrayBuffer ); for ( let i = 0; i < array.length; i ++ ) { chars += String.fromCharCode( array[ i ] ); } return btoa( chars ); } function base64ToArrayBuffer( base64 ) { return Uint8Array.from( atob( base64 ), c => c.charCodeAt( 0 ) ).buffer; } var NodeUtils = /*#__PURE__*/Object.freeze({ __proto__: null, arrayBufferToBase64: arrayBufferToBase64, base64ToArrayBuffer: base64ToArrayBuffer, getCacheKey: getCacheKey, getNodeChildren: getNodeChildren, getValueFromType: getValueFromType, getValueType: getValueType, hash: hash$1, hashArray: hashArray, hashString: hashString }); const NodeShaderStage = { VERTEX: 'vertex', FRAGMENT: 'fragment' }; const NodeUpdateType = { NONE: 'none', FRAME: 'frame', RENDER: 'render', OBJECT: 'object' }; const NodeType = { BOOLEAN: 'bool', INTEGER: 'int', FLOAT: 'float', VECTOR2: 'vec2', VECTOR3: 'vec3', VECTOR4: 'vec4', MATRIX2: 'mat2', MATRIX3: 'mat3', MATRIX4: 'mat4' }; const defaultShaderStages = [ 'fragment', 'vertex' ]; const defaultBuildStages = [ 'setup', 'analyze', 'generate' ]; const shaderStages = [ ...defaultShaderStages, 'compute' ]; const vectorComponents = [ 'x', 'y', 'z', 'w' ]; let _nodeId = 0; class Node extends EventDispatcher { static get type() { return 'Node'; } constructor( nodeType = null ) { super(); this.nodeType = nodeType; this.updateType = NodeUpdateType.NONE; this.updateBeforeType = NodeUpdateType.NONE; this.updateAfterType = NodeUpdateType.NONE; this.uuid = MathUtils.generateUUID(); this.version = 0; this._cacheKey = null; this._cacheKeyVersion = 0; this.global = false; this.isNode = true; Object.defineProperty( this, 'id', { value: _nodeId ++ } ); } set needsUpdate( value ) { if ( value === true ) { this.version ++; } } get type() { return this.constructor.type; } onUpdate( callback, updateType ) { this.updateType = updateType; this.update = callback.bind( this.getSelf() ); return this; } onFrameUpdate( callback ) { return this.onUpdate( callback, NodeUpdateType.FRAME ); } onRenderUpdate( callback ) { return this.onUpdate( callback, NodeUpdateType.RENDER ); } onObjectUpdate( callback ) { return this.onUpdate( callback, NodeUpdateType.OBJECT ); } onReference( callback ) { this.updateReference = callback.bind( this.getSelf() ); return this; } getSelf() { // Returns non-node object. return this.self || this; } updateReference( /*state*/ ) { return this; } isGlobal( /*builder*/ ) { return this.global; } * getChildren() { for ( const { childNode } of getNodeChildren( this ) ) { yield childNode; } } dispose() { this.dispatchEvent( { type: 'dispose' } ); } traverse( callback ) { callback( this ); for ( const childNode of this.getChildren() ) { childNode.traverse( callback ); } } getCacheKey( force = false ) { force = force || this.version !== this._cacheKeyVersion; if ( force === true || this._cacheKey === null ) { this._cacheKey = getCacheKey( this, force ); this._cacheKeyVersion = this.version; } return this._cacheKey; } getScope() { return this; } getHash( /*builder*/ ) { return this.uuid; } getUpdateType() { return this.updateType; } getUpdateBeforeType() { return this.updateBeforeType; } getUpdateAfterType() { return this.updateAfterType; } getElementType( builder ) { const type = this.getNodeType( builder ); const elementType = builder.getElementType( type ); return elementType; } getNodeType( builder ) { const nodeProperties = builder.getNodeProperties( this ); if ( nodeProperties.outputNode ) { return nodeProperties.outputNode.getNodeType( builder ); } return this.nodeType; } getShared( builder ) { const hash = this.getHash( builder ); const nodeFromHash = builder.getNodeFromHash( hash ); return nodeFromHash || this; } setup( builder ) { const nodeProperties = builder.getNodeProperties( this ); let index = 0; for ( const childNode of this.getChildren() ) { nodeProperties[ 'node' + index ++ ] = childNode; } // return a outputNode if exists return null; } analyze( builder ) { const usageCount = builder.increaseUsage( this ); if ( usageCount === 1 ) { // node flow children const nodeProperties = builder.getNodeProperties( this ); for ( const childNode of Object.values( nodeProperties ) ) { if ( childNode && childNode.isNode === true ) { childNode.build( builder ); } } } } generate( builder, output ) { const { outputNode } = builder.getNodeProperties( this ); if ( outputNode && outputNode.isNode === true ) { return outputNode.build( builder, output ); } } updateBefore( /*frame*/ ) { console.warn( 'Abstract function.' ); } updateAfter( /*frame*/ ) { console.warn( 'Abstract function.' ); } update( /*frame*/ ) { console.warn( 'Abstract function.' ); } build( builder, output = null ) { const refNode = this.getShared( builder ); if ( this !== refNode ) { return refNode.build( builder, output ); } builder.addNode( this ); builder.addChain( this ); /* Build stages expected results: - "setup" -> Node - "analyze" -> null - "generate" -> String */ let result = null; const buildStage = builder.getBuildStage(); if ( buildStage === 'setup' ) { this.updateReference( builder ); const properties = builder.getNodeProperties( this ); if ( properties.initialized !== true ) { const stackNodesBeforeSetup = builder.stack.nodes.length; properties.initialized = true; properties.outputNode = this.setup( builder ); if ( properties.outputNode !== null && builder.stack.nodes.length !== stackNodesBeforeSetup ) ; for ( const childNode of Object.values( properties ) ) { if ( childNode && childNode.isNode === true ) { childNode.build( builder ); } } } } else if ( buildStage === 'analyze' ) { this.analyze( builder ); } else if ( buildStage === 'generate' ) { const isGenerateOnce = this.generate.length === 1; if ( isGenerateOnce ) { const type = this.getNodeType( builder ); const nodeData = builder.getDataFromNode( this ); result = nodeData.snippet; if ( result === undefined ) { result = this.generate( builder ) || ''; nodeData.snippet = result; } else if ( nodeData.flowCodes !== undefined && builder.context.nodeBlock !== undefined ) { builder.addFlowCodeHierarchy( this, builder.context.nodeBlock ); } result = builder.format( result, type, output ); } else { result = this.generate( builder, output ) || ''; } } builder.removeChain( this ); return result; } getSerializeChildren() { return getNodeChildren( this ); } serialize( json ) { const nodeChildren = this.getSerializeChildren(); const inputNodes = {}; for ( const { property, index, childNode } of nodeChildren ) { if ( index !== undefined ) { if ( inputNodes[ property ] === undefined ) { inputNodes[ property ] = Number.isInteger( index ) ? [] : {}; } inputNodes[ property ][ index ] = childNode.toJSON( json.meta ).uuid; } else { inputNodes[ property ] = childNode.toJSON( json.meta ).uuid; } } if ( Object.keys( inputNodes ).length > 0 ) { json.inputNodes = inputNodes; } } deserialize( json ) { if ( json.inputNodes !== undefined ) { const nodes = json.meta.nodes; for ( const property in json.inputNodes ) { if ( Array.isArray( json.inputNodes[ property ] ) ) { const inputArray = []; for ( const uuid of json.inputNodes[ property ] ) { inputArray.push( nodes[ uuid ] ); } this[ property ] = inputArray; } else if ( typeof json.inputNodes[ property ] === 'object' ) { const inputObject = {}; for ( const subProperty in json.inputNodes[ property ] ) { const uuid = json.inputNodes[ property ][ subProperty ]; inputObject[ subProperty ] = nodes[ uuid ]; } this[ property ] = inputObject; } else { const uuid = json.inputNodes[ property ]; this[ property ] = nodes[ uuid ]; } } } } toJSON( meta ) { const { uuid, type } = this; const isRoot = ( meta === undefined || typeof meta === 'string' ); if ( isRoot ) { meta = { textures: {}, images: {}, nodes: {} }; } // serialize let data = meta.nodes[ uuid ]; if ( data === undefined ) { data = { uuid, type, meta, metadata: { version: 4.6, type: 'Node', generator: 'Node.toJSON' } }; if ( isRoot !== true ) meta.nodes[ data.uuid ] = data; this.serialize( data ); delete data.meta; } // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); const nodes = extractFromCache( meta.nodes ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; if ( nodes.length > 0 ) data.nodes = nodes; } return data; } } class ArrayElementNode extends Node { static get type() { return 'ArrayElementNode'; } // @TODO: If extending from TempNode it breaks webgpu_compute constructor( node, indexNode ) { super(); this.node = node; this.indexNode = indexNode; this.isArrayElementNode = true; } getNodeType( builder ) { return this.node.getElementType( builder ); } generate( builder ) { const nodeSnippet = this.node.build( builder ); const indexSnippet = this.indexNode.build( builder, 'uint' ); return `${nodeSnippet}[ ${indexSnippet} ]`; } } class ConvertNode extends Node { static get type() { return 'ConvertNode'; } constructor( node, convertTo ) { super(); this.node = node; this.convertTo = convertTo; } getNodeType( builder ) { const requestType = this.node.getNodeType( builder ); let convertTo = null; for ( const overloadingType of this.convertTo.split( '|' ) ) { if ( convertTo === null || builder.getTypeLength( requestType ) === builder.getTypeLength( overloadingType ) ) { convertTo = overloadingType; } } return convertTo; } serialize( data ) { super.serialize( data ); data.convertTo = this.convertTo; } deserialize( data ) { super.deserialize( data ); this.convertTo = data.convertTo; } generate( builder, output ) { const node = this.node; const type = this.getNodeType( builder ); const snippet = node.build( builder, type ); return builder.format( snippet, type, output ); } } class TempNode extends Node { static get type() { return 'TempNode'; } constructor( type ) { super( type ); this.isTempNode = true; } hasDependencies( builder ) { return builder.getDataFromNode( this ).usageCount > 1; } build( builder, output ) { const buildStage = builder.getBuildStage(); if ( buildStage === 'generate' ) { const type = builder.getVectorType( this.getNodeType( builder, output ) ); const nodeData = builder.getDataFromNode( this ); if ( nodeData.propertyName !== undefined ) { return builder.format( nodeData.propertyName, type, output ); } else if ( type !== 'void' && output !== 'void' && this.hasDependencies( builder ) ) { const snippet = super.build( builder, type ); const nodeVar = builder.getVarFromNode( this, null, type ); const propertyName = builder.getPropertyName( nodeVar ); builder.addLineFlowCode( `${propertyName} = ${snippet}`, this ); nodeData.snippet = snippet; nodeData.propertyName = propertyName; return builder.format( nodeData.propertyName, type, output ); } } return super.build( builder, output ); } } class JoinNode extends TempNode { static get type() { return 'JoinNode'; } constructor( nodes = [], nodeType = null ) { super( nodeType ); this.nodes = nodes; } getNodeType( builder ) { if ( this.nodeType !== null ) { return builder.getVectorType( this.nodeType ); } return builder.getTypeFromLength( this.nodes.reduce( ( count, cur ) => count + builder.getTypeLength( cur.getNodeType( builder ) ), 0 ) ); } generate( builder, output ) { const type = this.getNodeType( builder ); const nodes = this.nodes; const primitiveType = builder.getComponentType( type ); const snippetValues = []; for ( const input of nodes ) { let inputSnippet = input.build( builder ); const inputPrimitiveType = builder.getComponentType( input.getNodeType( builder ) ); if ( inputPrimitiveType !== primitiveType ) { inputSnippet = builder.format( inputSnippet, inputPrimitiveType, primitiveType ); } snippetValues.push( inputSnippet ); } const snippet = `${ builder.getType( type ) }( ${ snippetValues.join( ', ' ) } )`; return builder.format( snippet, type, output ); } } const stringVectorComponents = vectorComponents.join( '' ); class SplitNode extends Node { static get type() { return 'SplitNode'; } constructor( node, components = 'x' ) { super(); this.node = node; this.components = components; this.isSplitNode = true; } getVectorLength() { let vectorLength = this.components.length; for ( const c of this.components ) { vectorLength = Math.max( vectorComponents.indexOf( c ) + 1, vectorLength ); } return vectorLength; } getComponentType( builder ) { return builder.getComponentType( this.node.getNodeType( builder ) ); } getNodeType( builder ) { return builder.getTypeFromLength( this.components.length, this.getComponentType( builder ) ); } generate( builder, output ) { const node = this.node; const nodeTypeLength = builder.getTypeLength( node.getNodeType( builder ) ); let snippet = null; if ( nodeTypeLength > 1 ) { let type = null; const componentsLength = this.getVectorLength(); if ( componentsLength >= nodeTypeLength ) { // needed expand the input node type = builder.getTypeFromLength( this.getVectorLength(), this.getComponentType( builder ) ); } const nodeSnippet = node.build( builder, type ); if ( this.components.length === nodeTypeLength && this.components === stringVectorComponents.slice( 0, this.components.length ) ) { // unnecessary swizzle snippet = builder.format( nodeSnippet, type, output ); } else { snippet = builder.format( `${nodeSnippet}.${this.components}`, this.getNodeType( builder ), output ); } } else { // ignore .components if .node returns float/integer snippet = node.build( builder, output ); } return snippet; } serialize( data ) { super.serialize( data ); data.components = this.components; } deserialize( data ) { super.deserialize( data ); this.components = data.components; } } class SetNode extends TempNode { static get type() { return 'SetNode'; } constructor( sourceNode, components, targetNode ) { super(); this.sourceNode = sourceNode; this.components = components; this.targetNode = targetNode; } getNodeType( builder ) { return this.sourceNode.getNodeType( builder ); } generate( builder ) { const { sourceNode, components, targetNode } = this; const sourceType = this.getNodeType( builder ); const targetType = builder.getTypeFromLength( components.length, targetNode.getNodeType( builder ) ); const targetSnippet = targetNode.build( builder, targetType ); const sourceSnippet = sourceNode.build( builder, sourceType ); const length = builder.getTypeLength( sourceType ); const snippetValues = []; for ( let i = 0; i < length; i ++ ) { const component = vectorComponents[ i ]; if ( component === components[ 0 ] ) { snippetValues.push( targetSnippet ); i += components.length - 1; } else { snippetValues.push( sourceSnippet + '.' + component ); } } return `${ builder.getType( sourceType ) }( ${ snippetValues.join( ', ' ) } )`; } } class FlipNode extends TempNode { static get type() { return 'FlipNode'; } constructor( sourceNode, components ) { super(); this.sourceNode = sourceNode; this.components = components; } getNodeType( builder ) { return this.sourceNode.getNodeType( builder ); } generate( builder ) { const { components, sourceNode } = this; const sourceType = this.getNodeType( builder ); const sourceSnippet = sourceNode.build( builder ); const sourceCache = builder.getVarFromNode( this ); const sourceProperty = builder.getPropertyName( sourceCache ); builder.addLineFlowCode( sourceProperty + ' = ' + sourceSnippet, this ); const length = builder.getTypeLength( sourceType ); const snippetValues = []; let componentIndex = 0; for ( let i = 0; i < length; i ++ ) { const component = vectorComponents[ i ]; if ( component === components[ componentIndex ] ) { snippetValues.push( '1.0 - ' + ( sourceProperty + '.' + component ) ); componentIndex ++; } else { snippetValues.push( sourceProperty + '.' + component ); } } return `${ builder.getType( sourceType ) }( ${ snippetValues.join( ', ' ) } )`; } } class InputNode extends Node { static get type() { return 'InputNode'; } constructor( value, nodeType = null ) { super( nodeType ); this.isInputNode = true; this.value = value; this.precision = null; } getNodeType( /*builder*/ ) { if ( this.nodeType === null ) { return getValueType( this.value ); } return this.nodeType; } getInputType( builder ) { return this.getNodeType( builder ); } setPrecision( precision ) { this.precision = precision; return this; } serialize( data ) { super.serialize( data ); data.value = this.value; if ( this.value && this.value.toArray ) data.value = this.value.toArray(); data.valueType = getValueType( this.value ); data.nodeType = this.nodeType; if ( data.valueType === 'ArrayBuffer' ) data.value = arrayBufferToBase64( data.value ); data.precision = this.precision; } deserialize( data ) { super.deserialize( data ); this.nodeType = data.nodeType; this.value = Array.isArray( data.value ) ? getValueFromType( data.valueType, ...data.value ) : data.value; this.precision = data.precision || null; if ( this.value && this.value.fromArray ) this.value = this.value.fromArray( data.value ); } generate( /*builder, output*/ ) { console.warn( 'Abstract function.' ); } } class ConstNode extends InputNode { static get type() { return 'ConstNode'; } constructor( value, nodeType = null ) { super( value, nodeType ); this.isConstNode = true; } generateConst( builder ) { return builder.generateConst( this.getNodeType( builder ), this.value ); } generate( builder, output ) { const type = this.getNodeType( builder ); return builder.format( this.generateConst( builder ), type, output ); } } // let currentStack = null; const NodeElements = new Map(); function addMethodChaining( name, nodeElement ) { if ( NodeElements.has( name ) ) { console.warn( `Redefinition of method chaining ${ name }` ); return; } if ( typeof nodeElement !== 'function' ) throw new Error( `Node element ${ name } is not a function` ); NodeElements.set( name, nodeElement ); } const parseSwizzle = ( props ) => props.replace( /r|s/g, 'x' ).replace( /g|t/g, 'y' ).replace( /b|p/g, 'z' ).replace( /a|q/g, 'w' ); const parseSwizzleAndSort = ( props ) => parseSwizzle( props ).split( '' ).sort().join( '' ); const shaderNodeHandler = { setup( NodeClosure, params ) { const inputs = params.shift(); return NodeClosure( nodeObjects( inputs ), ...params ); }, get( node, prop, nodeObj ) { if ( typeof prop === 'string' && node[ prop ] === undefined ) { if ( node.isStackNode !== true && prop === 'assign' ) { return ( ...params ) => { currentStack.assign( nodeObj, ...params ); return nodeObj; }; } else if ( NodeElements.has( prop ) ) { const nodeElement = NodeElements.get( prop ); return node.isStackNode ? ( ...params ) => nodeObj.add( nodeElement( ...params ) ) : ( ...params ) => nodeElement( nodeObj, ...params ); } else if ( prop === 'self' ) { return node; } else if ( prop.endsWith( 'Assign' ) && NodeElements.has( prop.slice( 0, prop.length - 'Assign'.length ) ) ) { const nodeElement = NodeElements.get( prop.slice( 0, prop.length - 'Assign'.length ) ); return node.isStackNode ? ( ...params ) => nodeObj.assign( params[ 0 ], nodeElement( ...params ) ) : ( ...params ) => nodeObj.assign( nodeElement( nodeObj, ...params ) ); } else if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true ) { // accessing properties ( swizzle ) prop = parseSwizzle( prop ); return nodeObject( new SplitNode( nodeObj, prop ) ); } else if ( /^set[XYZWRGBASTPQ]{1,4}$/.test( prop ) === true ) { // set properties ( swizzle ) and sort to xyzw sequence prop = parseSwizzleAndSort( prop.slice( 3 ).toLowerCase() ); return ( value ) => nodeObject( new SetNode( node, prop, value ) ); } else if ( /^flip[XYZWRGBASTPQ]{1,4}$/.test( prop ) === true ) { // set properties ( swizzle ) and sort to xyzw sequence prop = parseSwizzleAndSort( prop.slice( 4 ).toLowerCase() ); return () => nodeObject( new FlipNode( nodeObject( node ), prop ) ); } else if ( prop === 'width' || prop === 'height' || prop === 'depth' ) { // accessing property if ( prop === 'width' ) prop = 'x'; else if ( prop === 'height' ) prop = 'y'; else if ( prop === 'depth' ) prop = 'z'; return nodeObject( new SplitNode( node, prop ) ); } else if ( /^\d+$/.test( prop ) === true ) { // accessing array return nodeObject( new ArrayElementNode( nodeObj, new ConstNode( Number( prop ), 'uint' ) ) ); } } return Reflect.get( node, prop, nodeObj ); }, set( node, prop, value, nodeObj ) { if ( typeof prop === 'string' && node[ prop ] === undefined ) { // setting properties if ( /^[xyzwrgbastpq]{1,4}$/.test( prop ) === true || prop === 'width' || prop === 'height' || prop === 'depth' || /^\d+$/.test( prop ) === true ) { nodeObj[ prop ].assign( value ); return true; } } return Reflect.set( node, prop, value, nodeObj ); } }; const nodeObjectsCacheMap = new WeakMap(); const nodeBuilderFunctionsCacheMap = new WeakMap(); const ShaderNodeObject = function ( obj, altType = null ) { const type = getValueType( obj ); if ( type === 'node' ) { let nodeObject = nodeObjectsCacheMap.get( obj ); if ( nodeObject === undefined ) { nodeObject = new Proxy( obj, shaderNodeHandler ); nodeObjectsCacheMap.set( obj, nodeObject ); nodeObjectsCacheMap.set( nodeObject, nodeObject ); } return nodeObject; } else if ( ( altType === null && ( type === 'float' || type === 'boolean' ) ) || ( type && type !== 'shader' && type !== 'string' ) ) { return nodeObject( getConstNode( obj, altType ) ); } else if ( type === 'shader' ) { return Fn( obj ); } return obj; }; const ShaderNodeObjects = function ( objects, altType = null ) { for ( const name in objects ) { objects[ name ] = nodeObject( objects[ name ], altType ); } return objects; }; const ShaderNodeArray = function ( array, altType = null ) { const len = array.length; for ( let i = 0; i < len; i ++ ) { array[ i ] = nodeObject( array[ i ], altType ); } return array; }; const ShaderNodeProxy = function ( NodeClass, scope = null, factor = null, settings = null ) { const assignNode = ( node ) => nodeObject( settings !== null ? Object.assign( node, settings ) : node ); if ( scope === null ) { return ( ...params ) => { return assignNode( new NodeClass( ...nodeArray( params ) ) ); }; } else if ( factor !== null ) { factor = nodeObject( factor ); return ( ...params ) => { return assignNode( new NodeClass( scope, ...nodeArray( params ), factor ) ); }; } else { return ( ...params ) => { return assignNode( new NodeClass( scope, ...nodeArray( params ) ) ); }; } }; const ShaderNodeImmutable = function ( NodeClass, ...params ) { return nodeObject( new NodeClass( ...nodeArray( params ) ) ); }; class ShaderCallNodeInternal extends Node { constructor( shaderNode, inputNodes ) { super(); this.shaderNode = shaderNode; this.inputNodes = inputNodes; } getNodeType( builder ) { return this.shaderNode.nodeType || this.getOutputNode( builder ).getNodeType( builder ); } call( builder ) { const { shaderNode, inputNodes } = this; const properties = builder.getNodeProperties( shaderNode ); if ( properties.onceOutput ) return properties.onceOutput; // let result = null; if ( shaderNode.layout ) { let functionNodesCacheMap = nodeBuilderFunctionsCacheMap.get( builder.constructor ); if ( functionNodesCacheMap === undefined ) { functionNodesCacheMap = new WeakMap(); nodeBuilderFunctionsCacheMap.set( builder.constructor, functionNodesCacheMap ); } let functionNode = functionNodesCacheMap.get( shaderNode ); if ( functionNode === undefined ) { functionNode = nodeObject( builder.buildFunctionNode( shaderNode ) ); functionNodesCacheMap.set( shaderNode, functionNode ); } if ( builder.currentFunctionNode !== null ) { builder.currentFunctionNode.includes.push( functionNode ); } result = nodeObject( functionNode.call( inputNodes ) ); } else { const jsFunc = shaderNode.jsFunc; const outputNode = inputNodes !== null ? jsFunc( inputNodes, builder ) : jsFunc( builder ); result = nodeObject( outputNode ); } if ( shaderNode.once ) { properties.onceOutput = result; } return result; } getOutputNode( builder ) { const properties = builder.getNodeProperties( this ); if ( properties.outputNode === null ) { properties.outputNode = this.setupOutput( builder ); } return properties.outputNode; } setup( builder ) { return this.getOutputNode( builder ); } setupOutput( builder ) { builder.addStack(); builder.stack.outputNode = this.call( builder ); return builder.removeStack(); } generate( builder, output ) { const outputNode = this.getOutputNode( builder ); return outputNode.build( builder, output ); } } class ShaderNodeInternal extends Node { constructor( jsFunc, nodeType ) { super( nodeType ); this.jsFunc = jsFunc; this.layout = null; this.global = true; this.once = false; } setLayout( layout ) { this.layout = layout; return this; } call( inputs = null ) { nodeObjects( inputs ); return nodeObject( new ShaderCallNodeInternal( this, inputs ) ); } setup() { return this.call(); } } const bools = [ false, true ]; const uints = [ 0, 1, 2, 3 ]; const ints = [ -1, -2 ]; const floats = [ 0.5, 1.5, 1 / 3, 1e-6, 1e6, Math.PI, Math.PI * 2, 1 / Math.PI, 2 / Math.PI, 1 / ( Math.PI * 2 ), Math.PI / 2 ]; const boolsCacheMap = new Map(); for ( const bool of bools ) boolsCacheMap.set( bool, new ConstNode( bool ) ); const uintsCacheMap = new Map(); for ( const uint of uints ) uintsCacheMap.set( uint, new ConstNode( uint, 'uint' ) ); const intsCacheMap = new Map( [ ...uintsCacheMap ].map( el => new ConstNode( el.value, 'int' ) ) ); for ( const int of ints ) intsCacheMap.set( int, new ConstNode( int, 'int' ) ); const floatsCacheMap = new Map( [ ...intsCacheMap ].map( el => new ConstNode( el.value ) ) ); for ( const float of floats ) floatsCacheMap.set( float, new ConstNode( float ) ); for ( const float of floats ) floatsCacheMap.set( - float, new ConstNode( - float ) ); const cacheMaps = { bool: boolsCacheMap, uint: uintsCacheMap, ints: intsCacheMap, float: floatsCacheMap }; const constNodesCacheMap = new Map( [ ...boolsCacheMap, ...floatsCacheMap ] ); const getConstNode = ( value, type ) => { if ( constNodesCacheMap.has( value ) ) { return constNodesCacheMap.get( value ); } else if ( value.isNode === true ) { return value; } else { return new ConstNode( value, type ); } }; const safeGetNodeType = ( node ) => { try { return node.getNodeType(); } catch ( _ ) { return undefined; } }; const ConvertType = function ( type, cacheMap = null ) { return ( ...params ) => { if ( params.length === 0 || ( ! [ 'bool', 'float', 'int', 'uint' ].includes( type ) && params.every( param => typeof param !== 'object' ) ) ) { params = [ getValueFromType( type, ...params ) ]; } if ( params.length === 1 && cacheMap !== null && cacheMap.has( params[ 0 ] ) ) { return nodeObject( cacheMap.get( params[ 0 ] ) ); } if ( params.length === 1 ) { const node = getConstNode( params[ 0 ], type ); if ( safeGetNodeType( node ) === type ) return nodeObject( node ); return nodeObject( new ConvertNode( node, type ) ); } const nodes = params.map( param => getConstNode( param ) ); return nodeObject( new JoinNode( nodes, type ) ); }; }; // exports const defined = ( v ) => typeof v === 'object' && v !== null ? v.value : v; // TODO: remove boolean conversion and defined function // utils const getConstNodeType = ( value ) => ( value !== undefined && value !== null ) ? ( value.nodeType || value.convertTo || ( typeof value === 'string' ? value : null ) ) : null; // shader node base function ShaderNode( jsFunc, nodeType ) { return new Proxy( new ShaderNodeInternal( jsFunc, nodeType ), shaderNodeHandler ); } const nodeObject = ( val, altType = null ) => /* new */ ShaderNodeObject( val, altType ); const nodeObjects = ( val, altType = null ) => new ShaderNodeObjects( val, altType ); const nodeArray = ( val, altType = null ) => new ShaderNodeArray( val, altType ); const nodeProxy = ( ...params ) => new ShaderNodeProxy( ...params ); const nodeImmutable = ( ...params ) => new ShaderNodeImmutable( ...params ); const Fn = ( jsFunc, nodeType ) => { const shaderNode = new ShaderNode( jsFunc, nodeType ); const fn = ( ...params ) => { let inputs; nodeObjects( params ); if ( params[ 0 ] && params[ 0 ].isNode ) { inputs = [ ...params ]; } else { inputs = params[ 0 ]; } return shaderNode.call( inputs ); }; fn.shaderNode = shaderNode; fn.setLayout = ( layout ) => { shaderNode.setLayout( layout ); return fn; }; fn.once = () => { shaderNode.once = true; return fn; }; return fn; }; const tslFn = ( ...params ) => { // @deprecated, r168 console.warn( 'TSL.ShaderNode: tslFn() has been renamed to Fn().' ); return Fn( ...params ); }; // addMethodChaining( 'toGlobal', ( node ) => { node.global = true; return node; } ); // const setCurrentStack = ( stack ) => { currentStack = stack; }; const getCurrentStack = () => currentStack; const If = ( ...params ) => currentStack.If( ...params ); function append( node ) { if ( currentStack ) currentStack.add( node ); return node; } addMethodChaining( 'append', append ); // types const color = new ConvertType( 'color' ); const float = new ConvertType( 'float', cacheMaps.float ); const int = new ConvertType( 'int', cacheMaps.ints ); const uint = new ConvertType( 'uint', cacheMaps.uint ); const bool = new ConvertType( 'bool', cacheMaps.bool ); const vec2 = new ConvertType( 'vec2' ); const ivec2 = new ConvertType( 'ivec2' ); const uvec2 = new ConvertType( 'uvec2' ); const bvec2 = new ConvertType( 'bvec2' ); const vec3 = new ConvertType( 'vec3' ); const ivec3 = new ConvertType( 'ivec3' ); const uvec3 = new ConvertType( 'uvec3' ); const bvec3 = new ConvertType( 'bvec3' ); const vec4 = new ConvertType( 'vec4' ); const ivec4 = new ConvertType( 'ivec4' ); const uvec4 = new ConvertType( 'uvec4' ); const bvec4 = new ConvertType( 'bvec4' ); const mat2 = new ConvertType( 'mat2' ); const mat3 = new ConvertType( 'mat3' ); const mat4 = new ConvertType( 'mat4' ); const string = ( value = '' ) => nodeObject( new ConstNode( value, 'string' ) ); const arrayBuffer = ( value ) => nodeObject( new ConstNode( value, 'ArrayBuffer' ) ); addMethodChaining( 'toColor', color ); addMethodChaining( 'toFloat', float ); addMethodChaining( 'toInt', int ); addMethodChaining( 'toUint', uint ); addMethodChaining( 'toBool', bool ); addMethodChaining( 'toVec2', vec2 ); addMethodChaining( 'toIVec2', ivec2 ); addMethodChaining( 'toUVec2', uvec2 ); addMethodChaining( 'toBVec2', bvec2 ); addMethodChaining( 'toVec3', vec3 ); addMethodChaining( 'toIVec3', ivec3 ); addMethodChaining( 'toUVec3', uvec3 ); addMethodChaining( 'toBVec3', bvec3 ); addMethodChaining( 'toVec4', vec4 ); addMethodChaining( 'toIVec4', ivec4 ); addMethodChaining( 'toUVec4', uvec4 ); addMethodChaining( 'toBVec4', bvec4 ); addMethodChaining( 'toMat2', mat2 ); addMethodChaining( 'toMat3', mat3 ); addMethodChaining( 'toMat4', mat4 ); // basic nodes const element = /*@__PURE__*/ nodeProxy( ArrayElementNode ); const convert = ( node, types ) => nodeObject( new ConvertNode( nodeObject( node ), types ) ); const split = ( node, channels ) => nodeObject( new SplitNode( nodeObject( node ), channels ) ); addMethodChaining( 'element', element ); addMethodChaining( 'convert', convert ); class UniformGroupNode extends Node { static get type() { return 'UniformGroupNode'; } constructor( name, shared = false, order = 1 ) { super( 'string' ); this.name = name; this.version = 0; this.shared = shared; this.order = order; this.isUniformGroup = true; } set needsUpdate( value ) { if ( value === true ) this.version ++; } serialize( data ) { super.serialize( data ); data.name = this.name; data.version = this.version; data.shared = this.shared; } deserialize( data ) { super.deserialize( data ); this.name = data.name; this.version = data.version; this.shared = data.shared; } } const uniformGroup = ( name ) => new UniformGroupNode( name ); const sharedUniformGroup = ( name, order = 0 ) => new UniformGroupNode( name, true, order ); const frameGroup = /*@__PURE__*/ sharedUniformGroup( 'frame' ); const renderGroup = /*@__PURE__*/ sharedUniformGroup( 'render' ); const objectGroup = /*@__PURE__*/ uniformGroup( 'object' ); class UniformNode extends InputNode { static get type() { return 'UniformNode'; } constructor( value, nodeType = null ) { super( value, nodeType ); this.isUniformNode = true; this.name = ''; this.groupNode = objectGroup; } label( name ) { this.name = name; return this; } setGroup( group ) { this.groupNode = group; return this; } getGroup() { return this.groupNode; } getUniformHash( builder ) { return this.getHash( builder ); } onUpdate( callback, updateType ) { const self = this.getSelf(); callback = callback.bind( self ); return super.onUpdate( ( frame ) => { const value = callback( frame, self ); if ( value !== undefined ) { this.value = value; } }, updateType ); } generate( builder, output ) { const type = this.getNodeType( builder ); const hash = this.getUniformHash( builder ); let sharedNode = builder.getNodeFromHash( hash ); if ( sharedNode === undefined ) { builder.setHashNode( this, hash ); sharedNode = this; } const sharedNodeType = sharedNode.getInputType( builder ); const nodeUniform = builder.getUniformFromNode( sharedNode, sharedNodeType, builder.shaderStage, this.name || builder.context.label ); const propertyName = builder.getPropertyName( nodeUniform ); if ( builder.context.label !== undefined ) delete builder.context.label; return builder.format( propertyName, type, output ); } } const uniform = ( arg1, arg2 ) => { const nodeType = getConstNodeType( arg2 || arg1 ); // @TODO: get ConstNode from .traverse() in the future const value = ( arg1 && arg1.isNode === true ) ? ( arg1.node && arg1.node.value ) || arg1.value : arg1; return nodeObject( new UniformNode( value, nodeType ) ); }; class PropertyNode extends Node { static get type() { return 'PropertyNode'; } constructor( nodeType, name = null, varying = false ) { super( nodeType ); this.name = name; this.varying = varying; this.isPropertyNode = true; } getHash( builder ) { return this.name || super.getHash( builder ); } isGlobal( /*builder*/ ) { return true; } generate( builder ) { let nodeVar; if ( this.varying === true ) { nodeVar = builder.getVaryingFromNode( this, this.name ); nodeVar.needsInterpolation = true; } else { nodeVar = builder.getVarFromNode( this, this.name ); } return builder.getPropertyName( nodeVar ); } } const property = ( type, name ) => nodeObject( new PropertyNode( type, name ) ); const varyingProperty = ( type, name ) => nodeObject( new PropertyNode( type, name, true ) ); const diffuseColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec4', 'DiffuseColor' ); const emissive = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'EmissiveColor' ); const roughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Roughness' ); const metalness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Metalness' ); const clearcoat = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Clearcoat' ); const clearcoatRoughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'ClearcoatRoughness' ); const sheen = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'Sheen' ); const sheenRoughness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'SheenRoughness' ); const iridescence = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Iridescence' ); const iridescenceIOR = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IridescenceIOR' ); const iridescenceThickness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IridescenceThickness' ); const alphaT = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'AlphaT' ); const anisotropy = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Anisotropy' ); const anisotropyT = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'AnisotropyT' ); const anisotropyB = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec3', 'AnisotropyB' ); const specularColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'color', 'SpecularColor' ); const specularF90 = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'SpecularF90' ); const shininess = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Shininess' ); const output = /*@__PURE__*/ nodeImmutable( PropertyNode, 'vec4', 'Output' ); const dashSize = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'dashSize' ); const gapSize = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'gapSize' ); const pointWidth = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'pointWidth' ); const ior = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'IOR' ); const transmission = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Transmission' ); const thickness = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Thickness' ); const attenuationDistance = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'AttenuationDistance' ); const attenuationColor = /*@__PURE__*/ nodeImmutable( PropertyNode, 'color', 'AttenuationColor' ); const dispersion = /*@__PURE__*/ nodeImmutable( PropertyNode, 'float', 'Dispersion' ); class AssignNode extends TempNode { static get type() { return 'AssignNode'; } constructor( targetNode, sourceNode ) { super(); this.targetNode = targetNode; this.sourceNode = sourceNode; } hasDependencies() { return false; } getNodeType( builder, output ) { return output !== 'void' ? this.targetNode.getNodeType( builder ) : 'void'; } needsSplitAssign( builder ) { const { targetNode } = this; if ( builder.isAvailable( 'swizzleAssign' ) === false && targetNode.isSplitNode && targetNode.components.length > 1 ) { const targetLength = builder.getTypeLength( targetNode.node.getNodeType( builder ) ); const assignDiferentVector = vectorComponents.join( '' ).slice( 0, targetLength ) !== targetNode.components; return assignDiferentVector; } return false; } generate( builder, output ) { const { targetNode, sourceNode } = this; const needsSplitAssign = this.needsSplitAssign( builder ); const targetType = targetNode.getNodeType( builder ); const target = targetNode.context( { assign: true } ).build( builder ); const source = sourceNode.build( builder, targetType ); const sourceType = sourceNode.getNodeType( builder ); const nodeData = builder.getDataFromNode( this ); // let snippet; if ( nodeData.initialized === true ) { if ( output !== 'void' ) { snippet = target; } } else if ( needsSplitAssign ) { const sourceVar = builder.getVarFromNode( this, null, targetType ); const sourceProperty = builder.getPropertyName( sourceVar ); builder.addLineFlowCode( `${ sourceProperty } = ${ source }`, this ); const targetRoot = targetNode.node.context( { assign: true } ).build( builder ); for ( let i = 0; i < targetNode.components.length; i ++ ) { const component = targetNode.components[ i ]; builder.addLineFlowCode( `${ targetRoot }.${ component } = ${ sourceProperty }[ ${ i } ]`, this ); } if ( output !== 'void' ) { snippet = target; } } else { snippet = `${ target } = ${ source }`; if ( output === 'void' || sourceType === 'void' ) { builder.addLineFlowCode( snippet, this ); if ( output !== 'void' ) { snippet = target; } } } nodeData.initialized = true; return builder.format( snippet, targetType, output ); } } const assign = /*@__PURE__*/ nodeProxy( AssignNode ); addMethodChaining( 'assign', assign ); class FunctionCallNode extends TempNode { static get type() { return 'FunctionCallNode'; } constructor( functionNode = null, parameters = {} ) { super(); this.functionNode = functionNode; this.parameters = parameters; } setParameters( parameters ) { this.parameters = parameters; return this; } getParameters() { return this.parameters; } getNodeType( builder ) { return this.functionNode.getNodeType( builder ); } generate( builder ) { const params = []; const functionNode = this.functionNode; const inputs = functionNode.getInputs( builder ); const parameters = this.parameters; if ( Array.isArray( parameters ) ) { for ( let i = 0; i < parameters.length; i ++ ) { const inputNode = inputs[ i ]; const node = parameters[ i ]; params.push( node.build( builder, inputNode.type ) ); } } else { for ( const inputNode of inputs ) { const node = parameters[ inputNode.name ]; if ( node !== undefined ) { params.push( node.build( builder, inputNode.type ) ); } else { throw new Error( `FunctionCallNode: Input '${inputNode.name}' not found in FunctionNode.` ); } } } const functionName = functionNode.build( builder, 'property' ); return `${functionName}( ${params.join( ', ' )} )`; } } const call = ( func, ...params ) => { params = params.length > 1 || ( params[ 0 ] && params[ 0 ].isNode === true ) ? nodeArray( params ) : nodeObjects( params[ 0 ] ); return nodeObject( new FunctionCallNode( nodeObject( func ), params ) ); }; addMethodChaining( 'call', call ); class OperatorNode extends TempNode { static get type() { return 'OperatorNode'; } constructor( op, aNode, bNode, ...params ) { super(); if ( params.length > 0 ) { let finalOp = new OperatorNode( op, aNode, bNode ); for ( let i = 0; i < params.length - 1; i ++ ) { finalOp = new OperatorNode( op, finalOp, params[ i ] ); } aNode = finalOp; bNode = params[ params.length - 1 ]; } this.op = op; this.aNode = aNode; this.bNode = bNode; } getNodeType( builder, output ) { const op = this.op; const aNode = this.aNode; const bNode = this.bNode; const typeA = aNode.getNodeType( builder ); const typeB = typeof bNode !== 'undefined' ? bNode.getNodeType( builder ) : null; if ( typeA === 'void' || typeB === 'void' ) { return 'void'; } else if ( op === '%' ) { return typeA; } else if ( op === '~' || op === '&' || op === '|' || op === '^' || op === '>>' || op === '<<' ) { return builder.getIntegerType( typeA ); } else if ( op === '!' || op === '==' || op === '&&' || op === '||' || op === '^^' ) { return 'bool'; } else if ( op === '<' || op === '>' || op === '<=' || op === '>=' ) { const typeLength = output ? builder.getTypeLength( output ) : Math.max( builder.getTypeLength( typeA ), builder.getTypeLength( typeB ) ); return typeLength > 1 ? `bvec${ typeLength }` : 'bool'; } else { if ( typeA === 'float' && builder.isMatrix( typeB ) ) { return typeB; } else if ( builder.isMatrix( typeA ) && builder.isVector( typeB ) ) { // matrix x vector return builder.getVectorFromMatrix( typeA ); } else if ( builder.isVector( typeA ) && builder.isMatrix( typeB ) ) { // vector x matrix return builder.getVectorFromMatrix( typeB ); } else if ( builder.getTypeLength( typeB ) > builder.getTypeLength( typeA ) ) { // anytype x anytype: use the greater length vector return typeB; } return typeA; } } generate( builder, output ) { const op = this.op; const aNode = this.aNode; const bNode = this.bNode; const type = this.getNodeType( builder, output ); let typeA = null; let typeB = null; if ( type !== 'void' ) { typeA = aNode.getNodeType( builder ); typeB = typeof bNode !== 'undefined' ? bNode.getNodeType( builder ) : null; if ( op === '<' || op === '>' || op === '<=' || op === '>=' || op === '==' ) { if ( builder.isVector( typeA ) ) { typeB = typeA; } else if ( typeA !== typeB ) { typeA = typeB = 'float'; } } else if ( op === '>>' || op === '<<' ) { typeA = type; typeB = builder.changeComponentType( typeB, 'uint' ); } else if ( builder.isMatrix( typeA ) && builder.isVector( typeB ) ) { // matrix x vector typeB = builder.getVectorFromMatrix( typeA ); } else if ( builder.isVector( typeA ) && builder.isMatrix( typeB ) ) { // vector x matrix typeA = builder.getVectorFromMatrix( typeB ); } else { // anytype x anytype typeA = typeB = type; } } else { typeA = typeB = type; } const a = aNode.build( builder, typeA ); const b = typeof bNode !== 'undefined' ? bNode.build( builder, typeB ) : null; const outputLength = builder.getTypeLength( output ); const fnOpSnippet = builder.getFunctionOperator( op ); if ( output !== 'void' ) { if ( op === '<' && outputLength > 1 ) { if ( builder.useComparisonMethod ) { return builder.format( `${ builder.getMethod( 'lessThan', output ) }( ${ a }, ${ b } )`, type, output ); } else { return builder.format( `( ${ a } < ${ b } )`, type, output ); } } else if ( op === '<=' && outputLength > 1 ) { if ( builder.useComparisonMethod ) { return builder.format( `${ builder.getMethod( 'lessThanEqual', output ) }( ${ a }, ${ b } )`, type, output ); } else { return builder.format( `( ${ a } <= ${ b } )`, type, output ); } } else if ( op === '>' && outputLength > 1 ) { if ( builder.useComparisonMethod ) { return builder.format( `${ builder.getMethod( 'greaterThan', output ) }( ${ a }, ${ b } )`, type, output ); } else { return builder.format( `( ${ a } > ${ b } )`, type, output ); } } else if ( op === '>=' && outputLength > 1 ) { if ( builder.useComparisonMethod ) { return builder.format( `${ builder.getMethod( 'greaterThanEqual', output ) }( ${ a }, ${ b } )`, type, output ); } else { return builder.format( `( ${ a } >= ${ b } )`, type, output ); } } else if ( op === '!' || op === '~' ) { return builder.format( `(${op}${a})`, typeA, output ); } else if ( fnOpSnippet ) { return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output ); } else { return builder.format( `( ${ a } ${ op } ${ b } )`, type, output ); } } else if ( typeA !== 'void' ) { if ( fnOpSnippet ) { return builder.format( `${ fnOpSnippet }( ${ a }, ${ b } )`, type, output ); } else { return builder.format( `${ a } ${ op } ${ b }`, type, output ); } } } serialize( data ) { super.serialize( data ); data.op = this.op; } deserialize( data ) { super.deserialize( data ); this.op = data.op; } } const add = /*@__PURE__*/ nodeProxy( OperatorNode, '+' ); const sub = /*@__PURE__*/ nodeProxy( OperatorNode, '-' ); const mul = /*@__PURE__*/ nodeProxy( OperatorNode, '*' ); const div = /*@__PURE__*/ nodeProxy( OperatorNode, '/' ); const modInt = /*@__PURE__*/ nodeProxy( OperatorNode, '%' ); const equal = /*@__PURE__*/ nodeProxy( OperatorNode, '==' ); const notEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '!=' ); const lessThan = /*@__PURE__*/ nodeProxy( OperatorNode, '<' ); const greaterThan = /*@__PURE__*/ nodeProxy( OperatorNode, '>' ); const lessThanEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '<=' ); const greaterThanEqual = /*@__PURE__*/ nodeProxy( OperatorNode, '>=' ); const and = /*@__PURE__*/ nodeProxy( OperatorNode, '&&' ); const or = /*@__PURE__*/ nodeProxy( OperatorNode, '||' ); const not = /*@__PURE__*/ nodeProxy( OperatorNode, '!' ); const xor = /*@__PURE__*/ nodeProxy( OperatorNode, '^^' ); const bitAnd = /*@__PURE__*/ nodeProxy( OperatorNode, '&' ); const bitNot = /*@__PURE__*/ nodeProxy( OperatorNode, '~' ); const bitOr = /*@__PURE__*/ nodeProxy( OperatorNode, '|' ); const bitXor = /*@__PURE__*/ nodeProxy( OperatorNode, '^' ); const shiftLeft = /*@__PURE__*/ nodeProxy( OperatorNode, '<<' ); const shiftRight = /*@__PURE__*/ nodeProxy( OperatorNode, '>>' ); addMethodChaining( 'add', add ); addMethodChaining( 'sub', sub ); addMethodChaining( 'mul', mul ); addMethodChaining( 'div', div ); addMethodChaining( 'modInt', modInt ); addMethodChaining( 'equal', equal ); addMethodChaining( 'notEqual', notEqual ); addMethodChaining( 'lessThan', lessThan ); addMethodChaining( 'greaterThan', greaterThan ); addMethodChaining( 'lessThanEqual', lessThanEqual ); addMethodChaining( 'greaterThanEqual', greaterThanEqual ); addMethodChaining( 'and', and ); addMethodChaining( 'or', or ); addMethodChaining( 'not', not ); addMethodChaining( 'xor', xor ); addMethodChaining( 'bitAnd', bitAnd ); addMethodChaining( 'bitNot', bitNot ); addMethodChaining( 'bitOr', bitOr ); addMethodChaining( 'bitXor', bitXor ); addMethodChaining( 'shiftLeft', shiftLeft ); addMethodChaining( 'shiftRight', shiftRight ); const remainder = ( ...params ) => { // @deprecated, r168 console.warn( 'TSL.OperatorNode: .remainder() has been renamed to .modInt().' ); return modInt( ...params ); }; addMethodChaining( 'remainder', remainder ); class MathNode extends TempNode { static get type() { return 'MathNode'; } constructor( method, aNode, bNode = null, cNode = null ) { super(); this.method = method; this.aNode = aNode; this.bNode = bNode; this.cNode = cNode; } getInputType( builder ) { const aType = this.aNode.getNodeType( builder ); const bType = this.bNode ? this.bNode.getNodeType( builder ) : null; const cType = this.cNode ? this.cNode.getNodeType( builder ) : null; const aLen = builder.isMatrix( aType ) ? 0 : builder.getTypeLength( aType ); const bLen = builder.isMatrix( bType ) ? 0 : builder.getTypeLength( bType ); const cLen = builder.isMatrix( cType ) ? 0 : builder.getTypeLength( cType ); if ( aLen > bLen && aLen > cLen ) { return aType; } else if ( bLen > cLen ) { return bType; } else if ( cLen > aLen ) { return cType; } return aType; } getNodeType( builder ) { const method = this.method; if ( method === MathNode.LENGTH || method === MathNode.DISTANCE || method === MathNode.DOT ) { return 'float'; } else if ( method === MathNode.CROSS ) { return 'vec3'; } else if ( method === MathNode.ALL ) { return 'bool'; } else if ( method === MathNode.EQUALS ) { return builder.changeComponentType( this.aNode.getNodeType( builder ), 'bool' ); } else if ( method === MathNode.MOD ) { return this.aNode.getNodeType( builder ); } else { return this.getInputType( builder ); } } generate( builder, output ) { const method = this.method; const type = this.getNodeType( builder ); const inputType = this.getInputType( builder ); const a = this.aNode; const b = this.bNode; const c = this.cNode; const isWebGL = builder.renderer.isWebGLRenderer === true; if ( method === MathNode.TRANSFORM_DIRECTION ) { // dir can be either a direction vector or a normal vector // upper-left 3x3 of matrix is assumed to be orthogonal let tA = a; let tB = b; if ( builder.isMatrix( tA.getNodeType( builder ) ) ) { tB = vec4( vec3( tB ), 0.0 ); } else { tA = vec4( vec3( tA ), 0.0 ); } const mulNode = mul( tA, tB ).xyz; return normalize( mulNode ).build( builder, output ); } else if ( method === MathNode.NEGATE ) { return builder.format( '( - ' + a.build( builder, inputType ) + ' )', type, output ); } else if ( method === MathNode.ONE_MINUS ) { return sub( 1.0, a ).build( builder, output ); } else if ( method === MathNode.RECIPROCAL ) { return div( 1.0, a ).build( builder, output ); } else if ( method === MathNode.DIFFERENCE ) { return abs( sub( a, b ) ).build( builder, output ); } else { const params = []; if ( method === MathNode.CROSS || method === MathNode.MOD ) { params.push( a.build( builder, type ), b.build( builder, type ) ); } else if ( isWebGL && method === MathNode.STEP ) { params.push( a.build( builder, builder.getTypeLength( a.getNodeType( builder ) ) === 1 ? 'float' : inputType ), b.build( builder, inputType ) ); } else if ( ( isWebGL && ( method === MathNode.MIN || method === MathNode.MAX ) ) || method === MathNode.MOD ) { params.push( a.build( builder, inputType ), b.build( builder, builder.getTypeLength( b.getNodeType( builder ) ) === 1 ? 'float' : inputType ) ); } else if ( method === MathNode.REFRACT ) { params.push( a.build( builder, inputType ), b.build( builder, inputType ), c.build( builder, 'float' ) ); } else if ( method === MathNode.MIX ) { params.push( a.build( builder, inputType ), b.build( builder, inputType ), c.build( builder, builder.getTypeLength( c.getNodeType( builder ) ) === 1 ? 'float' : inputType ) ); } else { params.push( a.build( builder, inputType ) ); if ( b !== null ) params.push( b.build( builder, inputType ) ); if ( c !== null ) params.push( c.build( builder, inputType ) ); } return builder.format( `${ builder.getMethod( method, type ) }( ${params.join( ', ' )} )`, type, output ); } } serialize( data ) { super.serialize( data ); data.method = this.method; } deserialize( data ) { super.deserialize( data ); this.method = data.method; } } // 1 input MathNode.ALL = 'all'; MathNode.ANY = 'any'; MathNode.EQUALS = 'equals'; MathNode.RADIANS = 'radians'; MathNode.DEGREES = 'degrees'; MathNode.EXP = 'exp'; MathNode.EXP2 = 'exp2'; MathNode.LOG = 'log'; MathNode.LOG2 = 'log2'; MathNode.SQRT = 'sqrt'; MathNode.INVERSE_SQRT = 'inversesqrt'; MathNode.FLOOR = 'floor'; MathNode.CEIL = 'ceil'; MathNode.NORMALIZE = 'normalize'; MathNode.FRACT = 'fract'; MathNode.SIN = 'sin'; MathNode.COS = 'cos'; MathNode.TAN = 'tan'; MathNode.ASIN = 'asin'; MathNode.ACOS = 'acos'; MathNode.ATAN = 'atan'; MathNode.ABS = 'abs'; MathNode.SIGN = 'sign'; MathNode.LENGTH = 'length'; MathNode.NEGATE = 'negate'; MathNode.ONE_MINUS = 'oneMinus'; MathNode.DFDX = 'dFdx'; MathNode.DFDY = 'dFdy'; MathNode.ROUND = 'round'; MathNode.RECIPROCAL = 'reciprocal'; MathNode.TRUNC = 'trunc'; MathNode.FWIDTH = 'fwidth'; MathNode.BITCAST = 'bitcast'; MathNode.TRANSPOSE = 'transpose'; // 2 inputs MathNode.ATAN2 = 'atan2'; MathNode.MIN = 'min'; MathNode.MAX = 'max'; MathNode.MOD = 'mod'; MathNode.STEP = 'step'; MathNode.REFLECT = 'reflect'; MathNode.DISTANCE = 'distance'; MathNode.DIFFERENCE = 'difference'; MathNode.DOT = 'dot'; MathNode.CROSS = 'cross'; MathNode.POW = 'pow'; MathNode.TRANSFORM_DIRECTION = 'transformDirection'; // 3 inputs MathNode.MIX = 'mix'; MathNode.CLAMP = 'clamp'; MathNode.REFRACT = 'refract'; MathNode.SMOOTHSTEP = 'smoothstep'; MathNode.FACEFORWARD = 'faceforward'; const EPSILON = /*@__PURE__*/ float( 1e-6 ); const INFINITY = /*@__PURE__*/ float( 1e6 ); const PI = /*@__PURE__*/ float( Math.PI ); const PI2 = /*@__PURE__*/ float( Math.PI * 2 ); const all = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ALL ); const any = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ANY ); const equals = /*@__PURE__*/ nodeProxy( MathNode, MathNode.EQUALS ); const radians = /*@__PURE__*/ nodeProxy( MathNode, MathNode.RADIANS ); const degrees = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DEGREES ); const exp = /*@__PURE__*/ nodeProxy( MathNode, MathNode.EXP ); const exp2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.EXP2 ); const log = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LOG ); const log2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LOG2 ); const sqrt = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SQRT ); const inverseSqrt = /*@__PURE__*/ nodeProxy( MathNode, MathNode.INVERSE_SQRT ); const floor = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FLOOR ); const ceil = /*@__PURE__*/ nodeProxy( MathNode, MathNode.CEIL ); const normalize = /*@__PURE__*/ nodeProxy( MathNode, MathNode.NORMALIZE ); const fract = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FRACT ); const sin = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SIN ); const cos = /*@__PURE__*/ nodeProxy( MathNode, MathNode.COS ); const tan = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TAN ); const asin = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ASIN ); const acos = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ACOS ); const atan = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ATAN ); const abs = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ABS ); const sign = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SIGN ); const length = /*@__PURE__*/ nodeProxy( MathNode, MathNode.LENGTH ); const negate = /*@__PURE__*/ nodeProxy( MathNode, MathNode.NEGATE ); const oneMinus = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ONE_MINUS ); const dFdx = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DFDX ); const dFdy = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DFDY ); const round = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ROUND ); const reciprocal = /*@__PURE__*/ nodeProxy( MathNode, MathNode.RECIPROCAL ); const trunc = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRUNC ); const fwidth = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FWIDTH ); const bitcast = /*@__PURE__*/ nodeProxy( MathNode, MathNode.BITCAST ); const transpose = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRANSPOSE ); const atan2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.ATAN2 ); const min$1 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MIN ); const max$1 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MAX ); const mod = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MOD ); const step = /*@__PURE__*/ nodeProxy( MathNode, MathNode.STEP ); const reflect = /*@__PURE__*/ nodeProxy( MathNode, MathNode.REFLECT ); const distance = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DISTANCE ); const difference = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DIFFERENCE ); const dot = /*@__PURE__*/ nodeProxy( MathNode, MathNode.DOT ); const cross = /*@__PURE__*/ nodeProxy( MathNode, MathNode.CROSS ); const pow = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW ); const pow2 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 2 ); const pow3 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 3 ); const pow4 = /*@__PURE__*/ nodeProxy( MathNode, MathNode.POW, 4 ); const transformDirection = /*@__PURE__*/ nodeProxy( MathNode, MathNode.TRANSFORM_DIRECTION ); const cbrt = ( a ) => mul( sign( a ), pow( abs( a ), 1.0 / 3.0 ) ); const lengthSq = ( a ) => dot( a, a ); const mix = /*@__PURE__*/ nodeProxy( MathNode, MathNode.MIX ); const clamp = ( value, low = 0, high = 1 ) => nodeObject( new MathNode( MathNode.CLAMP, nodeObject( value ), nodeObject( low ), nodeObject( high ) ) ); const saturate = ( value ) => clamp( value ); const refract = /*@__PURE__*/ nodeProxy( MathNode, MathNode.REFRACT ); const smoothstep = /*@__PURE__*/ nodeProxy( MathNode, MathNode.SMOOTHSTEP ); const faceForward = /*@__PURE__*/ nodeProxy( MathNode, MathNode.FACEFORWARD ); const rand = /*@__PURE__*/ Fn( ( [ uv ] ) => { const a = 12.9898, b = 78.233, c = 43758.5453; const dt = dot( uv.xy, vec2( a, b ) ), sn = mod( dt, PI ); return fract( sin( sn ).mul( c ) ); } ); const mixElement = ( t, e1, e2 ) => mix( e1, e2, t ); const smoothstepElement = ( x, low, high ) => smoothstep( low, high, x ); addMethodChaining( 'all', all ); addMethodChaining( 'any', any ); addMethodChaining( 'equals', equals ); addMethodChaining( 'radians', radians ); addMethodChaining( 'degrees', degrees ); addMethodChaining( 'exp', exp ); addMethodChaining( 'exp2', exp2 ); addMethodChaining( 'log', log ); addMethodChaining( 'log2', log2 ); addMethodChaining( 'sqrt', sqrt ); addMethodChaining( 'inverseSqrt', inverseSqrt ); addMethodChaining( 'floor', floor ); addMethodChaining( 'ceil', ceil ); addMethodChaining( 'normalize', normalize ); addMethodChaining( 'fract', fract ); addMethodChaining( 'sin', sin ); addMethodChaining( 'cos', cos ); addMethodChaining( 'tan', tan ); addMethodChaining( 'asin', asin ); addMethodChaining( 'acos', acos ); addMethodChaining( 'atan', atan ); addMethodChaining( 'abs', abs ); addMethodChaining( 'sign', sign ); addMethodChaining( 'length', length ); addMethodChaining( 'lengthSq', lengthSq ); addMethodChaining( 'negate', negate ); addMethodChaining( 'oneMinus', oneMinus ); addMethodChaining( 'dFdx', dFdx ); addMethodChaining( 'dFdy', dFdy ); addMethodChaining( 'round', round ); addMethodChaining( 'reciprocal', reciprocal ); addMethodChaining( 'trunc', trunc ); addMethodChaining( 'fwidth', fwidth ); addMethodChaining( 'atan2', atan2 ); addMethodChaining( 'min', min$1 ); addMethodChaining( 'max', max$1 ); addMethodChaining( 'mod', mod ); addMethodChaining( 'step', step ); addMethodChaining( 'reflect', reflect ); addMethodChaining( 'distance', distance ); addMethodChaining( 'dot', dot ); addMethodChaining( 'cross', cross ); addMethodChaining( 'pow', pow ); addMethodChaining( 'pow2', pow2 ); addMethodChaining( 'pow3', pow3 ); addMethodChaining( 'pow4', pow4 ); addMethodChaining( 'transformDirection', transformDirection ); addMethodChaining( 'mix', mixElement ); addMethodChaining( 'clamp', clamp ); addMethodChaining( 'refract', refract ); addMethodChaining( 'smoothstep', smoothstepElement ); addMethodChaining( 'faceForward', faceForward ); addMethodChaining( 'difference', difference ); addMethodChaining( 'saturate', saturate ); addMethodChaining( 'cbrt', cbrt ); addMethodChaining( 'transpose', transpose ); addMethodChaining( 'rand', rand ); class ConditionalNode extends Node { static get type() { return 'ConditionalNode'; } constructor( condNode, ifNode, elseNode = null ) { super(); this.condNode = condNode; this.ifNode = ifNode; this.elseNode = elseNode; } getNodeType( builder ) { const ifType = this.ifNode.getNodeType( builder ); if ( this.elseNode !== null ) { const elseType = this.elseNode.getNodeType( builder ); if ( builder.getTypeLength( elseType ) > builder.getTypeLength( ifType ) ) { return elseType; } } return ifType; } setup( builder ) { const condNode = this.condNode.cache(); const ifNode = this.ifNode.cache(); const elseNode = this.elseNode ? this.elseNode.cache() : null; // const currentNodeBlock = builder.context.nodeBlock; builder.getDataFromNode( ifNode ).parentNodeBlock = currentNodeBlock; if ( elseNode !== null ) builder.getDataFromNode( elseNode ).parentNodeBlock = currentNodeBlock; // const properties = builder.getNodeProperties( this ); properties.condNode = condNode; properties.ifNode = ifNode.context( { nodeBlock: ifNode } ); properties.elseNode = elseNode ? elseNode.context( { nodeBlock: elseNode } ) : null; } generate( builder, output ) { const type = this.getNodeType( builder ); const nodeData = builder.getDataFromNode( this ); if ( nodeData.nodeProperty !== undefined ) { return nodeData.nodeProperty; } const { condNode, ifNode, elseNode } = builder.getNodeProperties( this ); const needsOutput = output !== 'void'; const nodeProperty = needsOutput ? property( type ).build( builder ) : ''; nodeData.nodeProperty = nodeProperty; const nodeSnippet = condNode.build( builder, 'bool' ); builder.addFlowCode( `\n${ builder.tab }if ( ${ nodeSnippet } ) {\n\n` ).addFlowTab(); let ifSnippet = ifNode.build( builder, type ); if ( ifSnippet ) { if ( needsOutput ) { ifSnippet = nodeProperty + ' = ' + ifSnippet + ';'; } else { ifSnippet = 'return ' + ifSnippet + ';'; } } builder.removeFlowTab().addFlowCode( builder.tab + '\t' + ifSnippet + '\n\n' + builder.tab + '}' ); if ( elseNode !== null ) { builder.addFlowCode( ' else {\n\n' ).addFlowTab(); let elseSnippet = elseNode.build( builder, type ); if ( elseSnippet ) { if ( needsOutput ) { elseSnippet = nodeProperty + ' = ' + elseSnippet + ';'; } else { elseSnippet = 'return ' + elseSnippet + ';'; } } builder.removeFlowTab().addFlowCode( builder.tab + '\t' + elseSnippet + '\n\n' + builder.tab + '}\n\n' ); } else { builder.addFlowCode( '\n\n' ); } return builder.format( nodeProperty, type, output ); } } const select = /*@__PURE__*/ nodeProxy( ConditionalNode ); addMethodChaining( 'select', select ); // const cond = ( ...params ) => { // @deprecated, r168 console.warn( 'TSL.ConditionalNode: cond() has been renamed to select().' ); return select( ...params ); }; addMethodChaining( 'cond', cond ); class ContextNode extends Node { static get type() { return 'ContextNode'; } constructor( node, value = {} ) { super(); this.isContextNode = true; this.node = node; this.value = value; } getScope() { return this.node.getScope(); } getNodeType( builder ) { return this.node.getNodeType( builder ); } analyze( builder ) { this.node.build( builder ); } setup( builder ) { const previousContext = builder.getContext(); builder.setContext( { ...builder.context, ...this.value } ); const node = this.node.build( builder ); builder.setContext( previousContext ); return node; } generate( builder, output ) { const previousContext = builder.getContext(); builder.setContext( { ...builder.context, ...this.value } ); const snippet = this.node.build( builder, output ); builder.setContext( previousContext ); return snippet; } } const context = /*@__PURE__*/ nodeProxy( ContextNode ); const label = ( node, name ) => context( node, { label: name } ); addMethodChaining( 'context', context ); addMethodChaining( 'label', label ); class VarNode extends Node { static get type() { return 'VarNode'; } constructor( node, name = null ) { super(); this.node = node; this.name = name; this.global = true; this.isVarNode = true; } getHash( builder ) { return this.name || super.getHash( builder ); } getNodeType( builder ) { return this.node.getNodeType( builder ); } generate( builder ) { const { node, name } = this; const nodeVar = builder.getVarFromNode( this, name, builder.getVectorType( this.getNodeType( builder ) ) ); const propertyName = builder.getPropertyName( nodeVar ); const snippet = node.build( builder, nodeVar.type ); builder.addLineFlowCode( `${propertyName} = ${snippet}`, this ); return propertyName; } } const temp = /*@__PURE__*/ nodeProxy( VarNode ); addMethodChaining( 'temp', temp ); // @TODO: Will be removed in the future addMethodChaining( 'toVar', ( ...params ) => temp( ...params ).append() ); class VaryingNode extends Node { static get type() { return 'VaryingNode'; } constructor( node, name = null ) { super(); this.node = node; this.name = name; this.isVaryingNode = true; } isGlobal() { return true; } getHash( builder ) { return this.name || super.getHash( builder ); } getNodeType( builder ) { // VaryingNode is auto type return this.node.getNodeType( builder ); } setupVarying( builder ) { const properties = builder.getNodeProperties( this ); let varying = properties.varying; if ( varying === undefined ) { const name = this.name; const type = this.getNodeType( builder ); properties.varying = varying = builder.getVaryingFromNode( this, name, type ); properties.node = this.node; } // this property can be used to check if the varying can be optimized for a variable varying.needsInterpolation || ( varying.needsInterpolation = ( builder.shaderStage === 'fragment' ) ); return varying; } setup( builder ) { this.setupVarying( builder ); } analyze( builder ) { this.setupVarying( builder ); return this.node.analyze( builder ); } generate( builder ) { const properties = builder.getNodeProperties( this ); const varying = this.setupVarying( builder ); if ( properties.propertyName === undefined ) { const type = this.getNodeType( builder ); const propertyName = builder.getPropertyName( varying, NodeShaderStage.VERTEX ); // force node run in vertex stage builder.flowNodeFromShaderStage( NodeShaderStage.VERTEX, this.node, type, propertyName ); properties.propertyName = propertyName; } return builder.getPropertyName( varying ); } } const varying = /*@__PURE__*/ nodeProxy( VaryingNode ); addMethodChaining( 'varying', varying ); const WORKING_COLOR_SPACE = 'WorkingColorSpace'; const OUTPUT_COLOR_SPACE = 'OutputColorSpace'; function getColorSpaceName( colorSpace ) { let method = null; if ( colorSpace === LinearSRGBColorSpace ) { method = 'Linear'; } else if ( colorSpace === SRGBColorSpace ) { method = 'sRGB'; } return method; } function getColorSpaceMethod( source, target ) { return getColorSpaceName( source ) + 'To' + getColorSpaceName( target ); } class ColorSpaceNode extends TempNode { static get type() { return 'ColorSpaceNode'; } constructor( colorNode, source, target ) { super( 'vec4' ); this.colorNode = colorNode; this.source = source; this.target = target; } getColorSpace( builder, colorSpace ) { if ( colorSpace === WORKING_COLOR_SPACE ) { return ColorManagement.workingColorSpace; } else if ( colorSpace === OUTPUT_COLOR_SPACE ) { return builder.context.outputColorSpace || builder.renderer.outputColorSpace; } return colorSpace; } setup( builder ) { const { renderer } = builder; const { colorNode } = this; const source = this.getColorSpace( builder, this.source ); const target = this.getColorSpace( builder, this.target ); if ( source === target ) return colorNode; const colorSpace = getColorSpaceMethod( source, target ); let outputNode = null; const colorSpaceFn = renderer.nodes.library.getColorSpaceFunction( colorSpace ); if ( colorSpaceFn !== null ) { outputNode = vec4( colorSpaceFn( colorNode.rgb ), colorNode.a ); } else { console.error( 'ColorSpaceNode: Unsupported Color Space configuration.', colorSpace ); outputNode = colorNode; } return outputNode; } } const toOutputColorSpace = ( node ) => nodeObject( new ColorSpaceNode( nodeObject( node ), WORKING_COLOR_SPACE, OUTPUT_COLOR_SPACE ) ); const toWorkingColorSpace = ( node ) => nodeObject( new ColorSpaceNode( nodeObject( node ), OUTPUT_COLOR_SPACE, WORKING_COLOR_SPACE ) ); const workingToColorSpace = ( node, colorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), WORKING_COLOR_SPACE, colorSpace ) ); const colorSpaceToWorking = ( node, colorSpace ) => nodeObject( new ColorSpaceNode( nodeObject( node ), colorSpace, WORKING_COLOR_SPACE ) ); addMethodChaining( 'toOutputColorSpace', toOutputColorSpace ); addMethodChaining( 'toWorkingColorSpace', toWorkingColorSpace ); addMethodChaining( 'workingToColorSpace', workingToColorSpace ); addMethodChaining( 'colorSpaceToWorking', colorSpaceToWorking ); let ReferenceElementNode$1 = class ReferenceElementNode extends ArrayElementNode { static get type() { return 'ReferenceElementNode'; } constructor( referenceNode, indexNode ) { super( referenceNode, indexNode ); this.referenceNode = referenceNode; this.isReferenceElementNode = true; } getNodeType() { return this.referenceNode.uniformType; } generate( builder ) { const snippet = super.generate( builder ); const arrayType = this.referenceNode.getNodeType(); const elementType = this.getNodeType(); return builder.format( snippet, arrayType, elementType ); } }; class ReferenceBaseNode extends Node { static get type() { return 'ReferenceBaseNode'; } constructor( property, uniformType, object = null, count = null ) { super(); this.property = property; this.uniformType = uniformType; this.object = object; this.count = count; this.properties = property.split( '.' ); this.reference = object; this.node = null; this.group = null; this.updateType = NodeUpdateType.OBJECT; } setGroup( group ) { this.group = group; return this; } element( indexNode ) { return nodeObject( new ReferenceElementNode$1( this, nodeObject( indexNode ) ) ); } setNodeType( uniformType ) { const node = uniform( null, uniformType ).getSelf(); if ( this.group !== null ) { node.setGroup( this.group ); } this.node = node; } getNodeType( builder ) { if ( this.node === null ) { this.updateReference( builder ); this.updateValue(); } return this.node.getNodeType( builder ); } getValueFromReference( object = this.reference ) { const { properties } = this; let value = object[ properties[ 0 ] ]; for ( let i = 1; i < properties.length; i ++ ) { value = value[ properties[ i ] ]; } return value; } updateReference( state ) { this.reference = this.object !== null ? this.object : state.object; return this.reference; } setup() { this.updateValue(); return this.node; } update( /*frame*/ ) { this.updateValue(); } updateValue() { if ( this.node === null ) this.setNodeType( this.uniformType ); const value = this.getValueFromReference(); if ( Array.isArray( value ) ) { this.node.array = value; } else { this.node.value = value; } } } const reference$1 = ( name, type, object ) => nodeObject( new ReferenceBaseNode( name, type, object ) ); class RendererReferenceNode extends ReferenceBaseNode { static get type() { return 'RendererReferenceNode'; } constructor( property, inputType, renderer = null ) { super( property, inputType, renderer ); this.renderer = renderer; this.setGroup( renderGroup ); } updateReference( state ) { this.reference = this.renderer !== null ? this.renderer : state.renderer; return this.reference; } } const rendererReference = ( name, type, renderer ) => nodeObject( new RendererReferenceNode( name, type, renderer ) ); class ToneMappingNode extends TempNode { static get type() { return 'ToneMappingNode'; } constructor( toneMapping, exposureNode = toneMappingExposure, colorNode = null ) { super( 'vec3' ); this.toneMapping = toneMapping; this.exposureNode = exposureNode; this.colorNode = colorNode; } getCacheKey() { return hash$1( super.getCacheKey(), this.toneMapping ); } setup( builder ) { const colorNode = this.colorNode || builder.context.color; const toneMapping = this.toneMapping; if ( toneMapping === NoToneMapping ) return colorNode; let outputNode = null; const toneMappingFn = builder.renderer.nodes.library.getToneMappingFunction( toneMapping ); if ( toneMappingFn !== null ) { outputNode = vec4( toneMappingFn( colorNode.rgb, this.exposureNode ), colorNode.a ); } else { console.error( 'ToneMappingNode: Unsupported Tone Mapping configuration.', toneMapping ); outputNode = colorNode; } return outputNode; } } const toneMapping = ( mapping, exposure, color ) => nodeObject( new ToneMappingNode( mapping, nodeObject( exposure ), nodeObject( color ) ) ); const toneMappingExposure = /*@__PURE__*/ rendererReference( 'toneMappingExposure', 'float' ); addMethodChaining( 'toneMapping', ( color, mapping, exposure ) => toneMapping( mapping, exposure, color ) ); class BufferAttributeNode extends InputNode { static get type() { return 'BufferAttributeNode'; } constructor( value, bufferType = null, bufferStride = 0, bufferOffset = 0 ) { super( value, bufferType ); this.isBufferNode = true; this.bufferType = bufferType; this.bufferStride = bufferStride; this.bufferOffset = bufferOffset; this.usage = StaticDrawUsage; this.instanced = false; this.attribute = null; this.global = true; if ( value && value.isBufferAttribute === true ) { this.attribute = value; this.usage = value.usage; this.instanced = value.isInstancedBufferAttribute; } } getHash( builder ) { if ( this.bufferStride === 0 && this.bufferOffset === 0 ) { let bufferData = builder.globalCache.getData( this.value ); if ( bufferData === undefined ) { bufferData = { node: this }; builder.globalCache.setData( this.value, bufferData ); } return bufferData.node.uuid; } return this.uuid; } getNodeType( builder ) { if ( this.bufferType === null ) { this.bufferType = builder.getTypeFromAttribute( this.attribute ); } return this.bufferType; } setup( builder ) { if ( this.attribute !== null ) return; const type = this.getNodeType( builder ); const array = this.value; const itemSize = builder.getTypeLength( type ); const stride = this.bufferStride || itemSize; const offset = this.bufferOffset; const buffer = array.isInterleavedBuffer === true ? array : new InterleavedBuffer( array, stride ); const bufferAttribute = new InterleavedBufferAttribute( buffer, itemSize, offset ); buffer.setUsage( this.usage ); this.attribute = bufferAttribute; this.attribute.isInstancedBufferAttribute = this.instanced; // @TODO: Add a possible: InstancedInterleavedBufferAttribute } generate( builder ) { const nodeType = this.getNodeType( builder ); const nodeAttribute = builder.getBufferAttributeFromNode( this, nodeType ); const propertyName = builder.getPropertyName( nodeAttribute ); let output = null; if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) { this.name = propertyName; output = propertyName; } else { const nodeVarying = varying( this ); output = nodeVarying.build( builder, nodeType ); } return output; } getInputType( /*builder*/ ) { return 'bufferAttribute'; } setUsage( value ) { this.usage = value; if ( this.attribute && this.attribute.isBufferAttribute === true ) { this.attribute.usage = value; } return this; } setInstanced( value ) { this.instanced = value; return this; } } const bufferAttribute = ( array, type, stride, offset ) => nodeObject( new BufferAttributeNode( array, type, stride, offset ) ); const dynamicBufferAttribute = ( array, type, stride, offset ) => bufferAttribute( array, type, stride, offset ).setUsage( DynamicDrawUsage ); const instancedBufferAttribute = ( array, type, stride, offset ) => bufferAttribute( array, type, stride, offset ).setInstanced( true ); const instancedDynamicBufferAttribute = ( array, type, stride, offset ) => dynamicBufferAttribute( array, type, stride, offset ).setInstanced( true ); addMethodChaining( 'toAttribute', ( bufferNode ) => bufferAttribute( bufferNode.value ) ); class ComputeNode extends Node { static get type() { return 'ComputeNode'; } constructor( computeNode, count, workgroupSize = [ 64 ] ) { super( 'void' ); this.isComputeNode = true; this.computeNode = computeNode; this.count = count; this.workgroupSize = workgroupSize; this.dispatchCount = 0; this.version = 1; this.updateBeforeType = NodeUpdateType.OBJECT; this.updateDispatchCount(); } dispose() { this.dispatchEvent( { type: 'dispose' } ); } set needsUpdate( value ) { if ( value === true ) this.version ++; } updateDispatchCount() { const { count, workgroupSize } = this; let size = workgroupSize[ 0 ]; for ( let i = 1; i < workgroupSize.length; i ++ ) size *= workgroupSize[ i ]; this.dispatchCount = Math.ceil( count / size ); } onInit() { } updateBefore( { renderer } ) { renderer.compute( this ); } generate( builder ) { const { shaderStage } = builder; if ( shaderStage === 'compute' ) { const snippet = this.computeNode.build( builder, 'void' ); if ( snippet !== '' ) { builder.addLineFlowCode( snippet, this ); } } } } const compute = ( node, count, workgroupSize ) => nodeObject( new ComputeNode( nodeObject( node ), count, workgroupSize ) ); addMethodChaining( 'compute', compute ); class CacheNode extends Node { static get type() { return 'CacheNode'; } constructor( node, parent = true ) { super(); this.node = node; this.parent = parent; this.isCacheNode = true; } getNodeType( builder ) { return this.node.getNodeType( builder ); } build( builder, ...params ) { const previousCache = builder.getCache(); const cache = builder.getCacheFromNode( this, this.parent ); builder.setCache( cache ); const data = this.node.build( builder, ...params ); builder.setCache( previousCache ); return data; } } const cache = ( node, ...params ) => nodeObject( new CacheNode( nodeObject( node ), ...params ) ); addMethodChaining( 'cache', cache ); class BypassNode extends Node { static get type() { return 'BypassNode'; } constructor( returnNode, callNode ) { super(); this.isBypassNode = true; this.outputNode = returnNode; this.callNode = callNode; } getNodeType( builder ) { return this.outputNode.getNodeType( builder ); } generate( builder ) { const snippet = this.callNode.build( builder, 'void' ); if ( snippet !== '' ) { builder.addLineFlowCode( snippet, this ); } return this.outputNode.build( builder ); } } const bypass = /*@__PURE__*/ nodeProxy( BypassNode ); addMethodChaining( 'bypass', bypass ); class RemapNode extends Node { static get type() { return 'RemapNode'; } constructor( node, inLowNode, inHighNode, outLowNode = float( 0 ), outHighNode = float( 1 ) ) { super(); this.node = node; this.inLowNode = inLowNode; this.inHighNode = inHighNode; this.outLowNode = outLowNode; this.outHighNode = outHighNode; this.doClamp = true; } setup() { const { node, inLowNode, inHighNode, outLowNode, outHighNode, doClamp } = this; let t = node.sub( inLowNode ).div( inHighNode.sub( inLowNode ) ); if ( doClamp === true ) t = t.clamp(); return t.mul( outHighNode.sub( outLowNode ) ).add( outLowNode ); } } const remap = /*@__PURE__*/ nodeProxy( RemapNode, null, null, { doClamp: false } ); const remapClamp = /*@__PURE__*/ nodeProxy( RemapNode ); addMethodChaining( 'remap', remap ); addMethodChaining( 'remapClamp', remapClamp ); class ExpressionNode extends Node { static get type() { return 'ExpressionNode'; } constructor( snippet = '', nodeType = 'void' ) { super( nodeType ); this.snippet = snippet; } generate( builder, output ) { const type = this.getNodeType( builder ); const snippet = this.snippet; if ( type === 'void' ) { builder.addLineFlowCode( snippet, this ); } else { return builder.format( `( ${ snippet } )`, type, output ); } } } const expression = /*@__PURE__*/ nodeProxy( ExpressionNode ); const Discard = ( conditional ) => ( conditional ? select( conditional, expression( 'discard' ) ) : expression( 'discard' ) ).append(); const Return = () => expression( 'return' ).append(); addMethodChaining( 'discard', Discard ); class RenderOutputNode extends TempNode { static get type() { return 'RenderOutputNode'; } constructor( colorNode, toneMapping, outputColorSpace ) { super( 'vec4' ); this.colorNode = colorNode; this.toneMapping = toneMapping; this.outputColorSpace = outputColorSpace; this.isRenderOutput = true; } setup( { context } ) { let outputNode = this.colorNode || context.color; // tone mapping const toneMapping = ( this.toneMapping !== null ? this.toneMapping : context.toneMapping ) || NoToneMapping; const outputColorSpace = ( this.outputColorSpace !== null ? this.outputColorSpace : context.outputColorSpace ) || NoColorSpace; if ( toneMapping !== NoToneMapping ) { outputNode = outputNode.toneMapping( toneMapping ); } // working to output color space if ( outputColorSpace !== NoColorSpace && outputColorSpace !== ColorManagement.workingColorSpace ) { outputNode = outputNode.workingToColorSpace( outputColorSpace ); } return outputNode; } } const renderOutput = ( color, toneMapping = null, outputColorSpace = null ) => nodeObject( new RenderOutputNode( nodeObject( color ), toneMapping, outputColorSpace ) ); addMethodChaining( 'renderOutput', renderOutput ); // Non-PURE exports list, side-effects are required here. // TSL Base Syntax function addNodeElement( name/*, nodeElement*/ ) { console.warn( 'THREE.TSLBase: AddNodeElement has been removed in favor of tree-shaking. Trying add', name ); } class AttributeNode extends Node { static get type() { return 'AttributeNode'; } constructor( attributeName, nodeType = null ) { super( nodeType ); this.global = true; this._attributeName = attributeName; } getHash( builder ) { return this.getAttributeName( builder ); } getNodeType( builder ) { let nodeType = this.nodeType; if ( nodeType === null ) { const attributeName = this.getAttributeName( builder ); if ( builder.hasGeometryAttribute( attributeName ) ) { const attribute = builder.geometry.getAttribute( attributeName ); nodeType = builder.getTypeFromAttribute( attribute ); } else { nodeType = 'float'; } } return nodeType; } setAttributeName( attributeName ) { this._attributeName = attributeName; return this; } getAttributeName( /*builder*/ ) { return this._attributeName; } generate( builder ) { const attributeName = this.getAttributeName( builder ); const nodeType = this.getNodeType( builder ); const geometryAttribute = builder.hasGeometryAttribute( attributeName ); if ( geometryAttribute === true ) { const attribute = builder.geometry.getAttribute( attributeName ); const attributeType = builder.getTypeFromAttribute( attribute ); const nodeAttribute = builder.getAttribute( attributeName, attributeType ); if ( builder.shaderStage === 'vertex' ) { return builder.format( nodeAttribute.name, attributeType, nodeType ); } else { const nodeVarying = varying( this ); return nodeVarying.build( builder, nodeType ); } } else { console.warn( `AttributeNode: Vertex attribute "${ attributeName }" not found on geometry.` ); return builder.generateConst( nodeType ); } } serialize( data ) { super.serialize( data ); data.global = this.global; data._attributeName = this._attributeName; } deserialize( data ) { super.deserialize( data ); this.global = data.global; this._attributeName = data._attributeName; } } const attribute = ( name, nodeType ) => nodeObject( new AttributeNode( name, nodeType ) ); const uv = ( index ) => attribute( 'uv' + ( index > 0 ? index : '' ), 'vec2' ); class TextureSizeNode extends Node { static get type() { return 'TextureSizeNode'; } constructor( textureNode, levelNode = null ) { super( 'uvec2' ); this.isTextureSizeNode = true; this.textureNode = textureNode; this.levelNode = levelNode; } generate( builder, output ) { const textureProperty = this.textureNode.build( builder, 'property' ); const level = this.levelNode === null ? '0' : this.levelNode.build( builder, 'int' ); return builder.format( `${ builder.getMethod( 'textureDimensions' ) }( ${ textureProperty }, ${ level } )`, this.getNodeType( builder ), output ); } } const textureSize = /*@__PURE__*/ nodeProxy( TextureSizeNode ); class MaxMipLevelNode extends UniformNode { static get type() { return 'MaxMipLevelNode'; } constructor( textureNode ) { super( 0 ); this._textureNode = textureNode; this.updateType = NodeUpdateType.FRAME; } get textureNode() { return this._textureNode; } get texture() { return this._textureNode.value; } update() { const texture = this.texture; const images = texture.images; const image = ( images && images.length > 0 ) ? ( ( images[ 0 ] && images[ 0 ].image ) || images[ 0 ] ) : texture.image; if ( image && image.width !== undefined ) { const { width, height } = image; this.value = Math.log2( Math.max( width, height ) ); } } } const maxMipLevel = /*@__PURE__*/ nodeProxy( MaxMipLevelNode ); class TextureNode extends UniformNode { static get type() { return 'TextureNode'; } constructor( value, uvNode = null, levelNode = null, biasNode = null ) { super( value ); this.isTextureNode = true; this.uvNode = uvNode; this.levelNode = levelNode; this.biasNode = biasNode; this.compareNode = null; this.depthNode = null; this.gradNode = null; this.sampler = true; this.updateMatrix = false; this.updateType = NodeUpdateType.NONE; this.referenceNode = null; this._value = value; this._matrixUniform = null; this.setUpdateMatrix( uvNode === null ); } set value( value ) { if ( this.referenceNode ) { this.referenceNode.value = value; } else { this._value = value; } } get value() { return this.referenceNode ? this.referenceNode.value : this._value; } getUniformHash( /*builder*/ ) { return this.value.uuid; } getNodeType( /*builder*/ ) { if ( this.value.isDepthTexture === true ) return 'float'; if ( this.value.type === UnsignedIntType ) { return 'uvec4'; } else if ( this.value.type === IntType ) { return 'ivec4'; } return 'vec4'; } getInputType( /*builder*/ ) { return 'texture'; } getDefaultUV() { return uv( this.value.channel ); } updateReference( /*state*/ ) { return this.value; } getTransformedUV( uvNode ) { if ( this._matrixUniform === null ) this._matrixUniform = uniform( this.value.matrix ); return this._matrixUniform.mul( vec3( uvNode, 1 ) ).xy; } setUpdateMatrix( value ) { this.updateMatrix = value; this.updateType = value ? NodeUpdateType.FRAME : NodeUpdateType.NONE; return this; } setupUV( builder, uvNode ) { const texture = this.value; if ( builder.isFlipY() && ( texture.isRenderTargetTexture === true || texture.isFramebufferTexture === true || texture.isDepthTexture === true ) ) { if ( this.sampler ) { uvNode = uvNode.flipY(); } else { uvNode = uvNode.setY( int( textureSize( this, this.levelNode ).y ).sub( uvNode.y ).sub( 1 ) ); } } return uvNode; } setup( builder ) { const properties = builder.getNodeProperties( this ); properties.referenceNode = this.referenceNode; // let uvNode = this.uvNode; if ( ( uvNode === null || builder.context.forceUVContext === true ) && builder.context.getUV ) { uvNode = builder.context.getUV( this ); } if ( ! uvNode ) uvNode = this.getDefaultUV(); if ( this.updateMatrix === true ) { uvNode = this.getTransformedUV( uvNode ); } uvNode = this.setupUV( builder, uvNode ); // let levelNode = this.levelNode; if ( levelNode === null && builder.context.getTextureLevel ) { levelNode = builder.context.getTextureLevel( this ); } // properties.uvNode = uvNode; properties.levelNode = levelNode; properties.biasNode = this.biasNode; properties.compareNode = this.compareNode; properties.gradNode = this.gradNode; properties.depthNode = this.depthNode; } generateUV( builder, uvNode ) { return uvNode.build( builder, this.sampler === true ? 'vec2' : 'ivec2' ); } generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet ) { const texture = this.value; let snippet; if ( levelSnippet ) { snippet = builder.generateTextureLevel( texture, textureProperty, uvSnippet, levelSnippet, depthSnippet ); } else if ( biasSnippet ) { snippet = builder.generateTextureBias( texture, textureProperty, uvSnippet, biasSnippet, depthSnippet ); } else if ( gradSnippet ) { snippet = builder.generateTextureGrad( texture, textureProperty, uvSnippet, gradSnippet, depthSnippet ); } else if ( compareSnippet ) { snippet = builder.generateTextureCompare( texture, textureProperty, uvSnippet, compareSnippet, depthSnippet ); } else if ( this.sampler === false ) { snippet = builder.generateTextureLoad( texture, textureProperty, uvSnippet, depthSnippet ); } else { snippet = builder.generateTexture( texture, textureProperty, uvSnippet, depthSnippet ); } return snippet; } generate( builder, output ) { const properties = builder.getNodeProperties( this ); const texture = this.value; if ( ! texture || texture.isTexture !== true ) { throw new Error( 'TextureNode: Need a three.js texture.' ); } const textureProperty = super.generate( builder, 'property' ); if ( output === 'sampler' ) { return textureProperty + '_sampler'; } else if ( builder.isReference( output ) ) { return textureProperty; } else { const nodeData = builder.getDataFromNode( this ); let propertyName = nodeData.propertyName; if ( propertyName === undefined ) { const { uvNode, levelNode, biasNode, compareNode, depthNode, gradNode } = properties; const uvSnippet = this.generateUV( builder, uvNode ); const levelSnippet = levelNode ? levelNode.build( builder, 'float' ) : null; const biasSnippet = biasNode ? biasNode.build( builder, 'float' ) : null; const depthSnippet = depthNode ? depthNode.build( builder, 'int' ) : null; const compareSnippet = compareNode ? compareNode.build( builder, 'float' ) : null; const gradSnippet = gradNode ? [ gradNode[ 0 ].build( builder, 'vec2' ), gradNode[ 1 ].build( builder, 'vec2' ) ] : null; const nodeVar = builder.getVarFromNode( this ); propertyName = builder.getPropertyName( nodeVar ); const snippet = this.generateSnippet( builder, textureProperty, uvSnippet, levelSnippet, biasSnippet, depthSnippet, compareSnippet, gradSnippet ); builder.addLineFlowCode( `${propertyName} = ${snippet}`, this ); nodeData.snippet = snippet; nodeData.propertyName = propertyName; } let snippet = propertyName; const nodeType = this.getNodeType( builder ); if ( builder.needsToWorkingColorSpace( texture ) ) { snippet = colorSpaceToWorking( expression( snippet, nodeType ), texture.colorSpace ).setup( builder ).build( builder, nodeType ); } return builder.format( snippet, nodeType, output ); } } setSampler( value ) { this.sampler = value; return this; } getSampler() { return this.sampler; } // @TODO: Move to TSL uv( uvNode ) { const textureNode = this.clone(); textureNode.uvNode = nodeObject( uvNode ); textureNode.referenceNode = this.getSelf(); return nodeObject( textureNode ); } blur( amountNode ) { const textureNode = this.clone(); textureNode.biasNode = nodeObject( amountNode ).mul( maxMipLevel( textureNode ) ); textureNode.referenceNode = this.getSelf(); return nodeObject( textureNode ); } level( levelNode ) { const textureNode = this.clone(); textureNode.levelNode = nodeObject( levelNode ); textureNode.referenceNode = this.getSelf(); return nodeObject( textureNode ); } size( levelNode ) { return textureSize( this, levelNode ); } bias( biasNode ) { const textureNode = this.clone(); textureNode.biasNode = nodeObject( biasNode ); textureNode.referenceNode = this.getSelf(); return nodeObject( textureNode ); } compare( compareNode ) { const textureNode = this.clone(); textureNode.compareNode = nodeObject( compareNode ); textureNode.referenceNode = this.getSelf(); return nodeObject( textureNode ); } grad( gradNodeX, gradNodeY ) { const textureNode = this.clone(); textureNode.gradNode = [ nodeObject( gradNodeX ), nodeObject( gradNodeY ) ]; textureNode.referenceNode = this.getSelf(); return nodeObject( textureNode ); } depth( depthNode ) { const textureNode = this.clone(); textureNode.depthNode = nodeObject( depthNode ); textureNode.referenceNode = this.getSelf(); return nodeObject( textureNode ); } // -- serialize( data ) { super.serialize( data ); data.value = this.value.toJSON( data.meta ).uuid; data.sampler = this.sampler; data.updateMatrix = this.updateMatrix; data.updateType = this.updateType; } deserialize( data ) { super.deserialize( data ); this.value = data.meta.textures[ data.value ]; this.sampler = data.sampler; this.updateMatrix = data.updateMatrix; this.updateType = data.updateType; } update() { const texture = this.value; const matrixUniform = this._matrixUniform; if ( matrixUniform !== null ) matrixUniform.value = texture.matrix; if ( texture.matrixAutoUpdate === true ) { texture.updateMatrix(); } } clone() { const newNode = new this.constructor( this.value, this.uvNode, this.levelNode, this.biasNode ); newNode.sampler = this.sampler; return newNode; } } const texture = /*@__PURE__*/ nodeProxy( TextureNode ); const textureLoad = ( ...params ) => texture( ...params ).setSampler( false ); //export const textureLevel = ( value, uv, level ) => texture( value, uv ).level( level ); const sampler = ( aTexture ) => ( aTexture.isNode === true ? aTexture : texture( aTexture ) ).convert( 'sampler' ); const cameraNear = /*@__PURE__*/ uniform( 'float' ).label( 'cameraNear' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.near ); const cameraFar = /*@__PURE__*/ uniform( 'float' ).label( 'cameraFar' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.far ); const cameraLogDepth = /*@__PURE__*/ uniform( 'float' ).label( 'cameraLogDepth' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => 2.0 / ( Math.log( camera.far + 1.0 ) / Math.LN2 ) ); const cameraProjectionMatrix = /*@__PURE__*/ uniform( 'mat4' ).label( 'cameraProjectionMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrix ); const cameraProjectionMatrixInverse = /*@__PURE__*/ uniform( 'mat4' ).label( 'cameraProjectionMatrixInverse' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.projectionMatrixInverse ); const cameraViewMatrix = /*@__PURE__*/ uniform( 'mat4' ).label( 'cameraViewMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorldInverse ); const cameraWorldMatrix = /*@__PURE__*/ uniform( 'mat4' ).label( 'cameraWorldMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.matrixWorld ); const cameraNormalMatrix = /*@__PURE__*/ uniform( 'mat3' ).label( 'cameraNormalMatrix' ).setGroup( renderGroup ).onRenderUpdate( ( { camera } ) => camera.normalMatrix ); const cameraPosition = /*@__PURE__*/ uniform( new Vector3() ).label( 'cameraPosition' ).setGroup( renderGroup ).onRenderUpdate( ( { camera }, self ) => self.value.setFromMatrixPosition( camera.matrixWorld ) ); class Object3DNode extends Node { static get type() { return 'Object3DNode'; } constructor( scope, object3d = null ) { super(); this.scope = scope; this.object3d = object3d; this.updateType = NodeUpdateType.OBJECT; this._uniformNode = new UniformNode( null ); } getNodeType() { const scope = this.scope; if ( scope === Object3DNode.WORLD_MATRIX ) { return 'mat4'; } else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) { return 'vec3'; } } update( frame ) { const object = this.object3d; const uniformNode = this._uniformNode; const scope = this.scope; if ( scope === Object3DNode.WORLD_MATRIX ) { uniformNode.value = object.matrixWorld; } else if ( scope === Object3DNode.POSITION ) { uniformNode.value = uniformNode.value || new Vector3(); uniformNode.value.setFromMatrixPosition( object.matrixWorld ); } else if ( scope === Object3DNode.SCALE ) { uniformNode.value = uniformNode.value || new Vector3(); uniformNode.value.setFromMatrixScale( object.matrixWorld ); } else if ( scope === Object3DNode.DIRECTION ) { uniformNode.value = uniformNode.value || new Vector3(); object.getWorldDirection( uniformNode.value ); } else if ( scope === Object3DNode.VIEW_POSITION ) { const camera = frame.camera; uniformNode.value = uniformNode.value || new Vector3(); uniformNode.value.setFromMatrixPosition( object.matrixWorld ); uniformNode.value.applyMatrix4( camera.matrixWorldInverse ); } } generate( builder ) { const scope = this.scope; if ( scope === Object3DNode.WORLD_MATRIX ) { this._uniformNode.nodeType = 'mat4'; } else if ( scope === Object3DNode.POSITION || scope === Object3DNode.VIEW_POSITION || scope === Object3DNode.DIRECTION || scope === Object3DNode.SCALE ) { this._uniformNode.nodeType = 'vec3'; } return this._uniformNode.build( builder ); } serialize( data ) { super.serialize( data ); data.scope = this.scope; } deserialize( data ) { super.deserialize( data ); this.scope = data.scope; } } Object3DNode.WORLD_MATRIX = 'worldMatrix'; Object3DNode.POSITION = 'position'; Object3DNode.SCALE = 'scale'; Object3DNode.VIEW_POSITION = 'viewPosition'; Object3DNode.DIRECTION = 'direction'; const objectDirection = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.DIRECTION ); const objectWorldMatrix = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.WORLD_MATRIX ); const objectPosition = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.POSITION ); const objectScale = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.SCALE ); const objectViewPosition = /*@__PURE__*/ nodeProxy( Object3DNode, Object3DNode.VIEW_POSITION ); class ModelNode extends Object3DNode { static get type() { return 'ModelNode'; } constructor( scope ) { super( scope ); } update( frame ) { this.object3d = frame.object; super.update( frame ); } } const modelDirection = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.DIRECTION ); const modelWorldMatrix = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.WORLD_MATRIX ); const modelPosition = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.POSITION ); const modelScale = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.SCALE ); const modelViewPosition = /*@__PURE__*/ nodeImmutable( ModelNode, ModelNode.VIEW_POSITION ); const modelNormalMatrix = /*@__PURE__*/ uniform( new Matrix3() ).onObjectUpdate( ( { object }, self ) => self.value.getNormalMatrix( object.matrixWorld ) ); const modelWorldMatrixInverse = /*@__PURE__*/ uniform( new Matrix4() ).onObjectUpdate( ( { object }, self ) => self.value.copy( object.matrixWorld ).invert() ); const modelViewMatrix = /*@__PURE__*/ cameraViewMatrix.mul( modelWorldMatrix ).toVar( 'modelViewMatrix_2' ); const highPrecisionModelViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { builder.context.isHighPrecisionModelViewMatrix = true; return uniform( 'mat4' ).onObjectUpdate( ( { object, camera } ) => { return object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); } ); } ).once() )().toVar( 'highPrecisionModelViewMatrix' ); const highPrecisionModelNormalViewMatrix = /*@__PURE__*/ ( Fn( ( builder ) => { const isHighPrecisionModelViewMatrix = builder.context.isHighPrecisionModelViewMatrix; return uniform( 'mat3' ).onObjectUpdate( ( { object, camera } ) => { if ( isHighPrecisionModelViewMatrix !== true ) { object.modelViewMatrix.multiplyMatrices( camera.matrixWorldInverse, object.matrixWorld ); } return object.normalMatrix.getNormalMatrix( object.modelViewMatrix ); } ); } ).once() )().toVar( 'highPrecisionModelNormalMatrix' ); const positionGeometry = /*@__PURE__*/ attribute( 'position', 'vec3' ); const positionLocal = /*@__PURE__*/ positionGeometry.varying( 'positionLocal' ); const positionPrevious = /*@__PURE__*/ positionGeometry.varying( 'positionPrevious' ); const positionWorld = /*@__PURE__*/ modelWorldMatrix.mul( positionLocal ).xyz.varying( 'v_positionWorld' ); const positionWorldDirection = /*@__PURE__*/ positionLocal.transformDirection( modelWorldMatrix ).varying( 'v_positionWorldDirection' ).normalize().toVar( 'positionWorldDirection' ); const positionView = /*@__PURE__*/ modelViewMatrix.mul( positionLocal ).xyz.varying( 'v_positionView' ); const positionViewDirection = /*@__PURE__*/ positionView.negate().varying( 'v_positionViewDirection' ).normalize().toVar( 'positionViewDirection' ); class FrontFacingNode extends Node { static get type() { return 'FrontFacingNode'; } constructor() { super( 'bool' ); this.isFrontFacingNode = true; } generate( builder ) { const { renderer, material } = builder; if ( renderer.coordinateSystem === WebGLCoordinateSystem ) { if ( material.side === BackSide ) { return 'false'; } } return builder.getFrontFacing(); } } const frontFacing = /*@__PURE__*/ nodeImmutable( FrontFacingNode ); const faceDirection = /*@__PURE__*/ float( frontFacing ).mul( 2.0 ).sub( 1.0 ); const normalGeometry = /*@__PURE__*/ attribute( 'normal', 'vec3' ); const normalLocal = /*@__PURE__*/ ( Fn( ( builder ) => { if ( builder.geometry.hasAttribute( 'normal' ) === false ) { console.warn( 'TSL.NormalNode: Vertex attribute "normal" not found on geometry.' ); return vec3( 0, 1, 0 ); } return normalGeometry; }, 'vec3' ).once() )().toVar( 'normalLocal' ); const normalFlat = /*@__PURE__*/ positionView.dFdx().cross( positionView.dFdy() ).normalize().toVar( 'normalFlat' ); const normalView = /*@__PURE__*/ ( Fn( ( builder ) => { let node; if ( builder.material.flatShading === true ) { node = normalFlat; } else { node = varying( transformNormalToView( normalLocal ), 'v_normalView' ).normalize(); } return node; }, 'vec3' ).once() )().toVar( 'normalView' ); const normalWorld = /*@__PURE__*/ varying( normalView.transformDirection( cameraViewMatrix ), 'v_normalWorld' ).normalize().toVar( 'normalWorld' ); const transformedNormalView = /*@__PURE__*/ ( Fn( ( builder ) => { return builder.context.setupNormal(); }, 'vec3' ).once() )().mul( faceDirection ).toVar( 'transformedNormalView' ); const transformedNormalWorld = /*@__PURE__*/ transformedNormalView.transformDirection( cameraViewMatrix ).toVar( 'transformedNormalWorld' ); const transformedClearcoatNormalView = /*@__PURE__*/ ( Fn( ( builder ) => { return builder.context.setupClearcoatNormal(); }, 'vec3' ).once() )().mul( faceDirection ).toVar( 'transformedClearcoatNormalView' ); const transformNormal = /*@__PURE__*/ Fn( ( [ normal, matrix = modelWorldMatrix ] ) => { const m = mat3( matrix ); const transformedNormal = normal.div( vec3( m[ 0 ].dot( m[ 0 ] ), m[ 1 ].dot( m[ 1 ] ), m[ 2 ].dot( m[ 2 ] ) ) ); return m.mul( transformedNormal ).xyz; } ); const transformNormalToView = /*@__PURE__*/ Fn( ( [ normal ], builder ) => { const modelNormalViewMatrix = builder.renderer.nodes.modelNormalViewMatrix; if ( modelNormalViewMatrix !== null ) { return modelNormalViewMatrix.transformDirection( normal ); } // const transformedNormal = modelNormalMatrix.mul( normal ); return cameraViewMatrix.transformDirection( transformedNormal ); } ); const materialRefractionRatio = /*@__PURE__*/ uniform( 0 ).onReference( ( { material } ) => material ).onRenderUpdate( ( { material } ) => material.refractionRatio ); const reflectView = /*@__PURE__*/ positionViewDirection.negate().reflect( transformedNormalView ); const refractView = /*@__PURE__*/ positionViewDirection.negate().refract( transformedNormalView, materialRefractionRatio ); const reflectVector = /*@__PURE__*/ reflectView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' ); const refractVector = /*@__PURE__*/ refractView.transformDirection( cameraViewMatrix ).toVar( 'reflectVector' ); class CubeTextureNode extends TextureNode { static get type() { return 'CubeTextureNode'; } constructor( value, uvNode = null, levelNode = null, biasNode = null ) { super( value, uvNode, levelNode, biasNode ); this.isCubeTextureNode = true; } getInputType( /*builder*/ ) { return 'cubeTexture'; } getDefaultUV() { const texture = this.value; if ( texture.mapping === CubeReflectionMapping ) { return reflectVector; } else if ( texture.mapping === CubeRefractionMapping ) { return refractVector; } else { console.error( 'THREE.CubeTextureNode: Mapping "%s" not supported.', texture.mapping ); return vec3( 0, 0, 0 ); } } setUpdateMatrix( /*updateMatrix*/ ) { } // Ignore .updateMatrix for CubeTextureNode setupUV( builder, uvNode ) { const texture = this.value; if ( builder.renderer.coordinateSystem === WebGPUCoordinateSystem || ! texture.isRenderTargetTexture ) { return vec3( uvNode.x.negate(), uvNode.yz ); } else { return uvNode; } } generateUV( builder, cubeUV ) { return cubeUV.build( builder, 'vec3' ); } } const cubeTexture = /*@__PURE__*/ nodeProxy( CubeTextureNode ); class BufferNode extends UniformNode { static get type() { return 'BufferNode'; } constructor( value, bufferType, bufferCount = 0 ) { super( value, bufferType ); this.isBufferNode = true; this.bufferType = bufferType; this.bufferCount = bufferCount; } getElementType( builder ) { return this.getNodeType( builder ); } getInputType( /*builder*/ ) { return 'buffer'; } } const buffer = ( value, type, count ) => nodeObject( new BufferNode( value, type, count ) ); class UniformArrayElementNode extends ArrayElementNode { static get type() { return 'UniformArrayElementNode'; } constructor( arrayBuffer, indexNode ) { super( arrayBuffer, indexNode ); this.isArrayBufferElementNode = true; } generate( builder ) { const snippet = super.generate( builder ); const type = this.getNodeType(); return builder.format( snippet, 'vec4', type ); } } class UniformArrayNode extends BufferNode { static get type() { return 'UniformArrayNode'; } constructor( value, elementType = null ) { super( null, 'vec4' ); this.array = value; this.elementType = elementType; this._elementType = null; this._elementLength = 0; this.updateType = NodeUpdateType.RENDER; this.isArrayBufferNode = true; } getElementType() { return this.elementType || this._elementType; } getElementLength() { return this._elementLength; } update( /*frame*/ ) { const { array, value } = this; const elementLength = this.getElementLength(); const elementType = this.getElementType(); if ( elementLength === 1 ) { for ( let i = 0; i < array.length; i ++ ) { const index = i * 4; value[ index ] = array[ i ]; } } else if ( elementType === 'color' ) { for ( let i = 0; i < array.length; i ++ ) { const index = i * 4; const vector = array[ i ]; value[ index ] = vector.r; value[ index + 1 ] = vector.g; value[ index + 2 ] = vector.b || 0; //value[ index + 3 ] = vector.a || 0; } } else { for ( let i = 0; i < array.length; i ++ ) { const index = i * 4; const vector = array[ i ]; value[ index ] = vector.x; value[ index + 1 ] = vector.y; value[ index + 2 ] = vector.z || 0; value[ index + 3 ] = vector.w || 0; } } } setup( builder ) { const length = this.array.length; this._elementType = this.elementType === null ? getValueType( this.array[ 0 ] ) : this.elementType; this._elementLength = builder.getTypeLength( this._elementType ); let arrayType = Float32Array; if ( this._elementType.charAt( 0 ) === 'i' ) arrayType = Int32Array; else if ( this._elementType.charAt( 0 ) === 'u' ) arrayType = Uint32Array; this.value = new arrayType( length * 4 ); this.bufferCount = length; this.bufferType = builder.changeComponentType( 'vec4', builder.getComponentType( this._elementType ) ); return super.setup( builder ); } element( indexNode ) { return nodeObject( new UniformArrayElementNode( this, nodeObject( indexNode ) ) ); } } const uniformArray = ( values, nodeType ) => nodeObject( new UniformArrayNode( values, nodeType ) ); // const uniforms = ( values, nodeType ) => { // @deprecated, r168 console.warn( 'TSL.UniformArrayNode: uniforms() has been renamed to uniformArray().' ); return nodeObject( new UniformArrayNode( values, nodeType ) ); }; class ReferenceElementNode extends ArrayElementNode { static get type() { return 'ReferenceElementNode'; } constructor( referenceNode, indexNode ) { super( referenceNode, indexNode ); this.referenceNode = referenceNode; this.isReferenceElementNode = true; } getNodeType() { return this.referenceNode.uniformType; } generate( builder ) { const snippet = super.generate( builder ); const arrayType = this.referenceNode.getNodeType(); const elementType = this.getNodeType(); return builder.format( snippet, arrayType, elementType ); } } // TODO: Extends this from ReferenceBaseNode class ReferenceNode extends Node { static get type() { return 'ReferenceNode'; } constructor( property, uniformType, object = null, count = null ) { super(); this.property = property; this.uniformType = uniformType; this.object = object; this.count = count; this.properties = property.split( '.' ); this.reference = object; this.node = null; this.group = null; this.name = null; this.updateType = NodeUpdateType.OBJECT; } element( indexNode ) { return nodeObject( new ReferenceElementNode( this, nodeObject( indexNode ) ) ); } setGroup( group ) { this.group = group; return this; } label( name ) { this.name = name; return this; } setNodeType( uniformType ) { let node = null; if ( this.count !== null ) { node = buffer( null, uniformType, this.count ); } else if ( Array.isArray( this.getValueFromReference() ) ) { node = uniformArray( null, uniformType ); } else if ( uniformType === 'texture' ) { node = texture( null ); } else if ( uniformType === 'cubeTexture' ) { node = cubeTexture( null ); } else { node = uniform( null, uniformType ); } if ( this.group !== null ) { node.setGroup( this.group ); } if ( this.name !== null ) node.label( this.name ); this.node = node.getSelf(); } getNodeType( builder ) { if ( this.node === null ) { this.updateReference( builder ); this.updateValue(); } return this.node.getNodeType( builder ); } getValueFromReference( object = this.reference ) { const { properties } = this; let value = object[ properties[ 0 ] ]; for ( let i = 1; i < properties.length; i ++ ) { value = value[ properties[ i ] ]; } return value; } updateReference( state ) { this.reference = this.object !== null ? this.object : state.object; return this.reference; } setup() { this.updateValue(); return this.node; } update( /*frame*/ ) { this.updateValue(); } updateValue() { if ( this.node === null ) this.setNodeType( this.uniformType ); const value = this.getValueFromReference(); if ( Array.isArray( value ) ) { this.node.array = value; } else { this.node.value = value; } } } const reference = ( name, type, object ) => nodeObject( new ReferenceNode( name, type, object ) ); const referenceBuffer = ( name, type, count, object ) => nodeObject( new ReferenceNode( name, type, object, count ) ); class MaterialReferenceNode extends ReferenceNode { static get type() { return 'MaterialReferenceNode'; } constructor( property, inputType, material = null ) { super( property, inputType, material ); this.material = material; //this.updateType = NodeUpdateType.RENDER; this.isMaterialReferenceNode = true; } /*setNodeType( node ) { super.setNodeType( node ); this.node.groupNode = renderGroup; }*/ updateReference( state ) { this.reference = this.material !== null ? this.material : state.material; return this.reference; } } const materialReference = ( name, type, material ) => nodeObject( new MaterialReferenceNode( name, type, material ) ); const tangentGeometry = /*@__PURE__*/ Fn( ( builder ) => { if ( builder.geometry.hasAttribute( 'tangent' ) === false ) { builder.geometry.computeTangents(); } return attribute( 'tangent', 'vec4' ); } )(); const tangentLocal = /*@__PURE__*/ tangentGeometry.xyz.toVar( 'tangentLocal' ); const tangentView = /*@__PURE__*/ modelViewMatrix.mul( vec4( tangentLocal, 0 ) ).xyz.varying( 'v_tangentView' ).normalize().toVar( 'tangentView' ); const tangentWorld = /*@__PURE__*/ tangentView.transformDirection( cameraViewMatrix ).varying( 'v_tangentWorld' ).normalize().toVar( 'tangentWorld' ); const transformedTangentView = /*@__PURE__*/ tangentView.toVar( 'transformedTangentView' ); const transformedTangentWorld = /*@__PURE__*/ transformedTangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedTangentWorld' ); const getBitangent = ( crossNormalTangent ) => crossNormalTangent.mul( tangentGeometry.w ).xyz; const bitangentGeometry = /*@__PURE__*/ varying( getBitangent( normalGeometry.cross( tangentGeometry ) ), 'v_bitangentGeometry' ).normalize().toVar( 'bitangentGeometry' ); const bitangentLocal = /*@__PURE__*/ varying( getBitangent( normalLocal.cross( tangentLocal ) ), 'v_bitangentLocal' ).normalize().toVar( 'bitangentLocal' ); const bitangentView = /*@__PURE__*/ varying( getBitangent( normalView.cross( tangentView ) ), 'v_bitangentView' ).normalize().toVar( 'bitangentView' ); const bitangentWorld = /*@__PURE__*/ varying( getBitangent( normalWorld.cross( tangentWorld ) ), 'v_bitangentWorld' ).normalize().toVar( 'bitangentWorld' ); const transformedBitangentView = /*@__PURE__*/ getBitangent( transformedNormalView.cross( transformedTangentView ) ).normalize().toVar( 'transformedBitangentView' ); const transformedBitangentWorld = /*@__PURE__*/ transformedBitangentView.transformDirection( cameraViewMatrix ).normalize().toVar( 'transformedBitangentWorld' ); const TBNViewMatrix = /*@__PURE__*/ mat3( tangentView, bitangentView, normalView ); const parallaxDirection = /*@__PURE__*/ positionViewDirection.mul( TBNViewMatrix )/*.normalize()*/; const parallaxUV = ( uv, scale ) => uv.sub( parallaxDirection.mul( scale ) ); const transformedBentNormalView = /*@__PURE__*/ ( () => { // https://google.github.io/filament/Filament.md.html#lighting/imagebasedlights/anisotropy let bentNormal = anisotropyB.cross( positionViewDirection ); bentNormal = bentNormal.cross( anisotropyB ).normalize(); bentNormal = mix( bentNormal, transformedNormalView, anisotropy.mul( roughness.oneMinus() ).oneMinus().pow2().pow2() ).normalize(); return bentNormal; } )(); // Normal Mapping Without Precomputed Tangents // http://www.thetenthplanet.de/archives/1180 const perturbNormal2Arb = /*@__PURE__*/ Fn( ( inputs ) => { const { eye_pos, surf_norm, mapN, uv } = inputs; const q0 = eye_pos.dFdx(); const q1 = eye_pos.dFdy(); const st0 = uv.dFdx(); const st1 = uv.dFdy(); const N = surf_norm; // normalized const q1perp = q1.cross( N ); const q0perp = N.cross( q0 ); const T = q1perp.mul( st0.x ).add( q0perp.mul( st1.x ) ); const B = q1perp.mul( st0.y ).add( q0perp.mul( st1.y ) ); const det = T.dot( T ).max( B.dot( B ) ); const scale = faceDirection.mul( det.inverseSqrt() ); return add( T.mul( mapN.x, scale ), B.mul( mapN.y, scale ), N.mul( mapN.z ) ).normalize(); } ); class NormalMapNode extends TempNode { static get type() { return 'NormalMapNode'; } constructor( node, scaleNode = null ) { super( 'vec3' ); this.node = node; this.scaleNode = scaleNode; this.normalMapType = TangentSpaceNormalMap; } setup( builder ) { const { normalMapType, scaleNode } = this; let normalMap = this.node.mul( 2.0 ).sub( 1.0 ); if ( scaleNode !== null ) { normalMap = vec3( normalMap.xy.mul( scaleNode ), normalMap.z ); } let outputNode = null; if ( normalMapType === ObjectSpaceNormalMap ) { outputNode = transformNormalToView( normalMap ); } else if ( normalMapType === TangentSpaceNormalMap ) { const tangent = builder.hasGeometryAttribute( 'tangent' ); if ( tangent === true ) { outputNode = TBNViewMatrix.mul( normalMap ).normalize(); } else { outputNode = perturbNormal2Arb( { eye_pos: positionView, surf_norm: normalView, mapN: normalMap, uv: uv() } ); } } return outputNode; } } const normalMap = /*@__PURE__*/ nodeProxy( NormalMapNode ); // Bump Mapping Unparametrized Surfaces on the GPU by Morten S. Mikkelsen // https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf const dHdxy_fwd = Fn( ( { textureNode, bumpScale } ) => { // It's used to preserve the same TextureNode instance const sampleTexture = ( callback ) => textureNode.cache().context( { getUV: ( texNode ) => callback( texNode.uvNode || uv() ), forceUVContext: true } ); const Hll = float( sampleTexture( ( uvNode ) => uvNode ) ); return vec2( float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdx() ) ) ).sub( Hll ), float( sampleTexture( ( uvNode ) => uvNode.add( uvNode.dFdy() ) ) ).sub( Hll ) ).mul( bumpScale ); } ); // Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2) const perturbNormalArb = Fn( ( inputs ) => { const { surf_pos, surf_norm, dHdxy } = inputs; // normalize is done to ensure that the bump map looks the same regardless of the texture's scale const vSigmaX = surf_pos.dFdx().normalize(); const vSigmaY = surf_pos.dFdy().normalize(); const vN = surf_norm; // normalized const R1 = vSigmaY.cross( vN ); const R2 = vN.cross( vSigmaX ); const fDet = vSigmaX.dot( R1 ).mul( faceDirection ); const vGrad = fDet.sign().mul( dHdxy.x.mul( R1 ).add( dHdxy.y.mul( R2 ) ) ); return fDet.abs().mul( surf_norm ).sub( vGrad ).normalize(); } ); class BumpMapNode extends TempNode { static get type() { return 'BumpMapNode'; } constructor( textureNode, scaleNode = null ) { super( 'vec3' ); this.textureNode = textureNode; this.scaleNode = scaleNode; } setup() { const bumpScale = this.scaleNode !== null ? this.scaleNode : 1; const dHdxy = dHdxy_fwd( { textureNode: this.textureNode, bumpScale } ); return perturbNormalArb( { surf_pos: positionView, surf_norm: normalView, dHdxy } ); } } const bumpMap = /*@__PURE__*/ nodeProxy( BumpMapNode ); const _propertyCache = new Map(); class MaterialNode extends Node { static get type() { return 'MaterialNode'; } constructor( scope ) { super(); this.scope = scope; } getCache( property, type ) { let node = _propertyCache.get( property ); if ( node === undefined ) { node = materialReference( property, type ); _propertyCache.set( property, node ); } return node; } getFloat( property ) { return this.getCache( property, 'float' ); } getColor( property ) { return this.getCache( property, 'color' ); } getTexture( property ) { return this.getCache( property === 'map' ? 'map' : property + 'Map', 'texture' ); } setup( builder ) { const material = builder.context.material; const scope = this.scope; let node = null; if ( scope === MaterialNode.COLOR ) { const colorNode = material.color !== undefined ? this.getColor( scope ) : vec3(); if ( material.map && material.map.isTexture === true ) { node = colorNode.mul( this.getTexture( 'map' ) ); } else { node = colorNode; } } else if ( scope === MaterialNode.OPACITY ) { const opacityNode = this.getFloat( scope ); if ( material.alphaMap && material.alphaMap.isTexture === true ) { node = opacityNode.mul( this.getTexture( 'alpha' ) ); } else { node = opacityNode; } } else if ( scope === MaterialNode.SPECULAR_STRENGTH ) { if ( material.specularMap && material.specularMap.isTexture === true ) { node = this.getTexture( 'specular' ).r; } else { node = float( 1 ); } } else if ( scope === MaterialNode.SPECULAR_INTENSITY ) { const specularIntensity = this.getFloat( scope ); if ( material.specularMap ) { node = specularIntensity.mul( this.getTexture( scope ).a ); } else { node = specularIntensity; } } else if ( scope === MaterialNode.SPECULAR_COLOR ) { const specularColorNode = this.getColor( scope ); if ( material.specularColorMap && material.specularColorMap.isTexture === true ) { node = specularColorNode.mul( this.getTexture( scope ).rgb ); } else { node = specularColorNode; } } else if ( scope === MaterialNode.ROUGHNESS ) { // TODO: cleanup similar branches const roughnessNode = this.getFloat( scope ); if ( material.roughnessMap && material.roughnessMap.isTexture === true ) { node = roughnessNode.mul( this.getTexture( scope ).g ); } else { node = roughnessNode; } } else if ( scope === MaterialNode.METALNESS ) { const metalnessNode = this.getFloat( scope ); if ( material.metalnessMap && material.metalnessMap.isTexture === true ) { node = metalnessNode.mul( this.getTexture( scope ).b ); } else { node = metalnessNode; } } else if ( scope === MaterialNode.EMISSIVE ) { const emissiveIntensityNode = this.getFloat( 'emissiveIntensity' ); const emissiveNode = this.getColor( scope ).mul( emissiveIntensityNode ); if ( material.emissiveMap && material.emissiveMap.isTexture === true ) { node = emissiveNode.mul( this.getTexture( scope ) ); } else { node = emissiveNode; } } else if ( scope === MaterialNode.NORMAL ) { if ( material.normalMap ) { node = normalMap( this.getTexture( 'normal' ), this.getCache( 'normalScale', 'vec2' ) ); node.normalMapType = material.normalMapType; } else if ( material.bumpMap ) { node = bumpMap( this.getTexture( 'bump' ).r, this.getFloat( 'bumpScale' ) ); } else { node = normalView; } } else if ( scope === MaterialNode.CLEARCOAT ) { const clearcoatNode = this.getFloat( scope ); if ( material.clearcoatMap && material.clearcoatMap.isTexture === true ) { node = clearcoatNode.mul( this.getTexture( scope ).r ); } else { node = clearcoatNode; } } else if ( scope === MaterialNode.CLEARCOAT_ROUGHNESS ) { const clearcoatRoughnessNode = this.getFloat( scope ); if ( material.clearcoatRoughnessMap && material.clearcoatRoughnessMap.isTexture === true ) { node = clearcoatRoughnessNode.mul( this.getTexture( scope ).r ); } else { node = clearcoatRoughnessNode; } } else if ( scope === MaterialNode.CLEARCOAT_NORMAL ) { if ( material.clearcoatNormalMap ) { node = normalMap( this.getTexture( scope ), this.getCache( scope + 'Scale', 'vec2' ) ); } else { node = normalView; } } else if ( scope === MaterialNode.SHEEN ) { const sheenNode = this.getColor( 'sheenColor' ).mul( this.getFloat( 'sheen' ) ); // Move this mul() to CPU if ( material.sheenColorMap && material.sheenColorMap.isTexture === true ) { node = sheenNode.mul( this.getTexture( 'sheenColor' ).rgb ); } else { node = sheenNode; } } else if ( scope === MaterialNode.SHEEN_ROUGHNESS ) { const sheenRoughnessNode = this.getFloat( scope ); if ( material.sheenRoughnessMap && material.sheenRoughnessMap.isTexture === true ) { node = sheenRoughnessNode.mul( this.getTexture( scope ).a ); } else { node = sheenRoughnessNode; } node = node.clamp( 0.07, 1.0 ); } else if ( scope === MaterialNode.ANISOTROPY ) { if ( material.anisotropyMap && material.anisotropyMap.isTexture === true ) { const anisotropyPolar = this.getTexture( scope ); const anisotropyMat = mat2( materialAnisotropyVector.x, materialAnisotropyVector.y, materialAnisotropyVector.y.negate(), materialAnisotropyVector.x ); node = anisotropyMat.mul( anisotropyPolar.rg.mul( 2.0 ).sub( vec2( 1.0 ) ).normalize().mul( anisotropyPolar.b ) ); } else { node = materialAnisotropyVector; } } else if ( scope === MaterialNode.IRIDESCENCE_THICKNESS ) { const iridescenceThicknessMaximum = reference( '1', 'float', material.iridescenceThicknessRange ); if ( material.iridescenceThicknessMap ) { const iridescenceThicknessMinimum = reference( '0', 'float', material.iridescenceThicknessRange ); node = iridescenceThicknessMaximum.sub( iridescenceThicknessMinimum ).mul( this.getTexture( scope ).g ).add( iridescenceThicknessMinimum ); } else { node = iridescenceThicknessMaximum; } } else if ( scope === MaterialNode.TRANSMISSION ) { const transmissionNode = this.getFloat( scope ); if ( material.transmissionMap ) { node = transmissionNode.mul( this.getTexture( scope ).r ); } else { node = transmissionNode; } } else if ( scope === MaterialNode.THICKNESS ) { const thicknessNode = this.getFloat( scope ); if ( material.thicknessMap ) { node = thicknessNode.mul( this.getTexture( scope ).g ); } else { node = thicknessNode; } } else if ( scope === MaterialNode.IOR ) { node = this.getFloat( scope ); } else if ( scope === MaterialNode.LIGHT_MAP ) { node = this.getTexture( scope ).rgb.mul( this.getFloat( 'lightMapIntensity' ) ); } else if ( scope === MaterialNode.AO_MAP ) { node = this.getTexture( scope ).r.sub( 1.0 ).mul( this.getFloat( 'aoMapIntensity' ) ).add( 1.0 ); } else { const outputType = this.getNodeType( builder ); node = this.getCache( scope, outputType ); } return node; } } MaterialNode.ALPHA_TEST = 'alphaTest'; MaterialNode.COLOR = 'color'; MaterialNode.OPACITY = 'opacity'; MaterialNode.SHININESS = 'shininess'; MaterialNode.SPECULAR = 'specular'; MaterialNode.SPECULAR_STRENGTH = 'specularStrength'; MaterialNode.SPECULAR_INTENSITY = 'specularIntensity'; MaterialNode.SPECULAR_COLOR = 'specularColor'; MaterialNode.REFLECTIVITY = 'reflectivity'; MaterialNode.ROUGHNESS = 'roughness'; MaterialNode.METALNESS = 'metalness'; MaterialNode.NORMAL = 'normal'; MaterialNode.CLEARCOAT = 'clearcoat'; MaterialNode.CLEARCOAT_ROUGHNESS = 'clearcoatRoughness'; MaterialNode.CLEARCOAT_NORMAL = 'clearcoatNormal'; MaterialNode.EMISSIVE = 'emissive'; MaterialNode.ROTATION = 'rotation'; MaterialNode.SHEEN = 'sheen'; MaterialNode.SHEEN_ROUGHNESS = 'sheenRoughness'; MaterialNode.ANISOTROPY = 'anisotropy'; MaterialNode.IRIDESCENCE = 'iridescence'; MaterialNode.IRIDESCENCE_IOR = 'iridescenceIOR'; MaterialNode.IRIDESCENCE_THICKNESS = 'iridescenceThickness'; MaterialNode.IOR = 'ior'; MaterialNode.TRANSMISSION = 'transmission'; MaterialNode.THICKNESS = 'thickness'; MaterialNode.ATTENUATION_DISTANCE = 'attenuationDistance'; MaterialNode.ATTENUATION_COLOR = 'attenuationColor'; MaterialNode.LINE_SCALE = 'scale'; MaterialNode.LINE_DASH_SIZE = 'dashSize'; MaterialNode.LINE_GAP_SIZE = 'gapSize'; MaterialNode.LINE_WIDTH = 'linewidth'; MaterialNode.LINE_DASH_OFFSET = 'dashOffset'; MaterialNode.POINT_WIDTH = 'pointWidth'; MaterialNode.DISPERSION = 'dispersion'; MaterialNode.LIGHT_MAP = 'light'; MaterialNode.AO_MAP = 'ao'; const materialAlphaTest = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ALPHA_TEST ); const materialColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.COLOR ); const materialShininess = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHININESS ); const materialEmissive = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.EMISSIVE ); const materialOpacity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.OPACITY ); const materialSpecular = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR ); const materialSpecularIntensity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_INTENSITY ); const materialSpecularColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_COLOR ); const materialSpecularStrength = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SPECULAR_STRENGTH ); const materialReflectivity = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.REFLECTIVITY ); const materialRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ROUGHNESS ); const materialMetalness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.METALNESS ); const materialNormal = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.NORMAL ).context( { getUV: null } ); const materialClearcoat = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT ); const materialClearcoatRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_ROUGHNESS ); const materialClearcoatNormal = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.CLEARCOAT_NORMAL ).context( { getUV: null } ); const materialRotation = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ROTATION ); const materialSheen = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHEEN ); const materialSheenRoughness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.SHEEN_ROUGHNESS ); const materialAnisotropy = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ANISOTROPY ); const materialIridescence = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE ); const materialIridescenceIOR = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_IOR ); const materialIridescenceThickness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IRIDESCENCE_THICKNESS ); const materialTransmission = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.TRANSMISSION ); const materialThickness = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.THICKNESS ); const materialIOR = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.IOR ); const materialAttenuationDistance = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_DISTANCE ); const materialAttenuationColor = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.ATTENUATION_COLOR ); const materialLineScale = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_SCALE ); const materialLineDashSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_SIZE ); const materialLineGapSize = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_GAP_SIZE ); const materialLineWidth = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_WIDTH ); const materialLineDashOffset = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LINE_DASH_OFFSET ); const materialPointWidth = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.POINT_WIDTH ); const materialDispersion = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.DISPERSION ); const materialLightMap = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.LIGHT_MAP ); const materialAOMap = /*@__PURE__*/ nodeImmutable( MaterialNode, MaterialNode.AO_MAP ); const materialAnisotropyVector = /*@__PURE__*/ uniform( new Vector2() ).onReference( function ( frame ) { return frame.material; } ).onRenderUpdate( function ( { material } ) { this.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) ); } ); class ModelViewProjectionNode extends TempNode { static get type() { return 'ModelViewProjectionNode'; } constructor( positionNode = null ) { super( 'vec4' ); this.positionNode = positionNode; } setup( builder ) { if ( builder.shaderStage === 'fragment' ) { return varying( builder.context.mvp ); } const position = this.positionNode || positionLocal; const viewMatrix = builder.renderer.nodes.modelViewMatrix || modelViewMatrix; return cameraProjectionMatrix.mul( viewMatrix ).mul( position ); } } const modelViewProjection = /*@__PURE__*/ nodeProxy( ModelViewProjectionNode ); class IndexNode extends Node { static get type() { return 'IndexNode'; } constructor( scope ) { super( 'uint' ); this.scope = scope; this.isInstanceIndexNode = true; } generate( builder ) { const nodeType = this.getNodeType( builder ); const scope = this.scope; let propertyName; if ( scope === IndexNode.VERTEX ) { // The index of a vertex within a mesh. propertyName = builder.getVertexIndex(); } else if ( scope === IndexNode.INSTANCE ) { // The index of either a mesh instance or an invocation of a compute shader. propertyName = builder.getInstanceIndex(); } else if ( scope === IndexNode.DRAW ) { // The index of a draw call. propertyName = builder.getDrawIndex(); } else if ( scope === IndexNode.INVOCATION_LOCAL ) { // The index of a compute invocation within the scope of a workgroup load. propertyName = builder.getInvocationLocalIndex(); } else if ( scope === IndexNode.INVOCATION_SUBGROUP ) { // The index of a compute invocation within the scope of a subgroup. propertyName = builder.getInvocationSubgroupIndex(); } else if ( scope === IndexNode.SUBGROUP ) { // The index of the subgroup the current compute invocation belongs to. propertyName = builder.getSubgroupIndex(); } else { throw new Error( 'THREE.IndexNode: Unknown scope: ' + scope ); } let output; if ( builder.shaderStage === 'vertex' || builder.shaderStage === 'compute' ) { output = propertyName; } else { const nodeVarying = varying( this ); output = nodeVarying.build( builder, nodeType ); } return output; } } IndexNode.VERTEX = 'vertex'; IndexNode.INSTANCE = 'instance'; IndexNode.SUBGROUP = 'subgroup'; IndexNode.INVOCATION_LOCAL = 'invocationLocal'; IndexNode.INVOCATION_SUBGROUP = 'invocationSubgroup'; IndexNode.DRAW = 'draw'; const vertexIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.VERTEX ); const instanceIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INSTANCE ); const subgroupIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.SUBGROUP ); const invocationSubgroupIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INVOCATION_SUBGROUP ); const invocationLocalIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.INVOCATION_LOCAL ); const drawIndex = /*@__PURE__*/ nodeImmutable( IndexNode, IndexNode.DRAW ); class InstanceNode extends Node { static get type() { return 'InstanceNode'; } constructor( instanceMesh ) { super( 'void' ); this.instanceMesh = instanceMesh; this.instanceMatrixNode = null; this.instanceColorNode = null; this.updateType = NodeUpdateType.FRAME; this.buffer = null; this.bufferColor = null; } setup( builder ) { let instanceMatrixNode = this.instanceMatrixNode; let instanceColorNode = this.instanceColorNode; const instanceMesh = this.instanceMesh; if ( instanceMatrixNode === null ) { const instanceAttribute = instanceMesh.instanceMatrix; // Both WebGPU and WebGL backends have UBO max limited to 64kb. Matrix count number bigger than 1000 ( 16 * 4 * 1000 = 64kb ) will fallback to attribute. if ( instanceMesh.count <= 1000 ) { instanceMatrixNode = buffer( instanceAttribute.array, 'mat4', Math.max( instanceMesh.count, 1 ) ).element( instanceIndex ); } else { const buffer = new InstancedInterleavedBuffer( instanceAttribute.array, 16, 1 ); this.buffer = buffer; const bufferFn = instanceAttribute.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute; const instanceBuffers = [ // F.Signature -> bufferAttribute( array, type, stride, offset ) bufferFn( buffer, 'vec4', 16, 0 ), bufferFn( buffer, 'vec4', 16, 4 ), bufferFn( buffer, 'vec4', 16, 8 ), bufferFn( buffer, 'vec4', 16, 12 ) ]; instanceMatrixNode = mat4( ...instanceBuffers ); } this.instanceMatrixNode = instanceMatrixNode; } const instanceColorAttribute = instanceMesh.instanceColor; if ( instanceColorAttribute && instanceColorNode === null ) { const buffer = new InstancedBufferAttribute( instanceColorAttribute.array, 3 ); const bufferFn = instanceColorAttribute.usage === DynamicDrawUsage ? instancedDynamicBufferAttribute : instancedBufferAttribute; this.bufferColor = buffer; instanceColorNode = vec3( bufferFn( buffer, 'vec3', 3, 0 ) ); this.instanceColorNode = instanceColorNode; } // POSITION const instancePosition = instanceMatrixNode.mul( positionLocal ).xyz; positionLocal.assign( instancePosition ); // NORMAL if ( builder.hasGeometryAttribute( 'normal' ) ) { const instanceNormal = transformNormal( normalLocal, instanceMatrixNode ); // ASSIGNS normalLocal.assign( instanceNormal ); } // COLOR if ( this.instanceColorNode !== null ) { varyingProperty( 'vec3', 'vInstanceColor' ).assign( this.instanceColorNode ); } } update( /*frame*/ ) { if ( this.instanceMesh.instanceMatrix.usage !== DynamicDrawUsage && this.buffer != null && this.instanceMesh.instanceMatrix.version !== this.buffer.version ) { this.buffer.version = this.instanceMesh.instanceMatrix.version; } if ( this.instanceMesh.instanceColor && this.instanceMesh.instanceColor.usage !== DynamicDrawUsage && this.bufferColor != null && this.instanceMesh.instanceColor.version !== this.bufferColor.version ) { this.bufferColor.version = this.instanceMesh.instanceColor.version; } } } const instance = /*@__PURE__*/ nodeProxy( InstanceNode ); class BatchNode extends Node { static get type() { return 'BatchNode'; } constructor( batchMesh ) { super( 'void' ); this.batchMesh = batchMesh; this.batchingIdNode = null; } setup( builder ) { // POSITION if ( this.batchingIdNode === null ) { if ( builder.getDrawIndex() === null ) { this.batchingIdNode = instanceIndex; } else { this.batchingIdNode = drawIndex; } } const getIndirectIndex = Fn( ( [ id ] ) => { const size = textureSize( textureLoad( this.batchMesh._indirectTexture ), 0 ); const x = int( id ).modInt( int( size ) ); const y = int( id ).div( int( size ) ); return textureLoad( this.batchMesh._indirectTexture, ivec2( x, y ) ).x; } ).setLayout( { name: 'getIndirectIndex', type: 'uint', inputs: [ { name: 'id', type: 'int' } ] } ); const indirectId = getIndirectIndex( int( this.batchingIdNode ) ); const matricesTexture = this.batchMesh._matricesTexture; const size = textureSize( textureLoad( matricesTexture ), 0 ); const j = float( indirectId ).mul( 4 ).toInt().toVar(); const x = j.modInt( size ); const y = j.div( int( size ) ); const batchingMatrix = mat4( textureLoad( matricesTexture, ivec2( x, y ) ), textureLoad( matricesTexture, ivec2( x.add( 1 ), y ) ), textureLoad( matricesTexture, ivec2( x.add( 2 ), y ) ), textureLoad( matricesTexture, ivec2( x.add( 3 ), y ) ) ); const colorsTexture = this.batchMesh._colorsTexture; if ( colorsTexture !== null ) { const getBatchingColor = Fn( ( [ id ] ) => { const size = textureSize( textureLoad( colorsTexture ), 0 ).x; const j = id; const x = j.modInt( size ); const y = j.div( size ); return textureLoad( colorsTexture, ivec2( x, y ) ).rgb; } ).setLayout( { name: 'getBatchingColor', type: 'vec3', inputs: [ { name: 'id', type: 'int' } ] } ); const color = getBatchingColor( indirectId ); varyingProperty( 'vec3', 'vBatchColor' ).assign( color ); } const bm = mat3( batchingMatrix ); positionLocal.assign( batchingMatrix.mul( positionLocal ) ); const transformedNormal = normalLocal.div( vec3( bm[ 0 ].dot( bm[ 0 ] ), bm[ 1 ].dot( bm[ 1 ] ), bm[ 2 ].dot( bm[ 2 ] ) ) ); const batchingNormal = bm.mul( transformedNormal ).xyz; normalLocal.assign( batchingNormal ); if ( builder.hasGeometryAttribute( 'tangent' ) ) { tangentLocal.mulAssign( bm ); } } } const batch = /*@__PURE__*/ nodeProxy( BatchNode ); const _frameId = new WeakMap(); class SkinningNode extends Node { static get type() { return 'SkinningNode'; } constructor( skinnedMesh, useReference = false ) { super( 'void' ); this.skinnedMesh = skinnedMesh; this.useReference = useReference; this.updateType = NodeUpdateType.OBJECT; // this.skinIndexNode = attribute( 'skinIndex', 'uvec4' ); this.skinWeightNode = attribute( 'skinWeight', 'vec4' ); let bindMatrixNode, bindMatrixInverseNode, boneMatricesNode; if ( useReference ) { bindMatrixNode = reference( 'bindMatrix', 'mat4' ); bindMatrixInverseNode = reference( 'bindMatrixInverse', 'mat4' ); boneMatricesNode = referenceBuffer( 'skeleton.boneMatrices', 'mat4', skinnedMesh.skeleton.bones.length ); } else { bindMatrixNode = uniform( skinnedMesh.bindMatrix, 'mat4' ); bindMatrixInverseNode = uniform( skinnedMesh.bindMatrixInverse, 'mat4' ); boneMatricesNode = buffer( skinnedMesh.skeleton.boneMatrices, 'mat4', skinnedMesh.skeleton.bones.length ); } this.bindMatrixNode = bindMatrixNode; this.bindMatrixInverseNode = bindMatrixInverseNode; this.boneMatricesNode = boneMatricesNode; this.previousBoneMatricesNode = null; } getSkinnedPosition( boneMatrices = this.boneMatricesNode, position = positionLocal ) { const { skinIndexNode, skinWeightNode, bindMatrixNode, bindMatrixInverseNode } = this; const boneMatX = boneMatrices.element( skinIndexNode.x ); const boneMatY = boneMatrices.element( skinIndexNode.y ); const boneMatZ = boneMatrices.element( skinIndexNode.z ); const boneMatW = boneMatrices.element( skinIndexNode.w ); // POSITION const skinVertex = bindMatrixNode.mul( position ); const skinned = add( boneMatX.mul( skinWeightNode.x ).mul( skinVertex ), boneMatY.mul( skinWeightNode.y ).mul( skinVertex ), boneMatZ.mul( skinWeightNode.z ).mul( skinVertex ), boneMatW.mul( skinWeightNode.w ).mul( skinVertex ) ); return bindMatrixInverseNode.mul( skinned ).xyz; } getSkinnedNormal( boneMatrices = this.boneMatricesNode, normal = normalLocal ) { const { skinIndexNode, skinWeightNode, bindMatrixNode, bindMatrixInverseNode } = this; const boneMatX = boneMatrices.element( skinIndexNode.x ); const boneMatY = boneMatrices.element( skinIndexNode.y ); const boneMatZ = boneMatrices.element( skinIndexNode.z ); const boneMatW = boneMatrices.element( skinIndexNode.w ); // NORMAL let skinMatrix = add( skinWeightNode.x.mul( boneMatX ), skinWeightNode.y.mul( boneMatY ), skinWeightNode.z.mul( boneMatZ ), skinWeightNode.w.mul( boneMatW ) ); skinMatrix = bindMatrixInverseNode.mul( skinMatrix ).mul( bindMatrixNode ); return skinMatrix.transformDirection( normal ).xyz; } getPreviousSkinnedPosition( builder ) { const skinnedMesh = builder.object; if ( this.previousBoneMatricesNode === null ) { skinnedMesh.skeleton.previousBoneMatrices = new Float32Array( skinnedMesh.skeleton.boneMatrices ); this.previousBoneMatricesNode = referenceBuffer( 'skeleton.previousBoneMatrices', 'mat4', skinnedMesh.skeleton.bones.length ); } return this.getSkinnedPosition( this.previousBoneMatricesNode, positionPrevious ); } needsPreviousBoneMatrices( builder ) { const mrt = builder.renderer.getMRT(); return mrt && mrt.has( 'velocity' ); } setup( builder ) { if ( this.needsPreviousBoneMatrices( builder ) ) { positionPrevious.assign( this.getPreviousSkinnedPosition( builder ) ); } const skinPosition = this.getSkinnedPosition(); positionLocal.assign( skinPosition ); if ( builder.hasGeometryAttribute( 'normal' ) ) { const skinNormal = this.getSkinnedNormal(); normalLocal.assign( skinNormal ); if ( builder.hasGeometryAttribute( 'tangent' ) ) { tangentLocal.assign( skinNormal ); } } } generate( builder, output ) { if ( output !== 'void' ) { return positionLocal.build( builder, output ); } } update( frame ) { const object = this.useReference ? frame.object : this.skinnedMesh; const skeleton = object.skeleton; if ( _frameId.get( skeleton ) === frame.frameId ) return; _frameId.set( skeleton, frame.frameId ); if ( this.previousBoneMatricesNode !== null ) skeleton.previousBoneMatrices.set( skeleton.boneMatrices ); skeleton.update(); } } const skinning = ( skinnedMesh ) => nodeObject( new SkinningNode( skinnedMesh ) ); const skinningReference = ( skinnedMesh ) => nodeObject( new SkinningNode( skinnedMesh, true ) ); class LoopNode extends Node { static get type() { return 'LoopNode'; } constructor( params = [] ) { super(); this.params = params; } getVarName( index ) { return String.fromCharCode( 'i'.charCodeAt() + index ); } getProperties( builder ) { const properties = builder.getNodeProperties( this ); if ( properties.stackNode !== undefined ) return properties; // const inputs = {}; for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) { const param = this.params[ i ]; const name = ( param.isNode !== true && param.name ) || this.getVarName( i ); const type = ( param.isNode !== true && param.type ) || 'int'; inputs[ name ] = expression( name, type ); } const stack = builder.addStack(); // TODO: cache() it properties.returnsNode = this.params[ this.params.length - 1 ]( inputs, stack, builder ); properties.stackNode = stack; builder.removeStack(); return properties; } getNodeType( builder ) { const { returnsNode } = this.getProperties( builder ); return returnsNode ? returnsNode.getNodeType( builder ) : 'void'; } setup( builder ) { // setup properties this.getProperties( builder ); } generate( builder ) { const properties = this.getProperties( builder ); const params = this.params; const stackNode = properties.stackNode; for ( let i = 0, l = params.length - 1; i < l; i ++ ) { const param = params[ i ]; let start = null, end = null, name = null, type = null, condition = null, update = null; if ( param.isNode ) { type = 'int'; name = this.getVarName( i ); start = '0'; end = param.build( builder, type ); condition = '<'; } else { type = param.type || 'int'; name = param.name || this.getVarName( i ); start = param.start; end = param.end; condition = param.condition; update = param.update; if ( typeof start === 'number' ) start = start.toString(); else if ( start && start.isNode ) start = start.build( builder, type ); if ( typeof end === 'number' ) end = end.toString(); else if ( end && end.isNode ) end = end.build( builder, type ); if ( start !== undefined && end === undefined ) { start = start + ' - 1'; end = '0'; condition = '>='; } else if ( end !== undefined && start === undefined ) { start = '0'; condition = '<'; } if ( condition === undefined ) { if ( Number( start ) > Number( end ) ) { condition = '>='; } else { condition = '<'; } } } const internalParam = { start, end, condition }; // const startSnippet = internalParam.start; const endSnippet = internalParam.end; let declarationSnippet = ''; let conditionalSnippet = ''; let updateSnippet = ''; if ( ! update ) { if ( type === 'int' || type === 'uint' ) { if ( condition.includes( '<' ) ) update = '++'; else update = '--'; } else { if ( condition.includes( '<' ) ) update = '+= 1.'; else update = '-= 1.'; } } declarationSnippet += builder.getVar( type, name ) + ' = ' + startSnippet; conditionalSnippet += name + ' ' + condition + ' ' + endSnippet; updateSnippet += name + ' ' + update; const forSnippet = `for ( ${ declarationSnippet }; ${ conditionalSnippet }; ${ updateSnippet } )`; builder.addFlowCode( ( i === 0 ? '\n' : '' ) + builder.tab + forSnippet + ' {\n\n' ).addFlowTab(); } const stackSnippet = stackNode.build( builder, 'void' ); const returnsSnippet = properties.returnsNode ? properties.returnsNode.build( builder ) : ''; builder.removeFlowTab().addFlowCode( '\n' + builder.tab + stackSnippet ); for ( let i = 0, l = this.params.length - 1; i < l; i ++ ) { builder.addFlowCode( ( i === 0 ? '' : builder.tab ) + '}\n\n' ).removeFlowTab(); } builder.addFlowTab(); return returnsSnippet; } } const Loop = ( ...params ) => nodeObject( new LoopNode( nodeArray( params, 'int' ) ) ).append(); const Continue = () => expression( 'continue' ).append(); const Break = () => expression( 'break' ).append(); // const loop = ( ...params ) => { // @deprecated, r168 console.warn( 'TSL.LoopNode: loop() has been renamed to Loop().' ); return Loop( ...params ); }; const _morphTextures = /*@__PURE__*/ new WeakMap(); const _morphVec4 = /*@__PURE__*/ new Vector4(); const getMorph = /*@__PURE__*/ Fn( ( { bufferMap, influence, stride, width, depth, offset } ) => { const texelIndex = int( vertexIndex ).mul( stride ).add( offset ); const y = texelIndex.div( width ); const x = texelIndex.sub( y.mul( width ) ); const bufferAttrib = textureLoad( bufferMap, ivec2( x, y ) ).depth( depth ); return bufferAttrib.mul( influence ); } ); function getEntry( geometry ) { const hasMorphPosition = geometry.morphAttributes.position !== undefined; const hasMorphNormals = geometry.morphAttributes.normal !== undefined; const hasMorphColors = geometry.morphAttributes.color !== undefined; // instead of using attributes, the WebGL 2 code path encodes morph targets // into an array of data textures. Each layer represents a single morph target. const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; let entry = _morphTextures.get( geometry ); if ( entry === undefined || entry.count !== morphTargetsCount ) { if ( entry !== undefined ) entry.texture.dispose(); const morphTargets = geometry.morphAttributes.position || []; const morphNormals = geometry.morphAttributes.normal || []; const morphColors = geometry.morphAttributes.color || []; let vertexDataCount = 0; if ( hasMorphPosition === true ) vertexDataCount = 1; if ( hasMorphNormals === true ) vertexDataCount = 2; if ( hasMorphColors === true ) vertexDataCount = 3; let width = geometry.attributes.position.count * vertexDataCount; let height = 1; const maxTextureSize = 4096; // @TODO: Use 'capabilities.maxTextureSize' if ( width > maxTextureSize ) { height = Math.ceil( width / maxTextureSize ); width = maxTextureSize; } const buffer = new Float32Array( width * height * 4 * morphTargetsCount ); const bufferTexture = new DataArrayTexture( buffer, width, height, morphTargetsCount ); bufferTexture.type = FloatType; bufferTexture.needsUpdate = true; // fill buffer const vertexDataStride = vertexDataCount * 4; for ( let i = 0; i < morphTargetsCount; i ++ ) { const morphTarget = morphTargets[ i ]; const morphNormal = morphNormals[ i ]; const morphColor = morphColors[ i ]; const offset = width * height * 4 * i; for ( let j = 0; j < morphTarget.count; j ++ ) { const stride = j * vertexDataStride; if ( hasMorphPosition === true ) { _morphVec4.fromBufferAttribute( morphTarget, j ); buffer[ offset + stride + 0 ] = _morphVec4.x; buffer[ offset + stride + 1 ] = _morphVec4.y; buffer[ offset + stride + 2 ] = _morphVec4.z; buffer[ offset + stride + 3 ] = 0; } if ( hasMorphNormals === true ) { _morphVec4.fromBufferAttribute( morphNormal, j ); buffer[ offset + stride + 4 ] = _morphVec4.x; buffer[ offset + stride + 5 ] = _morphVec4.y; buffer[ offset + stride + 6 ] = _morphVec4.z; buffer[ offset + stride + 7 ] = 0; } if ( hasMorphColors === true ) { _morphVec4.fromBufferAttribute( morphColor, j ); buffer[ offset + stride + 8 ] = _morphVec4.x; buffer[ offset + stride + 9 ] = _morphVec4.y; buffer[ offset + stride + 10 ] = _morphVec4.z; buffer[ offset + stride + 11 ] = ( morphColor.itemSize === 4 ) ? _morphVec4.w : 1; } } } entry = { count: morphTargetsCount, texture: bufferTexture, stride: vertexDataCount, size: new Vector2( width, height ) }; _morphTextures.set( geometry, entry ); function disposeTexture() { bufferTexture.dispose(); _morphTextures.delete( geometry ); geometry.removeEventListener( 'dispose', disposeTexture ); } geometry.addEventListener( 'dispose', disposeTexture ); } return entry; } class MorphNode extends Node { static get type() { return 'MorphNode'; } constructor( mesh ) { super( 'void' ); this.mesh = mesh; this.morphBaseInfluence = uniform( 1 ); this.updateType = NodeUpdateType.OBJECT; } setup( builder ) { const { geometry } = builder; const hasMorphPosition = geometry.morphAttributes.position !== undefined; const hasMorphNormals = geometry.hasAttribute( 'normal' ) && geometry.morphAttributes.normal !== undefined; const morphAttribute = geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color; const morphTargetsCount = ( morphAttribute !== undefined ) ? morphAttribute.length : 0; // nodes const { texture: bufferMap, stride, size } = getEntry( geometry ); if ( hasMorphPosition === true ) positionLocal.mulAssign( this.morphBaseInfluence ); if ( hasMorphNormals === true ) normalLocal.mulAssign( this.morphBaseInfluence ); const width = int( size.width ); Loop( morphTargetsCount, ( { i } ) => { const influence = float( 0 ).toVar(); if ( this.mesh.count > 1 && ( this.mesh.morphTexture !== null && this.mesh.morphTexture !== undefined ) ) { influence.assign( textureLoad( this.mesh.morphTexture, ivec2( int( i ).add( 1 ), int( instanceIndex ) ) ).r ); } else { influence.assign( reference( 'morphTargetInfluences', 'float' ).element( i ).toVar() ); } if ( hasMorphPosition === true ) { positionLocal.addAssign( getMorph( { bufferMap, influence, stride, width, depth: i, offset: int( 0 ) } ) ); } if ( hasMorphNormals === true ) { normalLocal.addAssign( getMorph( { bufferMap, influence, stride, width, depth: i, offset: int( 1 ) } ) ); } } ); } update() { const morphBaseInfluence = this.morphBaseInfluence; if ( this.mesh.geometry.morphTargetsRelative ) { morphBaseInfluence.value = 1; } else { morphBaseInfluence.value = 1 - this.mesh.morphTargetInfluences.reduce( ( a, b ) => a + b, 0 ); } } } const morphReference = /*@__PURE__*/ nodeProxy( MorphNode ); const sortLights = ( lights ) => { return lights.sort( ( a, b ) => a.id - b.id ); }; const getLightNodeById = ( id, lightNodes ) => { for ( const lightNode of lightNodes ) { if ( lightNode.isAnalyticLightNode && lightNode.light.id === id ) { return lightNode; } } return null; }; const _lightsNodeRef = /*@__PURE__*/ new WeakMap(); class LightsNode extends Node { static get type() { return 'LightsNode'; } constructor( lights = [] ) { super( 'vec3' ); this.totalDiffuseNode = vec3().toVar( 'totalDiffuse' ); this.totalSpecularNode = vec3().toVar( 'totalSpecular' ); this.outgoingLightNode = vec3().toVar( 'outgoingLight' ); this._lights = lights; this._lightNodes = null; this._lightNodesHash = null; this.global = true; } getHash( builder ) { if ( this._lightNodesHash === null ) { if ( this._lightNodes === null ) this.setupLightsNode( builder ); const hash = []; for ( const lightNode of this._lightNodes ) { hash.push( lightNode.getHash() ); } this._lightNodesHash = 'lights-' + hash.join( ',' ); } return this._lightNodesHash; } analyze( builder ) { const properties = builder.getDataFromNode( this ); for ( const node of properties.nodes ) { node.build( builder ); } } setupLightsNode( builder ) { const lightNodes = []; const previousLightNodes = this._lightNodes; const lights = sortLights( this._lights ); const nodeLibrary = builder.renderer.nodes.library; for ( const light of lights ) { if ( light.isNode ) { lightNodes.push( nodeObject( light ) ); } else { let lightNode = null; if ( previousLightNodes !== null ) { lightNode = getLightNodeById( light.id, previousLightNodes ); // resuse existing light node } if ( lightNode === null ) { const lightNodeClass = nodeLibrary.getLightNodeClass( light.constructor ); if ( lightNodeClass === null ) { console.warn( `LightsNode.setupNodeLights: Light node not found for ${ light.constructor.name }` ); continue; } let lightNode = null; if ( ! _lightsNodeRef.has( light ) ) { lightNode = new lightNodeClass( light ); _lightsNodeRef.set( light, lightNode ); } else { lightNode = _lightsNodeRef.get( light ); } lightNodes.push( lightNode ); } } } this._lightNodes = lightNodes; } setup( builder ) { if ( this._lightNodes === null ) this.setupLightsNode( builder ); const context = builder.context; const lightingModel = context.lightingModel; let outgoingLightNode = this.outgoingLightNode; if ( lightingModel ) { const { _lightNodes, totalDiffuseNode, totalSpecularNode } = this; context.outgoingLight = outgoingLightNode; const stack = builder.addStack(); // const properties = builder.getDataFromNode( this ); properties.nodes = stack.nodes; // lightingModel.start( context, stack, builder ); // lights for ( const lightNode of _lightNodes ) { lightNode.build( builder ); } // lightingModel.indirect( context, stack, builder ); // const { backdrop, backdropAlpha } = context; const { directDiffuse, directSpecular, indirectDiffuse, indirectSpecular } = context.reflectedLight; let totalDiffuse = directDiffuse.add( indirectDiffuse ); if ( backdrop !== null ) { if ( backdropAlpha !== null ) { totalDiffuse = vec3( backdropAlpha.mix( totalDiffuse, backdrop ) ); } else { totalDiffuse = vec3( backdrop ); } context.material.transparent = true; } totalDiffuseNode.assign( totalDiffuse ); totalSpecularNode.assign( directSpecular.add( indirectSpecular ) ); outgoingLightNode.assign( totalDiffuseNode.add( totalSpecularNode ) ); // lightingModel.finish( context, stack, builder ); // outgoingLightNode = outgoingLightNode.bypass( builder.removeStack() ); } return outgoingLightNode; } setLights( lights ) { this._lights = lights; this._lightNodes = null; this._lightNodesHash = null; return this; } getLights() { return this._lights; } } const lights = /*@__PURE__*/ nodeProxy( LightsNode ); class LightingNode extends Node { static get type() { return 'LightingNode'; } constructor() { super( 'vec3' ); this.isLightingNode = true; } generate( /*builder*/ ) { console.warn( 'Abstract function.' ); } } class AONode extends LightingNode { static get type() { return 'AONode'; } constructor( aoNode = null ) { super(); this.aoNode = aoNode; } setup( builder ) { builder.context.ambientOcclusion.mulAssign( this.aoNode ); } } class LightingContextNode extends ContextNode { static get type() { return 'LightingContextNode'; } constructor( node, lightingModel = null, backdropNode = null, backdropAlphaNode = null ) { super( node ); this.lightingModel = lightingModel; this.backdropNode = backdropNode; this.backdropAlphaNode = backdropAlphaNode; this._value = null; } getContext() { const { backdropNode, backdropAlphaNode } = this; const directDiffuse = vec3().toVar( 'directDiffuse' ), directSpecular = vec3().toVar( 'directSpecular' ), indirectDiffuse = vec3().toVar( 'indirectDiffuse' ), indirectSpecular = vec3().toVar( 'indirectSpecular' ); const reflectedLight = { directDiffuse, directSpecular, indirectDiffuse, indirectSpecular }; const context = { radiance: vec3().toVar( 'radiance' ), irradiance: vec3().toVar( 'irradiance' ), iblIrradiance: vec3().toVar( 'iblIrradiance' ), ambientOcclusion: float( 1 ).toVar( 'ambientOcclusion' ), reflectedLight, backdrop: backdropNode, backdropAlpha: backdropAlphaNode }; return context; } setup( builder ) { this.value = this._value || ( this._value = this.getContext() ); this.value.lightingModel = this.lightingModel || builder.context.lightingModel; return super.setup( builder ); } } const lightingContext = /*@__PURE__*/ nodeProxy( LightingContextNode ); class IrradianceNode extends LightingNode { static get type() { return 'IrradianceNode'; } constructor( node ) { super(); this.node = node; } setup( builder ) { builder.context.irradiance.addAssign( this.node ); } } let screenSizeVec, viewportVec; class ScreenNode extends Node { static get type() { return 'ScreenNode'; } constructor( scope ) { super(); this.scope = scope; this.isViewportNode = true; } getNodeType() { if ( this.scope === ScreenNode.VIEWPORT ) return 'vec4'; else return 'vec2'; } getUpdateType() { let updateType = NodeUpdateType.NONE; if ( this.scope === ScreenNode.SIZE || this.scope === ScreenNode.VIEWPORT ) { updateType = NodeUpdateType.RENDER; } this.updateType = updateType; return updateType; } update( { renderer } ) { const renderTarget = renderer.getRenderTarget(); if ( this.scope === ScreenNode.VIEWPORT ) { if ( renderTarget !== null ) { viewportVec.copy( renderTarget.viewport ); } else { renderer.getViewport( viewportVec ); viewportVec.multiplyScalar( renderer.getPixelRatio() ); } } else { if ( renderTarget !== null ) { screenSizeVec.width = renderTarget.width; screenSizeVec.height = renderTarget.height; } else { renderer.getDrawingBufferSize( screenSizeVec ); } } } setup( /*builder*/ ) { const scope = this.scope; let output = null; if ( scope === ScreenNode.SIZE ) { output = uniform( screenSizeVec || ( screenSizeVec = new Vector2() ) ); } else if ( scope === ScreenNode.VIEWPORT ) { output = uniform( viewportVec || ( viewportVec = new Vector4() ) ); } else { output = vec2( screenCoordinate.div( screenSize ) ); } return output; } generate( builder ) { if ( this.scope === ScreenNode.COORDINATE ) { let coord = builder.getFragCoord(); if ( builder.isFlipY() ) { // follow webgpu standards const size = builder.getNodeProperties( screenSize ).outputNode.build( builder ); coord = `${ builder.getType( 'vec2' ) }( ${ coord }.x, ${ size }.y - ${ coord }.y )`; } return coord; } return super.generate( builder ); } } ScreenNode.COORDINATE = 'coordinate'; ScreenNode.VIEWPORT = 'viewport'; ScreenNode.SIZE = 'size'; ScreenNode.UV = 'uv'; // Screen const screenUV = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.UV ); const screenSize = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.SIZE ); const screenCoordinate = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.COORDINATE ); // Viewport const viewport = /*@__PURE__*/ nodeImmutable( ScreenNode, ScreenNode.VIEWPORT ); const viewportSize = viewport.zw; const viewportCoordinate = /*@__PURE__*/ screenCoordinate.sub( viewport.xy ); const viewportUV = /*@__PURE__*/ viewportCoordinate.div( viewportSize ); // Deprecated const viewportResolution = /*@__PURE__*/ ( Fn( () => { // @deprecated, r169 console.warn( 'TSL.ViewportNode: "viewportResolution" is deprecated. Use "screenSize" instead.' ); return screenSize; }, 'vec2' ).once() )(); const viewportTopLeft = /*@__PURE__*/ ( Fn( () => { // @deprecated, r168 console.warn( 'TSL.ViewportNode: "viewportTopLeft" is deprecated. Use "screenUV" instead.' ); return screenUV; }, 'vec2' ).once() )(); const viewportBottomLeft = /*@__PURE__*/ ( Fn( () => { // @deprecated, r168 console.warn( 'TSL.ViewportNode: "viewportBottomLeft" is deprecated. Use "screenUV.flipY()" instead.' ); return screenUV.flipY(); }, 'vec2' ).once() )(); const _size$9 = /*@__PURE__*/ new Vector2(); class ViewportTextureNode extends TextureNode { static get type() { return 'ViewportTextureNode'; } constructor( uvNode = screenUV, levelNode = null, framebufferTexture = null ) { if ( framebufferTexture === null ) { framebufferTexture = new FramebufferTexture(); framebufferTexture.minFilter = LinearMipmapLinearFilter; } super( framebufferTexture, uvNode, levelNode ); this.generateMipmaps = false; this.isOutputTextureNode = true; this.updateBeforeType = NodeUpdateType.FRAME; } updateBefore( frame ) { const renderer = frame.renderer; renderer.getDrawingBufferSize( _size$9 ); // const framebufferTexture = this.value; if ( framebufferTexture.image.width !== _size$9.width || framebufferTexture.image.height !== _size$9.height ) { framebufferTexture.image.width = _size$9.width; framebufferTexture.image.height = _size$9.height; framebufferTexture.needsUpdate = true; } // const currentGenerateMipmaps = framebufferTexture.generateMipmaps; framebufferTexture.generateMipmaps = this.generateMipmaps; renderer.copyFramebufferToTexture( framebufferTexture ); framebufferTexture.generateMipmaps = currentGenerateMipmaps; } clone() { const viewportTextureNode = new this.constructor( this.uvNode, this.levelNode, this.value ); viewportTextureNode.generateMipmaps = this.generateMipmaps; return viewportTextureNode; } } const viewportTexture = /*@__PURE__*/ nodeProxy( ViewportTextureNode ); const viewportMipTexture = /*@__PURE__*/ nodeProxy( ViewportTextureNode, null, null, { generateMipmaps: true } ); let sharedDepthbuffer = null; class ViewportDepthTextureNode extends ViewportTextureNode { static get type() { return 'ViewportDepthTextureNode'; } constructor( uvNode = screenUV, levelNode = null ) { if ( sharedDepthbuffer === null ) { sharedDepthbuffer = new DepthTexture(); } super( uvNode, levelNode, sharedDepthbuffer ); } } const viewportDepthTexture = /*@__PURE__*/ nodeProxy( ViewportDepthTextureNode ); class ViewportDepthNode extends Node { static get type() { return 'ViewportDepthNode'; } constructor( scope, valueNode = null ) { super( 'float' ); this.scope = scope; this.valueNode = valueNode; this.isViewportDepthNode = true; } generate( builder ) { const { scope } = this; if ( scope === ViewportDepthNode.DEPTH_BASE ) { return builder.getFragDepth(); } return super.generate( builder ); } setup( { camera } ) { const { scope } = this; const value = this.valueNode; let node = null; if ( scope === ViewportDepthNode.DEPTH_BASE ) { if ( value !== null ) { node = depthBase().assign( value ); } } else if ( scope === ViewportDepthNode.DEPTH ) { if ( camera.isPerspectiveCamera ) { node = viewZToPerspectiveDepth( positionView.z, cameraNear, cameraFar ); } else { node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); } } else if ( scope === ViewportDepthNode.LINEAR_DEPTH ) { if ( value !== null ) { if ( camera.isPerspectiveCamera ) { const viewZ = perspectiveDepthToViewZ( value, cameraNear, cameraFar ); node = viewZToOrthographicDepth( viewZ, cameraNear, cameraFar ); } else { node = value; } } else { node = viewZToOrthographicDepth( positionView.z, cameraNear, cameraFar ); } } return node; } } ViewportDepthNode.DEPTH_BASE = 'depthBase'; ViewportDepthNode.DEPTH = 'depth'; ViewportDepthNode.LINEAR_DEPTH = 'linearDepth'; // NOTE: viewZ, the z-coordinate in camera space, is negative for points in front of the camera // -near maps to 0; -far maps to 1 const viewZToOrthographicDepth = ( viewZ, near, far ) => viewZ.add( near ).div( near.sub( far ) ); // maps orthographic depth in [ 0, 1 ] to viewZ const orthographicDepthToViewZ = ( depth, near, far ) => near.sub( far ).mul( depth ).sub( near ); // NOTE: https://twitter.com/gonnavis/status/1377183786949959682 // -near maps to 0; -far maps to 1 const viewZToPerspectiveDepth = ( viewZ, near, far ) => near.add( viewZ ).mul( far ).div( far.sub( near ).mul( viewZ ) ); // maps perspective depth in [ 0, 1 ] to viewZ const perspectiveDepthToViewZ = ( depth, near, far ) => near.mul( far ).div( far.sub( near ).mul( depth ).sub( far ) ); const depthBase = /*@__PURE__*/ nodeProxy( ViewportDepthNode, ViewportDepthNode.DEPTH_BASE ); const depth = /*@__PURE__*/ nodeImmutable( ViewportDepthNode, ViewportDepthNode.DEPTH ); const linearDepth = /*@__PURE__*/ nodeProxy( ViewportDepthNode, ViewportDepthNode.LINEAR_DEPTH ); const viewportLinearDepth = /*@__PURE__*/ linearDepth( viewportDepthTexture() ); depth.assign = ( value ) => depthBase( value ); class ClippingNode extends Node { static get type() { return 'ClippingNode'; } constructor( scope = ClippingNode.DEFAULT ) { super(); this.scope = scope; } setup( builder ) { super.setup( builder ); const clippingContext = builder.clippingContext; const { localClipIntersection, localClippingCount, globalClippingCount } = clippingContext; const numClippingPlanes = globalClippingCount + localClippingCount; const numUnionClippingPlanes = localClipIntersection ? numClippingPlanes - localClippingCount : numClippingPlanes; if ( this.scope === ClippingNode.ALPHA_TO_COVERAGE ) { return this.setupAlphaToCoverage( clippingContext.planes, numClippingPlanes, numUnionClippingPlanes ); } else { return this.setupDefault( clippingContext.planes, numClippingPlanes, numUnionClippingPlanes ); } } setupAlphaToCoverage( planes, numClippingPlanes, numUnionClippingPlanes ) { return Fn( () => { const clippingPlanes = uniformArray( planes ); const distanceToPlane = property( 'float', 'distanceToPlane' ); const distanceGradient = property( 'float', 'distanceToGradient' ); const clipOpacity = property( 'float', 'clipOpacity' ); clipOpacity.assign( 1 ); let plane; Loop( numUnionClippingPlanes, ( { i } ) => { plane = clippingPlanes.element( i ); distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) ); distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) ); clipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ) ); clipOpacity.equal( 0.0 ).discard(); } ); if ( numUnionClippingPlanes < numClippingPlanes ) { const unionClipOpacity = property( 'float', 'unionclipOpacity' ); unionClipOpacity.assign( 1 ); Loop( { start: numUnionClippingPlanes, end: numClippingPlanes }, ( { i } ) => { plane = clippingPlanes.element( i ); distanceToPlane.assign( positionView.dot( plane.xyz ).negate().add( plane.w ) ); distanceGradient.assign( distanceToPlane.fwidth().div( 2.0 ) ); unionClipOpacity.mulAssign( smoothstep( distanceGradient.negate(), distanceGradient, distanceToPlane ).oneMinus() ); } ); clipOpacity.mulAssign( unionClipOpacity.oneMinus() ); } diffuseColor.a.mulAssign( clipOpacity ); diffuseColor.a.equal( 0.0 ).discard(); } )(); } setupDefault( planes, numClippingPlanes, numUnionClippingPlanes ) { return Fn( () => { const clippingPlanes = uniformArray( planes ); let plane; Loop( numUnionClippingPlanes, ( { i } ) => { plane = clippingPlanes.element( i ); positionView.dot( plane.xyz ).greaterThan( plane.w ).discard(); } ); if ( numUnionClippingPlanes < numClippingPlanes ) { const clipped = property( 'bool', 'clipped' ); clipped.assign( true ); Loop( { start: numUnionClippingPlanes, end: numClippingPlanes }, ( { i } ) => { plane = clippingPlanes.element( i ); clipped.assign( positionView.dot( plane.xyz ).greaterThan( plane.w ).and( clipped ) ); } ); clipped.discard(); } } )(); } } ClippingNode.ALPHA_TO_COVERAGE = 'alphaToCoverage'; ClippingNode.DEFAULT = 'default'; const clipping = () => nodeObject( new ClippingNode() ); const clippingAlpha = () => nodeObject( new ClippingNode( ClippingNode.ALPHA_TO_COVERAGE ) ); class NodeMaterial extends Material { static get type() { return 'NodeMaterial'; } constructor() { super(); this.isNodeMaterial = true; this.type = this.constructor.type; this.forceSinglePass = false; this.fog = true; this.lights = false; this.lightsNode = null; this.envNode = null; this.aoNode = null; this.colorNode = null; this.normalNode = null; this.opacityNode = null; this.backdropNode = null; this.backdropAlphaNode = null; this.alphaTestNode = null; this.positionNode = null; this.depthNode = null; this.shadowNode = null; this.shadowPositionNode = null; this.outputNode = null; this.mrtNode = null; this.fragmentNode = null; this.vertexNode = null; } customProgramCacheKey() { return this.type + getCacheKey( this ); } build( builder ) { this.setup( builder ); } setupObserver( builder ) { return new NodeMaterialObserver( builder ); } setup( builder ) { builder.context.setupNormal = () => this.setupNormal( builder ); // < VERTEX STAGE > builder.addStack(); builder.stack.outputNode = this.vertexNode || this.setupPosition( builder ); builder.addFlow( 'vertex', builder.removeStack() ); // < FRAGMENT STAGE > builder.addStack(); let resultNode; const clippingNode = this.setupClipping( builder ); if ( this.depthWrite === true ) this.setupDepth( builder ); if ( this.fragmentNode === null ) { this.setupDiffuseColor( builder ); this.setupVariants( builder ); const outgoingLightNode = this.setupLighting( builder ); if ( clippingNode !== null ) builder.stack.add( clippingNode ); // force unsigned floats - useful for RenderTargets const basicOutput = vec4( outgoingLightNode, diffuseColor.a ).max( 0 ); resultNode = this.setupOutput( builder, basicOutput ); // OUTPUT NODE output.assign( resultNode ); // if ( this.outputNode !== null ) resultNode = this.outputNode; // MRT const renderTarget = builder.renderer.getRenderTarget(); if ( renderTarget !== null ) { const mrt = builder.renderer.getMRT(); const materialMRT = this.mrtNode; if ( mrt !== null ) { resultNode = mrt; if ( materialMRT !== null ) { resultNode = mrt.merge( materialMRT ); } } else if ( materialMRT !== null ) { resultNode = materialMRT; } } } else { let fragmentNode = this.fragmentNode; if ( fragmentNode.isOutputStructNode !== true ) { fragmentNode = vec4( fragmentNode ); } resultNode = this.setupOutput( builder, fragmentNode ); } builder.stack.outputNode = resultNode; builder.addFlow( 'fragment', builder.removeStack() ); // < MONITOR > builder.monitor = this.setupObserver( builder ); } setupClipping( builder ) { if ( builder.clippingContext === null ) return null; const { globalClippingCount, localClippingCount } = builder.clippingContext; let result = null; if ( globalClippingCount || localClippingCount ) { const samples = builder.renderer.samples; if ( this.alphaToCoverage && samples > 1 ) { // to be added to flow when the color/alpha value has been determined result = clippingAlpha(); } else { builder.stack.add( clipping() ); } } return result; } setupDepth( builder ) { const { renderer } = builder; // Depth let depthNode = this.depthNode; if ( depthNode === null ) { const mrt = 'getMRT' in renderer && renderer.getMRT(); if ( mrt && mrt.has( 'depth' ) ) { depthNode = mrt.get( 'depth' ); } else if ( renderer.logarithmicDepthBuffer === true ) { const fragDepth = modelViewProjection().w.add( 1 ); depthNode = fragDepth.log2().mul( cameraLogDepth ).mul( 0.5 ); } } if ( depthNode !== null ) { depth.assign( depthNode ).append(); } } setupPosition( builder ) { const { object } = builder; const geometry = object.geometry; builder.addStack(); // Vertex if ( geometry.morphAttributes.position || geometry.morphAttributes.normal || geometry.morphAttributes.color ) { morphReference( object ).append(); } if ( object.isSkinnedMesh === true ) { skinningReference( object ).append(); } if ( this.displacementMap ) { const displacementMap = materialReference( 'displacementMap', 'texture' ); const displacementScale = materialReference( 'displacementScale', 'float' ); const displacementBias = materialReference( 'displacementBias', 'float' ); positionLocal.addAssign( normalLocal.normalize().mul( ( displacementMap.x.mul( displacementScale ).add( displacementBias ) ) ) ); } if ( object.isBatchedMesh ) { batch( object ).append(); } if ( ( object.instanceMatrix && object.instanceMatrix.isInstancedBufferAttribute === true ) ) { instance( object ).append(); } if ( this.positionNode !== null ) { positionLocal.assign( this.positionNode ); } const mvp = modelViewProjection(); builder.context.vertex = builder.removeStack(); builder.context.mvp = mvp; return mvp; } setupDiffuseColor( { object, geometry } ) { let colorNode = this.colorNode ? vec4( this.colorNode ) : materialColor; // VERTEX COLORS if ( this.vertexColors === true && geometry.hasAttribute( 'color' ) ) { colorNode = vec4( colorNode.xyz.mul( attribute( 'color', 'vec3' ) ), colorNode.a ); } // Instanced colors if ( object.instanceColor ) { const instanceColor = varyingProperty( 'vec3', 'vInstanceColor' ); colorNode = instanceColor.mul( colorNode ); } if ( object.isBatchedMesh && object._colorsTexture ) { const batchColor = varyingProperty( 'vec3', 'vBatchColor' ); colorNode = batchColor.mul( colorNode ); } // COLOR diffuseColor.assign( colorNode ); // OPACITY const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; diffuseColor.a.assign( diffuseColor.a.mul( opacityNode ) ); // ALPHA TEST if ( this.alphaTestNode !== null || this.alphaTest > 0 ) { const alphaTestNode = this.alphaTestNode !== null ? float( this.alphaTestNode ) : materialAlphaTest; diffuseColor.a.lessThanEqual( alphaTestNode ).discard(); } if ( this.transparent === false && this.blending === NormalBlending && this.alphaToCoverage === false ) { diffuseColor.a.assign( 1.0 ); } } setupVariants( /*builder*/ ) { // Interface function. } setupOutgoingLight() { return ( this.lights === true ) ? vec3( 0 ) : diffuseColor.rgb; } setupNormal() { return this.normalNode ? vec3( this.normalNode ) : materialNormal; } setupEnvironment( /*builder*/ ) { let node = null; if ( this.envNode ) { node = this.envNode; } else if ( this.envMap ) { node = this.envMap.isCubeTexture ? materialReference( 'envMap', 'cubeTexture' ) : materialReference( 'envMap', 'texture' ); } return node; } setupLightMap( builder ) { let node = null; if ( builder.material.lightMap ) { node = new IrradianceNode( materialLightMap ); } return node; } setupLights( builder ) { const materialLightsNode = []; // const envNode = this.setupEnvironment( builder ); if ( envNode && envNode.isLightingNode ) { materialLightsNode.push( envNode ); } const lightMapNode = this.setupLightMap( builder ); if ( lightMapNode && lightMapNode.isLightingNode ) { materialLightsNode.push( lightMapNode ); } if ( this.aoNode !== null || builder.material.aoMap ) { const aoNode = this.aoNode !== null ? this.aoNode : materialAOMap; materialLightsNode.push( new AONode( aoNode ) ); } let lightsN = this.lightsNode || builder.lightsNode; if ( materialLightsNode.length > 0 ) { lightsN = lights( [ ...lightsN.getLights(), ...materialLightsNode ] ); } return lightsN; } setupLightingModel( /*builder*/ ) { // Interface function. } setupLighting( builder ) { const { material } = builder; const { backdropNode, backdropAlphaNode, emissiveNode } = this; // OUTGOING LIGHT const lights = this.lights === true || this.lightsNode !== null; const lightsNode = lights ? this.setupLights( builder ) : null; let outgoingLightNode = this.setupOutgoingLight( builder ); if ( lightsNode && lightsNode.getScope().getLights().length > 0 ) { const lightingModel = this.setupLightingModel( builder ); outgoingLightNode = lightingContext( lightsNode, lightingModel, backdropNode, backdropAlphaNode ); } else if ( backdropNode !== null ) { outgoingLightNode = vec3( backdropAlphaNode !== null ? mix( outgoingLightNode, backdropNode, backdropAlphaNode ) : backdropNode ); } // EMISSIVE if ( ( emissiveNode && emissiveNode.isNode === true ) || ( material.emissive && material.emissive.isColor === true ) ) { emissive.assign( vec3( emissiveNode ? emissiveNode : materialEmissive ) ); outgoingLightNode = outgoingLightNode.add( emissive ); } return outgoingLightNode; } setupOutput( builder, outputNode ) { // FOG if ( this.fog === true ) { const fogNode = builder.fogNode; if ( fogNode ) outputNode = vec4( fogNode.mix( outputNode.rgb, fogNode.colorNode ), outputNode.a ); } return outputNode; } setDefaultValues( material ) { // This approach is to reuse the native refreshUniforms* // and turn available the use of features like transmission and environment in core for ( const property in material ) { const value = material[ property ]; if ( this[ property ] === undefined ) { this[ property ] = value; if ( value && value.clone ) this[ property ] = value.clone(); } } const descriptors = Object.getOwnPropertyDescriptors( material.constructor.prototype ); for ( const key in descriptors ) { if ( Object.getOwnPropertyDescriptor( this.constructor.prototype, key ) === undefined && descriptors[ key ].get !== undefined ) { Object.defineProperty( this.constructor.prototype, key, descriptors[ key ] ); } } } toJSON( meta ) { const isRoot = ( meta === undefined || typeof meta === 'string' ); if ( isRoot ) { meta = { textures: {}, images: {}, nodes: {} }; } const data = Material.prototype.toJSON.call( this, meta ); const nodeChildren = getNodeChildren( this ); data.inputNodes = {}; for ( const { property, childNode } of nodeChildren ) { data.inputNodes[ property ] = childNode.toJSON( meta ).uuid; } // TODO: Copied from Object3D.toJSON function extractFromCache( cache ) { const values = []; for ( const key in cache ) { const data = cache[ key ]; delete data.metadata; values.push( data ); } return values; } if ( isRoot ) { const textures = extractFromCache( meta.textures ); const images = extractFromCache( meta.images ); const nodes = extractFromCache( meta.nodes ); if ( textures.length > 0 ) data.textures = textures; if ( images.length > 0 ) data.images = images; if ( nodes.length > 0 ) data.nodes = nodes; } return data; } copy( source ) { this.lightsNode = source.lightsNode; this.envNode = source.envNode; this.colorNode = source.colorNode; this.normalNode = source.normalNode; this.opacityNode = source.opacityNode; this.backdropNode = source.backdropNode; this.backdropAlphaNode = source.backdropAlphaNode; this.alphaTestNode = source.alphaTestNode; this.positionNode = source.positionNode; this.depthNode = source.depthNode; this.shadowNode = source.shadowNode; this.shadowPositionNode = source.shadowPositionNode; this.outputNode = source.outputNode; this.mrtNode = source.mrtNode; this.fragmentNode = source.fragmentNode; this.vertexNode = source.vertexNode; return super.copy( source ); } } const _defaultValues$e = /*@__PURE__*/ new PointsMaterial(); class InstancedPointsNodeMaterial extends NodeMaterial { static get type() { return 'InstancedPointsNodeMaterial'; } constructor( params = {} ) { super(); this.lights = false; this.useAlphaToCoverage = true; this.useColor = params.vertexColors; this.pointWidth = 1; this.pointColorNode = null; this.pointWidthNode = null; this.setDefaultValues( _defaultValues$e ); this.setValues( params ); } setup( builder ) { this.setupShaders( builder ); super.setup( builder ); } setupShaders( { renderer } ) { const useAlphaToCoverage = this.alphaToCoverage; const useColor = this.useColor; this.vertexNode = Fn( () => { const instancePosition = attribute( 'instancePosition' ).xyz; // camera space const mvPos = vec4( modelViewMatrix.mul( vec4( instancePosition, 1.0 ) ) ); const aspect = viewport.z.div( viewport.w ); // clip space const clipPos = cameraProjectionMatrix.mul( mvPos ); // offset in ndc space const offset = positionGeometry.xy.toVar(); offset.mulAssign( this.pointWidthNode ? this.pointWidthNode : materialPointWidth ); offset.assign( offset.div( viewport.z ) ); offset.y.assign( offset.y.mul( aspect ) ); // back to clip space offset.assign( offset.mul( clipPos.w ) ); //clipPos.xy += offset; clipPos.addAssign( vec4( offset, 0, 0 ) ); return clipPos; } )(); this.fragmentNode = Fn( () => { const alpha = float( 1 ).toVar(); const len2 = lengthSq( uv().mul( 2 ).sub( 1 ) ); if ( useAlphaToCoverage && renderer.samples > 1 ) { const dlen = float( len2.fwidth() ).toVar(); alpha.assign( smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus() ); } else { len2.greaterThan( 1.0 ).discard(); } let pointColorNode; if ( this.pointColorNode ) { pointColorNode = this.pointColorNode; } else { if ( useColor ) { const instanceColor = attribute( 'instanceColor' ); pointColorNode = instanceColor.mul( materialColor ); } else { pointColorNode = materialColor; } } alpha.mulAssign( materialOpacity ); return vec4( pointColorNode, alpha ); } )(); } get alphaToCoverage() { return this.useAlphaToCoverage; } set alphaToCoverage( value ) { if ( this.useAlphaToCoverage !== value ) { this.useAlphaToCoverage = value; this.needsUpdate = true; } } } const _defaultValues$d = /*@__PURE__*/ new LineBasicMaterial(); class LineBasicNodeMaterial extends NodeMaterial { static get type() { return 'LineBasicNodeMaterial'; } constructor( parameters ) { super(); this.isLineBasicNodeMaterial = true; this.lights = false; this.setDefaultValues( _defaultValues$d ); this.setValues( parameters ); } } const _defaultValues$c = /*@__PURE__*/ new LineDashedMaterial(); class LineDashedNodeMaterial extends NodeMaterial { static get type() { return 'LineDashedNodeMaterial'; } constructor( parameters ) { super(); this.isLineDashedNodeMaterial = true; this.lights = false; this.setDefaultValues( _defaultValues$c ); this.offsetNode = null; this.dashScaleNode = null; this.dashSizeNode = null; this.gapSizeNode = null; this.setValues( parameters ); } setupVariants() { const offsetNode = this.offsetNode; const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale; const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize; const gapSizeNode = this.dashSizeNode ? float( this.dashGapNode ) : materialLineGapSize; dashSize.assign( dashSizeNode ); gapSize.assign( gapSizeNode ); const vLineDistance = varying( attribute( 'lineDistance' ).mul( dashScaleNode ) ); const vLineDistanceOffset = offsetNode ? vLineDistance.add( offsetNode ) : vLineDistance; vLineDistanceOffset.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard(); } } const _defaultValues$b = /*@__PURE__*/ new LineDashedMaterial(); class Line2NodeMaterial extends NodeMaterial { static get type() { return 'Line2NodeMaterial'; } constructor( params = {} ) { super(); this.lights = false; this.setDefaultValues( _defaultValues$b ); this.useAlphaToCoverage = true; this.useColor = params.vertexColors; this.useDash = params.dashed; this.useWorldUnits = false; this.dashOffset = 0; this.lineWidth = 1; this.lineColorNode = null; this.offsetNode = null; this.dashScaleNode = null; this.dashSizeNode = null; this.gapSizeNode = null; this.setValues( params ); } setup( builder ) { this.setupShaders( builder ); super.setup( builder ); } setupShaders( { renderer } ) { const useAlphaToCoverage = this.alphaToCoverage; const useColor = this.useColor; const useDash = this.dashed; const useWorldUnits = this.worldUnits; const trimSegment = Fn( ( { start, end } ) => { const a = cameraProjectionMatrix.element( 2 ).element( 2 ); // 3nd entry in 3th column const b = cameraProjectionMatrix.element( 3 ).element( 2 ); // 3nd entry in 4th column const nearEstimate = b.mul( -0.5 ).div( a ); const alpha = nearEstimate.sub( start.z ).div( end.z.sub( start.z ) ); return vec4( mix( start.xyz, end.xyz, alpha ), end.w ); } ).setLayout( { name: 'trimSegment', type: 'vec4', inputs: [ { name: 'start', type: 'vec4' }, { name: 'end', type: 'vec4' } ] } ); this.vertexNode = Fn( () => { const instanceStart = attribute( 'instanceStart' ); const instanceEnd = attribute( 'instanceEnd' ); // camera space const start = vec4( modelViewMatrix.mul( vec4( instanceStart, 1.0 ) ) ).toVar( 'start' ); const end = vec4( modelViewMatrix.mul( vec4( instanceEnd, 1.0 ) ) ).toVar( 'end' ); if ( useWorldUnits ) { varyingProperty( 'vec3', 'worldStart' ).assign( start.xyz ); varyingProperty( 'vec3', 'worldEnd' ).assign( end.xyz ); } const aspect = viewport.z.div( viewport.w ); // special case for perspective projection, and segments that terminate either in, or behind, the camera plane // clearly the gpu firmware has a way of addressing this issue when projecting into ndc space // but we need to perform ndc-space calculations in the shader, so we must address this issue directly // perhaps there is a more elegant solution -- WestLangley const perspective = cameraProjectionMatrix.element( 2 ).element( 3 ).equal( -1 ); // 4th entry in the 3rd column If( perspective, () => { If( start.z.lessThan( 0.0 ).and( end.z.greaterThan( 0.0 ) ), () => { end.assign( trimSegment( { start: start, end: end } ) ); } ).ElseIf( end.z.lessThan( 0.0 ).and( start.z.greaterThanEqual( 0.0 ) ), () => { start.assign( trimSegment( { start: end, end: start } ) ); } ); } ); // clip space const clipStart = cameraProjectionMatrix.mul( start ); const clipEnd = cameraProjectionMatrix.mul( end ); // ndc space const ndcStart = clipStart.xyz.div( clipStart.w ); const ndcEnd = clipEnd.xyz.div( clipEnd.w ); // direction const dir = ndcEnd.xy.sub( ndcStart.xy ).toVar(); // account for clip-space aspect ratio dir.x.assign( dir.x.mul( aspect ) ); dir.assign( dir.normalize() ); const clip = vec4().toVar(); if ( useWorldUnits ) { // get the offset direction as perpendicular to the view vector const worldDir = end.xyz.sub( start.xyz ).normalize(); const tmpFwd = mix( start.xyz, end.xyz, 0.5 ).normalize(); const worldUp = worldDir.cross( tmpFwd ).normalize(); const worldFwd = worldDir.cross( worldUp ); const worldPos = varyingProperty( 'vec4', 'worldPos' ); worldPos.assign( positionGeometry.y.lessThan( 0.5 ).select( start, end ) ); // height offset const hw = materialLineWidth.mul( 0.5 ); worldPos.addAssign( vec4( positionGeometry.x.lessThan( 0.0 ).select( worldUp.mul( hw ), worldUp.mul( hw ).negate() ), 0 ) ); // don't extend the line if we're rendering dashes because we // won't be rendering the endcaps if ( ! useDash ) { // cap extension worldPos.addAssign( vec4( positionGeometry.y.lessThan( 0.5 ).select( worldDir.mul( hw ).negate(), worldDir.mul( hw ) ), 0 ) ); // add width to the box worldPos.addAssign( vec4( worldFwd.mul( hw ), 0 ) ); // endcaps If( positionGeometry.y.greaterThan( 1.0 ).or( positionGeometry.y.lessThan( 0.0 ) ), () => { worldPos.subAssign( vec4( worldFwd.mul( 2.0 ).mul( hw ), 0 ) ); } ); } // project the worldpos clip.assign( cameraProjectionMatrix.mul( worldPos ) ); // shift the depth of the projected points so the line // segments overlap neatly const clipPose = vec3().toVar(); clipPose.assign( positionGeometry.y.lessThan( 0.5 ).select( ndcStart, ndcEnd ) ); clip.z.assign( clipPose.z.mul( clip.w ) ); } else { const offset = vec2( dir.y, dir.x.negate() ).toVar( 'offset' ); // undo aspect ratio adjustment dir.x.assign( dir.x.div( aspect ) ); offset.x.assign( offset.x.div( aspect ) ); // sign flip offset.assign( positionGeometry.x.lessThan( 0.0 ).select( offset.negate(), offset ) ); // endcaps If( positionGeometry.y.lessThan( 0.0 ), () => { offset.assign( offset.sub( dir ) ); } ).ElseIf( positionGeometry.y.greaterThan( 1.0 ), () => { offset.assign( offset.add( dir ) ); } ); // adjust for linewidth offset.assign( offset.mul( materialLineWidth ) ); // adjust for clip-space to screen-space conversion // maybe resolution should be based on viewport ... offset.assign( offset.div( viewport.w ) ); // select end clip.assign( positionGeometry.y.lessThan( 0.5 ).select( clipStart, clipEnd ) ); // back to clip space offset.assign( offset.mul( clip.w ) ); clip.assign( clip.add( vec4( offset, 0, 0 ) ) ); } return clip; } )(); const closestLineToLine = Fn( ( { p1, p2, p3, p4 } ) => { const p13 = p1.sub( p3 ); const p43 = p4.sub( p3 ); const p21 = p2.sub( p1 ); const d1343 = p13.dot( p43 ); const d4321 = p43.dot( p21 ); const d1321 = p13.dot( p21 ); const d4343 = p43.dot( p43 ); const d2121 = p21.dot( p21 ); const denom = d2121.mul( d4343 ).sub( d4321.mul( d4321 ) ); const numer = d1343.mul( d4321 ).sub( d1321.mul( d4343 ) ); const mua = numer.div( denom ).clamp(); const mub = d1343.add( d4321.mul( mua ) ).div( d4343 ).clamp(); return vec2( mua, mub ); } ); this.fragmentNode = Fn( () => { const vUv = uv(); if ( useDash ) { const offsetNode = this.offsetNode ? float( this.offsetNodeNode ) : materialLineDashOffset; const dashScaleNode = this.dashScaleNode ? float( this.dashScaleNode ) : materialLineScale; const dashSizeNode = this.dashSizeNode ? float( this.dashSizeNode ) : materialLineDashSize; const gapSizeNode = this.dashSizeNode ? float( this.dashGapNode ) : materialLineGapSize; dashSize.assign( dashSizeNode ); gapSize.assign( gapSizeNode ); const instanceDistanceStart = attribute( 'instanceDistanceStart' ); const instanceDistanceEnd = attribute( 'instanceDistanceEnd' ); const lineDistance = positionGeometry.y.lessThan( 0.5 ).select( dashScaleNode.mul( instanceDistanceStart ), materialLineScale.mul( instanceDistanceEnd ) ); const vLineDistance = varying( lineDistance.add( materialLineDashOffset ) ); const vLineDistanceOffset = offsetNode ? vLineDistance.add( offsetNode ) : vLineDistance; vUv.y.lessThan( -1 ).or( vUv.y.greaterThan( 1.0 ) ).discard(); // discard endcaps vLineDistanceOffset.mod( dashSize.add( gapSize ) ).greaterThan( dashSize ).discard(); // todo - FIX } const alpha = float( 1 ).toVar( 'alpha' ); if ( useWorldUnits ) { const worldStart = varyingProperty( 'vec3', 'worldStart' ); const worldEnd = varyingProperty( 'vec3', 'worldEnd' ); // Find the closest points on the view ray and the line segment const rayEnd = varyingProperty( 'vec4', 'worldPos' ).xyz.normalize().mul( 1e5 ); const lineDir = worldEnd.sub( worldStart ); const params = closestLineToLine( { p1: worldStart, p2: worldEnd, p3: vec3( 0.0, 0.0, 0.0 ), p4: rayEnd } ); const p1 = worldStart.add( lineDir.mul( params.x ) ); const p2 = rayEnd.mul( params.y ); const delta = p1.sub( p2 ); const len = delta.length(); const norm = len.div( materialLineWidth ); if ( ! useDash ) { if ( useAlphaToCoverage && renderer.samples > 1 ) { const dnorm = norm.fwidth(); alpha.assign( smoothstep( dnorm.negate().add( 0.5 ), dnorm.add( 0.5 ), norm ).oneMinus() ); } else { norm.greaterThan( 0.5 ).discard(); } } } else { // round endcaps if ( useAlphaToCoverage && renderer.samples > 1 ) { const a = vUv.x; const b = vUv.y.greaterThan( 0.0 ).select( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) ); const len2 = a.mul( a ).add( b.mul( b ) ); const dlen = float( len2.fwidth() ).toVar( 'dlen' ); If( vUv.y.abs().greaterThan( 1.0 ), () => { alpha.assign( smoothstep( dlen.oneMinus(), dlen.add( 1 ), len2 ).oneMinus() ); } ); } else { If( vUv.y.abs().greaterThan( 1.0 ), () => { const a = vUv.x; const b = vUv.y.greaterThan( 0.0 ).select( vUv.y.sub( 1.0 ), vUv.y.add( 1.0 ) ); const len2 = a.mul( a ).add( b.mul( b ) ); len2.greaterThan( 1.0 ).discard(); } ); } } let lineColorNode; if ( this.lineColorNode ) { lineColorNode = this.lineColorNode; } else { if ( useColor ) { const instanceColorStart = attribute( 'instanceColorStart' ); const instanceColorEnd = attribute( 'instanceColorEnd' ); const instanceColor = positionGeometry.y.lessThan( 0.5 ).select( instanceColorStart, instanceColorEnd ); lineColorNode = instanceColor.mul( materialColor ); } else { lineColorNode = materialColor; } } return vec4( lineColorNode, alpha ); } )(); } get worldUnits() { return this.useWorldUnits; } set worldUnits( value ) { if ( this.useWorldUnits !== value ) { this.useWorldUnits = value; this.needsUpdate = true; } } get dashed() { return this.useDash; } set dashed( value ) { if ( this.useDash !== value ) { this.useDash = value; this.needsUpdate = true; } } get alphaToCoverage() { return this.useAlphaToCoverage; } set alphaToCoverage( value ) { if ( this.useAlphaToCoverage !== value ) { this.useAlphaToCoverage = value; this.needsUpdate = true; } } } const directionToColor = ( node ) => nodeObject( node ).mul( 0.5 ).add( 0.5 ); const colorToDirection = ( node ) => nodeObject( node ).mul( 2.0 ).sub( 1 ); const _defaultValues$a = /*@__PURE__*/ new MeshNormalMaterial(); class MeshNormalNodeMaterial extends NodeMaterial { static get type() { return 'MeshNormalNodeMaterial'; } constructor( parameters ) { super(); this.lights = false; this.isMeshNormalNodeMaterial = true; this.setDefaultValues( _defaultValues$a ); this.setValues( parameters ); } setupDiffuseColor() { const opacityNode = this.opacityNode ? float( this.opacityNode ) : materialOpacity; diffuseColor.assign( vec4( directionToColor( transformedNormalView ), opacityNode ) ); } } class EquirectUVNode extends TempNode { static get type() { return 'EquirectUVNode'; } constructor( dirNode = positionWorldDirection ) { super( 'vec2' ); this.dirNode = dirNode; } setup() { const dir = this.dirNode; const u = dir.z.atan2( dir.x ).mul( 1 / ( Math.PI * 2 ) ).add( 0.5 ); const v = dir.y.clamp( -1, 1.0 ).asin().mul( 1 / Math.PI ).add( 0.5 ); return vec2( u, v ); } } const equirectUV = /*@__PURE__*/ nodeProxy( EquirectUVNode ); // @TODO: Consider rename WebGLCubeRenderTarget to just CubeRenderTarget class CubeRenderTarget extends WebGLCubeRenderTarget { constructor( size = 1, options = {} ) { super( size, options ); this.isCubeRenderTarget = true; } fromEquirectangularTexture( renderer, texture$1 ) { const currentMinFilter = texture$1.minFilter; const currentGenerateMipmaps = texture$1.generateMipmaps; texture$1.generateMipmaps = true; this.texture.type = texture$1.type; this.texture.colorSpace = texture$1.colorSpace; this.texture.generateMipmaps = texture$1.generateMipmaps; this.texture.minFilter = texture$1.minFilter; this.texture.magFilter = texture$1.magFilter; const geometry = new BoxGeometry( 5, 5, 5 ); const uvNode = equirectUV( positionWorldDirection ); const material = new NodeMaterial(); material.colorNode = texture( texture$1, uvNode, 0 ); material.side = BackSide; material.blending = NoBlending; const mesh = new Mesh( geometry, material ); const scene = new Scene(); scene.add( mesh ); // Avoid blurred poles if ( texture$1.minFilter === LinearMipmapLinearFilter ) texture$1.minFilter = LinearFilter; const camera = new CubeCamera( 1, 10, this ); const currentMRT = renderer.getMRT(); renderer.setMRT( null ); camera.update( renderer, scene ); renderer.setMRT( currentMRT ); texture$1.minFilter = currentMinFilter; texture$1.currentGenerateMipmaps = currentGenerateMipmaps; mesh.geometry.dispose(); mesh.material.dispose(); return this; } } const _cache$1 = new WeakMap(); class CubeMapNode extends TempNode { static get type() { return 'CubeMapNode'; } constructor( envNode ) { super( 'vec3' ); this.envNode = envNode; this._cubeTexture = null; this._cubeTextureNode = cubeTexture(); const defaultTexture = new CubeTexture(); defaultTexture.isRenderTargetTexture = true; this._defaultTexture = defaultTexture; this.updateBeforeType = NodeUpdateType.RENDER; } updateBefore( frame ) { const { renderer, material } = frame; const envNode = this.envNode; if ( envNode.isTextureNode || envNode.isMaterialReferenceNode ) { const texture = ( envNode.isTextureNode ) ? envNode.value : material[ envNode.property ]; if ( texture && texture.isTexture ) { const mapping = texture.mapping; if ( mapping === EquirectangularReflectionMapping || mapping === EquirectangularRefractionMapping ) { // check for converted cubemap map if ( _cache$1.has( texture ) ) { const cubeMap = _cache$1.get( texture ); mapTextureMapping( cubeMap, texture.mapping ); this._cubeTexture = cubeMap; } else { // create cube map from equirectangular map const image = texture.image; if ( isEquirectangularMapReady$1( image ) ) { const renderTarget = new CubeRenderTarget( image.height ); renderTarget.fromEquirectangularTexture( renderer, texture ); mapTextureMapping( renderTarget.texture, texture.mapping ); this._cubeTexture = renderTarget.texture; _cache$1.set( texture, renderTarget.texture ); texture.addEventListener( 'dispose', onTextureDispose ); } else { // default cube texture as fallback when equirectangular texture is not yet loaded this._cubeTexture = this._defaultTexture; } } // this._cubeTextureNode.value = this._cubeTexture; } else { // envNode already refers to a cube map this._cubeTextureNode = this.envNode; } } } } setup( builder ) { this.updateBefore( builder ); return this._cubeTextureNode; } } function isEquirectangularMapReady$1( image ) { if ( image === null || image === undefined ) return false; return image.height > 0; } function onTextureDispose( event ) { const texture = event.target; texture.removeEventListener( 'dispose', onTextureDispose ); const renderTarget = _cache$1.get( texture ); if ( renderTarget !== undefined ) { _cache$1.delete( texture ); renderTarget.dispose(); } } function mapTextureMapping( texture, mapping ) { if ( mapping === EquirectangularReflectionMapping ) { texture.mapping = CubeReflectionMapping; } else if ( mapping === EquirectangularRefractionMapping ) { texture.mapping = CubeRefractionMapping; } } const cubeMapNode = /*@__PURE__*/ nodeProxy( CubeMapNode ); class BasicEnvironmentNode extends LightingNode { static get type() { return 'BasicEnvironmentNode'; } constructor( envNode = null ) { super(); this.envNode = envNode; } setup( builder ) { // environment property is used in the finish() method of BasicLightingModel builder.context.environment = cubeMapNode( this.envNode ); } } class BasicLightMapNode extends LightingNode { static get type() { return 'BasicLightMapNode'; } constructor( lightMapNode = null ) { super(); this.lightMapNode = lightMapNode; } setup( builder ) { // irradianceLightMap property is used in the indirectDiffuse() method of BasicLightingModel const RECIPROCAL_PI = float( 1 / Math.PI ); builder.context.irradianceLightMap = this.lightMapNode.mul( RECIPROCAL_PI ); } } class LightingModel { start( /*input, stack, builder*/ ) { } finish( /*input, stack, builder*/ ) { } direct( /*input, stack, builder*/ ) { } directRectArea( /*input, stack, builder*/ ) {} indirect( /*input, stack, builder*/ ) { } ambientOcclusion( /*input, stack, builder*/ ) { } } class BasicLightingModel extends LightingModel { constructor() { super(); } indirect( context, stack, builder ) { const ambientOcclusion = context.ambientOcclusion; const reflectedLight = context.reflectedLight; const irradianceLightMap = builder.context.irradianceLightMap; reflectedLight.indirectDiffuse.assign( vec4( 0.0 ) ); // accumulation (baked indirect lighting only) if ( irradianceLightMap ) { reflectedLight.indirectDiffuse.addAssign( irradianceLightMap ); } else { reflectedLight.indirectDiffuse.addAssign( vec4( 1.0, 1.0, 1.0, 0.0 ) ); } // modulation reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); reflectedLight.indirectDiffuse.mulAssign( diffuseColor.rgb ); } finish( context, stack, builder ) { const material = builder.material; const outgoingLight = context.outgoingLight; const envNode = builder.context.environment; if ( envNode ) { switch ( material.combine ) { case MultiplyOperation: outgoingLight.rgb.assign( mix( outgoingLight.rgb, outgoingLight.rgb.mul( envNode.rgb ), materialSpecularStrength.mul( materialReflectivity ) ) ); break; case MixOperation: outgoingLight.rgb.assign( mix( outgoingLight.rgb, envNode.rgb, materialSpecularStrength.mul( materialReflectivity ) ) ); break; case AddOperation: outgoingLight.rgb.addAssign( envNode.rgb.mul( materialSpecularStrength.mul( materialReflectivity ) ) ); break; default: console.warn( 'THREE.BasicLightingModel: Unsupported .combine value:', material.combine ); break; } } } } const _defaultValues$9 = /*@__PURE__*/ new MeshBasicMaterial(); class MeshBasicNodeMaterial extends NodeMaterial { static get type() { return 'MeshBasicNodeMaterial'; } constructor( parameters ) { super(); this.isMeshBasicNodeMaterial = true; this.lights = true; this.setDefaultValues( _defaultValues$9 ); this.setValues( parameters ); } setupNormal() { return normalView; // see #28839 } setupEnvironment( builder ) { const envNode = super.setupEnvironment( builder ); return envNode ? new BasicEnvironmentNode( envNode ) : null; } setupLightMap( builder ) { let node = null; if ( builder.material.lightMap ) { node = new BasicLightMapNode( materialLightMap ); } return node; } setupOutgoingLight() { return diffuseColor.rgb; } setupLightingModel() { return new BasicLightingModel(); } } const F_Schlick = /*@__PURE__*/ Fn( ( { f0, f90, dotVH } ) => { // Original approximation by Christophe Schlick '94 // float fresnel = pow( 1.0 - dotVH, 5.0 ); // Optimized variant (presented by Epic at SIGGRAPH '13) // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf const fresnel = dotVH.mul( -5.55473 ).sub( 6.98316 ).mul( dotVH ).exp2(); return f0.mul( fresnel.oneMinus() ).add( f90.mul( fresnel ) ); } ); // validated const BRDF_Lambert = /*@__PURE__*/ Fn( ( inputs ) => { return inputs.diffuseColor.mul( 1 / Math.PI ); // punctual light } ); // validated const G_BlinnPhong_Implicit = () => float( 0.25 ); const D_BlinnPhong = /*@__PURE__*/ Fn( ( { dotNH } ) => { return shininess.mul( float( 0.5 ) ).add( 1.0 ).mul( float( 1 / Math.PI ) ).mul( dotNH.pow( shininess ) ); } ); const BRDF_BlinnPhong = /*@__PURE__*/ Fn( ( { lightDirection } ) => { const halfDir = lightDirection.add( positionViewDirection ).normalize(); const dotNH = transformedNormalView.dot( halfDir ).clamp(); const dotVH = positionViewDirection.dot( halfDir ).clamp(); const F = F_Schlick( { f0: specularColor, f90: 1.0, dotVH } ); const G = G_BlinnPhong_Implicit(); const D = D_BlinnPhong( { dotNH } ); return F.mul( G ).mul( D ); } ); class PhongLightingModel extends BasicLightingModel { constructor( specular = true ) { super(); this.specular = specular; } direct( { lightDirection, lightColor, reflectedLight } ) { const dotNL = transformedNormalView.dot( lightDirection ).clamp(); const irradiance = dotNL.mul( lightColor ); reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); if ( this.specular === true ) { reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_BlinnPhong( { lightDirection } ) ).mul( materialSpecularStrength ) ); } } indirect( { ambientOcclusion, irradiance, reflectedLight } ) { reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); } } const _defaultValues$8 = /*@__PURE__*/ new MeshLambertMaterial(); class MeshLambertNodeMaterial extends NodeMaterial { static get type() { return 'MeshLambertNodeMaterial'; } constructor( parameters ) { super(); this.isMeshLambertNodeMaterial = true; this.lights = true; this.setDefaultValues( _defaultValues$8 ); this.setValues( parameters ); } setupEnvironment( builder ) { const envNode = super.setupEnvironment( builder ); return envNode ? new BasicEnvironmentNode( envNode ) : null; } setupLightingModel( /*builder*/ ) { return new PhongLightingModel( false ); // ( specular ) -> force lambert } } const _defaultValues$7 = /*@__PURE__*/ new MeshPhongMaterial(); class MeshPhongNodeMaterial extends NodeMaterial { static get type() { return 'MeshPhongNodeMaterial'; } constructor( parameters ) { super(); this.isMeshPhongNodeMaterial = true; this.lights = true; this.shininessNode = null; this.specularNode = null; this.setDefaultValues( _defaultValues$7 ); this.setValues( parameters ); } setupEnvironment( builder ) { const envNode = super.setupEnvironment( builder ); return envNode ? new BasicEnvironmentNode( envNode ) : null; } setupLightingModel( /*builder*/ ) { return new PhongLightingModel(); } setupVariants() { // SHININESS const shininessNode = ( this.shininessNode ? float( this.shininessNode ) : materialShininess ).max( 1e-4 ); // to prevent pow( 0.0, 0.0 ) shininess.assign( shininessNode ); // SPECULAR COLOR const specularNode = this.specularNode || materialSpecular; specularColor.assign( specularNode ); } copy( source ) { this.shininessNode = source.shininessNode; this.specularNode = source.specularNode; return super.copy( source ); } } const getGeometryRoughness = /*@__PURE__*/ Fn( () => { const dxy = normalView.dFdx().abs().max( normalView.dFdy().abs() ); const geometryRoughness = dxy.x.max( dxy.y ).max( dxy.z ); return geometryRoughness; } ); const getRoughness = /*@__PURE__*/ Fn( ( inputs ) => { const { roughness } = inputs; const geometryRoughness = getGeometryRoughness(); let roughnessFactor = roughness.max( 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap. roughnessFactor = roughnessFactor.add( geometryRoughness ); roughnessFactor = roughnessFactor.min( 1.0 ); return roughnessFactor; } ); // Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2 // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf const V_GGX_SmithCorrelated = /*@__PURE__*/ Fn( ( { alpha, dotNL, dotNV } ) => { const a2 = alpha.pow2(); const gv = dotNL.mul( a2.add( a2.oneMinus().mul( dotNV.pow2() ) ).sqrt() ); const gl = dotNV.mul( a2.add( a2.oneMinus().mul( dotNL.pow2() ) ).sqrt() ); return div( 0.5, gv.add( gl ).max( EPSILON ) ); } ).setLayout( { name: 'V_GGX_SmithCorrelated', type: 'float', inputs: [ { name: 'alpha', type: 'float' }, { name: 'dotNL', type: 'float' }, { name: 'dotNV', type: 'float' } ] } ); // validated // https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf const V_GGX_SmithCorrelated_Anisotropic = /*@__PURE__*/ Fn( ( { alphaT, alphaB, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } ) => { const gv = dotNL.mul( vec3( alphaT.mul( dotTV ), alphaB.mul( dotBV ), dotNV ).length() ); const gl = dotNV.mul( vec3( alphaT.mul( dotTL ), alphaB.mul( dotBL ), dotNL ).length() ); const v = div( 0.5, gv.add( gl ) ); return v.saturate(); } ).setLayout( { name: 'V_GGX_SmithCorrelated_Anisotropic', type: 'float', inputs: [ { name: 'alphaT', type: 'float', qualifier: 'in' }, { name: 'alphaB', type: 'float', qualifier: 'in' }, { name: 'dotTV', type: 'float', qualifier: 'in' }, { name: 'dotBV', type: 'float', qualifier: 'in' }, { name: 'dotTL', type: 'float', qualifier: 'in' }, { name: 'dotBL', type: 'float', qualifier: 'in' }, { name: 'dotNV', type: 'float', qualifier: 'in' }, { name: 'dotNL', type: 'float', qualifier: 'in' } ] } ); // Microfacet Models for Refraction through Rough Surfaces - equation (33) // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html // alpha is "roughness squared" in Disney’s reparameterization const D_GGX = /*@__PURE__*/ Fn( ( { alpha, dotNH } ) => { const a2 = alpha.pow2(); const denom = dotNH.pow2().mul( a2.oneMinus() ).oneMinus(); // avoid alpha = 0 with dotNH = 1 return a2.div( denom.pow2() ).mul( 1 / Math.PI ); } ).setLayout( { name: 'D_GGX', type: 'float', inputs: [ { name: 'alpha', type: 'float' }, { name: 'dotNH', type: 'float' } ] } ); // validated const RECIPROCAL_PI = /*@__PURE__*/ float( 1 / Math.PI ); // https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel/anisotropicspecularbrdf const D_GGX_Anisotropic = /*@__PURE__*/ Fn( ( { alphaT, alphaB, dotNH, dotTH, dotBH } ) => { const a2 = alphaT.mul( alphaB ); const v = vec3( alphaB.mul( dotTH ), alphaT.mul( dotBH ), a2.mul( dotNH ) ); const v2 = v.dot( v ); const w2 = a2.div( v2 ); return RECIPROCAL_PI.mul( a2.mul( w2.pow2() ) ); } ).setLayout( { name: 'D_GGX_Anisotropic', type: 'float', inputs: [ { name: 'alphaT', type: 'float', qualifier: 'in' }, { name: 'alphaB', type: 'float', qualifier: 'in' }, { name: 'dotNH', type: 'float', qualifier: 'in' }, { name: 'dotTH', type: 'float', qualifier: 'in' }, { name: 'dotBH', type: 'float', qualifier: 'in' } ] } ); // GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility const BRDF_GGX = /*@__PURE__*/ Fn( ( inputs ) => { const { lightDirection, f0, f90, roughness, f, USE_IRIDESCENCE, USE_ANISOTROPY } = inputs; const normalView = inputs.normalView || transformedNormalView; const alpha = roughness.pow2(); // UE4's roughness const halfDir = lightDirection.add( positionViewDirection ).normalize(); const dotNL = normalView.dot( lightDirection ).clamp(); const dotNV = normalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV const dotNH = normalView.dot( halfDir ).clamp(); const dotVH = positionViewDirection.dot( halfDir ).clamp(); let F = F_Schlick( { f0, f90, dotVH } ); let V, D; if ( defined( USE_IRIDESCENCE ) ) { F = iridescence.mix( F, f ); } if ( defined( USE_ANISOTROPY ) ) { const dotTL = anisotropyT.dot( lightDirection ); const dotTV = anisotropyT.dot( positionViewDirection ); const dotTH = anisotropyT.dot( halfDir ); const dotBL = anisotropyB.dot( lightDirection ); const dotBV = anisotropyB.dot( positionViewDirection ); const dotBH = anisotropyB.dot( halfDir ); V = V_GGX_SmithCorrelated_Anisotropic( { alphaT, alphaB: alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL } ); D = D_GGX_Anisotropic( { alphaT, alphaB: alpha, dotNH, dotTH, dotBH } ); } else { V = V_GGX_SmithCorrelated( { alpha, dotNL, dotNV } ); D = D_GGX( { alpha, dotNH } ); } return F.mul( V ).mul( D ); } ); // validated // Analytical approximation of the DFG LUT, one half of the // split-sum approximation used in indirect specular lighting. // via 'environmentBRDF' from "Physically Based Shading on Mobile" // https://www.unrealengine.com/blog/physically-based-shading-on-mobile const DFGApprox = /*@__PURE__*/ Fn( ( { roughness, dotNV } ) => { const c0 = vec4( -1, -0.0275, -0.572, 0.022 ); const c1 = vec4( 1, 0.0425, 1.04, -0.04 ); const r = roughness.mul( c0 ).add( c1 ); const a004 = r.x.mul( r.x ).min( dotNV.mul( -9.28 ).exp2() ).mul( r.x ).add( r.y ); const fab = vec2( -1.04, 1.04 ).mul( a004 ).add( r.zw ); return fab; } ).setLayout( { name: 'DFGApprox', type: 'vec2', inputs: [ { name: 'roughness', type: 'float' }, { name: 'dotNV', type: 'vec3' } ] } ); const EnvironmentBRDF = /*@__PURE__*/ Fn( ( inputs ) => { const { dotNV, specularColor, specularF90, roughness } = inputs; const fab = DFGApprox( { dotNV, roughness } ); return specularColor.mul( fab.x ).add( specularF90.mul( fab.y ) ); } ); const Schlick_to_F0 = /*@__PURE__*/ Fn( ( { f, f90, dotVH } ) => { const x = dotVH.oneMinus().saturate(); const x2 = x.mul( x ); const x5 = x.mul( x2, x2 ).clamp( 0, .9999 ); return f.sub( vec3( f90 ).mul( x5 ) ).div( x5.oneMinus() ); } ).setLayout( { name: 'Schlick_to_F0', type: 'vec3', inputs: [ { name: 'f', type: 'vec3' }, { name: 'f90', type: 'float' }, { name: 'dotVH', type: 'float' } ] } ); // https://github.com/google/filament/blob/master/shaders/src/brdf.fs const D_Charlie = /*@__PURE__*/ Fn( ( { roughness, dotNH } ) => { const alpha = roughness.pow2(); // Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF" const invAlpha = float( 1.0 ).div( alpha ); const cos2h = dotNH.pow2(); const sin2h = cos2h.oneMinus().max( 0.0078125 ); // 2^(-14/2), so sin2h^2 > 0 in fp16 return float( 2.0 ).add( invAlpha ).mul( sin2h.pow( invAlpha.mul( 0.5 ) ) ).div( 2.0 * Math.PI ); } ).setLayout( { name: 'D_Charlie', type: 'float', inputs: [ { name: 'roughness', type: 'float' }, { name: 'dotNH', type: 'float' } ] } ); // https://github.com/google/filament/blob/master/shaders/src/brdf.fs const V_Neubelt = /*@__PURE__*/ Fn( ( { dotNV, dotNL } ) => { // Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886" return float( 1.0 ).div( float( 4.0 ).mul( dotNL.add( dotNV ).sub( dotNL.mul( dotNV ) ) ) ); } ).setLayout( { name: 'V_Neubelt', type: 'float', inputs: [ { name: 'dotNV', type: 'float' }, { name: 'dotNL', type: 'float' } ] } ); const BRDF_Sheen = /*@__PURE__*/ Fn( ( { lightDirection } ) => { const halfDir = lightDirection.add( positionViewDirection ).normalize(); const dotNL = transformedNormalView.dot( lightDirection ).clamp(); const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); const dotNH = transformedNormalView.dot( halfDir ).clamp(); const D = D_Charlie( { roughness: sheenRoughness, dotNH } ); const V = V_Neubelt( { dotNV, dotNL } ); return sheen.mul( D ).mul( V ); } ); // Rect Area Light // Real-Time Polygonal-Light Shading with Linearly Transformed Cosines // by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt // code: https://github.com/selfshadow/ltc_code/ const LTC_Uv = /*@__PURE__*/ Fn( ( { N, V, roughness } ) => { const LUT_SIZE = 64.0; const LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; const LUT_BIAS = 0.5 / LUT_SIZE; const dotNV = N.dot( V ).saturate(); // texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) ) const uv = vec2( roughness, dotNV.oneMinus().sqrt() ); uv.assign( uv.mul( LUT_SCALE ).add( LUT_BIAS ) ); return uv; } ).setLayout( { name: 'LTC_Uv', type: 'vec2', inputs: [ { name: 'N', type: 'vec3' }, { name: 'V', type: 'vec3' }, { name: 'roughness', type: 'float' } ] } ); const LTC_ClippedSphereFormFactor = /*@__PURE__*/ Fn( ( { f } ) => { // Real-Time Area Lighting: a Journey from Research to Production (p.102) // An approximation of the form factor of a horizon-clipped rectangle. const l = f.length(); return max$1( l.mul( l ).add( f.z ).div( l.add( 1.0 ) ), 0 ); } ).setLayout( { name: 'LTC_ClippedSphereFormFactor', type: 'float', inputs: [ { name: 'f', type: 'vec3' } ] } ); const LTC_EdgeVectorFormFactor = /*@__PURE__*/ Fn( ( { v1, v2 } ) => { const x = v1.dot( v2 ); const y = x.abs().toVar(); // rational polynomial approximation to theta / sin( theta ) / 2PI const a = y.mul( 0.0145206 ).add( 0.4965155 ).mul( y ).add( 0.8543985 ).toVar(); const b = y.add( 4.1616724 ).mul( y ).add( 3.4175940 ).toVar(); const v = a.div( b ); const theta_sintheta = x.greaterThan( 0.0 ).select( v, max$1( x.mul( x ).oneMinus(), 1e-7 ).inverseSqrt().mul( 0.5 ).sub( v ) ); return v1.cross( v2 ).mul( theta_sintheta ); } ).setLayout( { name: 'LTC_EdgeVectorFormFactor', type: 'vec3', inputs: [ { name: 'v1', type: 'vec3' }, { name: 'v2', type: 'vec3' } ] } ); const LTC_Evaluate = /*@__PURE__*/ Fn( ( { N, V, P, mInv, p0, p1, p2, p3 } ) => { // bail if point is on back side of plane of light // assumes ccw winding order of light vertices const v1 = p1.sub( p0 ).toVar(); const v2 = p3.sub( p0 ).toVar(); const lightNormal = v1.cross( v2 ); const result = vec3().toVar(); If( lightNormal.dot( P.sub( p0 ) ).greaterThanEqual( 0.0 ), () => { // construct orthonormal basis around N const T1 = V.sub( N.mul( V.dot( N ) ) ).normalize(); const T2 = N.cross( T1 ).negate(); // negated from paper; possibly due to a different handedness of world coordinate system // compute transform const mat = mInv.mul( mat3( T1, T2, N ).transpose() ).toVar(); // transform rect // & project rect onto sphere const coords0 = mat.mul( p0.sub( P ) ).normalize().toVar(); const coords1 = mat.mul( p1.sub( P ) ).normalize().toVar(); const coords2 = mat.mul( p2.sub( P ) ).normalize().toVar(); const coords3 = mat.mul( p3.sub( P ) ).normalize().toVar(); // calculate vector form factor const vectorFormFactor = vec3( 0 ).toVar(); vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords0, v2: coords1 } ) ); vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords1, v2: coords2 } ) ); vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords2, v2: coords3 } ) ); vectorFormFactor.addAssign( LTC_EdgeVectorFormFactor( { v1: coords3, v2: coords0 } ) ); // adjust for horizon clipping result.assign( vec3( LTC_ClippedSphereFormFactor( { f: vectorFormFactor } ) ) ); } ); return result; } ).setLayout( { name: 'LTC_Evaluate', type: 'vec3', inputs: [ { name: 'N', type: 'vec3' }, { name: 'V', type: 'vec3' }, { name: 'P', type: 'vec3' }, { name: 'mInv', type: 'mat3' }, { name: 'p0', type: 'vec3' }, { name: 'p1', type: 'vec3' }, { name: 'p2', type: 'vec3' }, { name: 'p3', type: 'vec3' } ] } ); // Mipped Bicubic Texture Filtering by N8 // https://www.shadertoy.com/view/Dl2SDW const bC = 1.0 / 6.0; const w0 = ( a ) => mul( bC, mul( a, mul( a, a.negate().add( 3.0 ) ).sub( 3.0 ) ).add( 1.0 ) ); const w1 = ( a ) => mul( bC, mul( a, mul( a, mul( 3.0, a ).sub( 6.0 ) ) ).add( 4.0 ) ); const w2 = ( a ) => mul( bC, mul( a, mul( a, mul( -3, a ).add( 3.0 ) ).add( 3.0 ) ).add( 1.0 ) ); const w3 = ( a ) => mul( bC, pow( a, 3 ) ); const g0 = ( a ) => w0( a ).add( w1( a ) ); const g1 = ( a ) => w2( a ).add( w3( a ) ); // h0 and h1 are the two offset functions const h0 = ( a ) => add( -1, w1( a ).div( w0( a ).add( w1( a ) ) ) ); const h1 = ( a ) => add( 1.0, w3( a ).div( w2( a ).add( w3( a ) ) ) ); const bicubic = ( textureNode, texelSize, lod ) => { const uv = textureNode.uvNode; const uvScaled = mul( uv, texelSize.zw ).add( 0.5 ); const iuv = floor( uvScaled ); const fuv = fract( uvScaled ); const g0x = g0( fuv.x ); const g1x = g1( fuv.x ); const h0x = h0( fuv.x ); const h1x = h1( fuv.x ); const h0y = h0( fuv.y ); const h1y = h1( fuv.y ); const p0 = vec2( iuv.x.add( h0x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy ); const p1 = vec2( iuv.x.add( h1x ), iuv.y.add( h0y ) ).sub( 0.5 ).mul( texelSize.xy ); const p2 = vec2( iuv.x.add( h0x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy ); const p3 = vec2( iuv.x.add( h1x ), iuv.y.add( h1y ) ).sub( 0.5 ).mul( texelSize.xy ); const a = g0( fuv.y ).mul( add( g0x.mul( textureNode.uv( p0 ).level( lod ) ), g1x.mul( textureNode.uv( p1 ).level( lod ) ) ) ); const b = g1( fuv.y ).mul( add( g0x.mul( textureNode.uv( p2 ).level( lod ) ), g1x.mul( textureNode.uv( p3 ).level( lod ) ) ) ); return a.add( b ); }; const textureBicubic = /*@__PURE__*/ Fn( ( [ textureNode, lodNode = float( 3 ) ] ) => { const fLodSize = vec2( textureNode.size( int( lodNode ) ) ); const cLodSize = vec2( textureNode.size( int( lodNode.add( 1.0 ) ) ) ); const fLodSizeInv = div( 1.0, fLodSize ); const cLodSizeInv = div( 1.0, cLodSize ); const fSample = bicubic( textureNode, vec4( fLodSizeInv, fLodSize ), floor( lodNode ) ); const cSample = bicubic( textureNode, vec4( cLodSizeInv, cLodSize ), ceil( lodNode ) ); return fract( lodNode ).mix( fSample, cSample ); } ); // // Transmission // const getVolumeTransmissionRay = /*@__PURE__*/ Fn( ( [ n, v, thickness, ior, modelMatrix ] ) => { // Direction of refracted light. const refractionVector = vec3( refract( v.negate(), normalize( n ), div( 1.0, ior ) ) ); // Compute rotation-independant scaling of the model matrix. const modelScale = vec3( length( modelMatrix[ 0 ].xyz ), length( modelMatrix[ 1 ].xyz ), length( modelMatrix[ 2 ].xyz ) ); // The thickness is specified in local space. return normalize( refractionVector ).mul( thickness.mul( modelScale ) ); } ).setLayout( { name: 'getVolumeTransmissionRay', type: 'vec3', inputs: [ { name: 'n', type: 'vec3' }, { name: 'v', type: 'vec3' }, { name: 'thickness', type: 'float' }, { name: 'ior', type: 'float' }, { name: 'modelMatrix', type: 'mat4' } ] } ); const applyIorToRoughness = /*@__PURE__*/ Fn( ( [ roughness, ior ] ) => { // Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and // an IOR of 1.5 results in the default amount of microfacet refraction. return roughness.mul( clamp( ior.mul( 2.0 ).sub( 2.0 ), 0.0, 1.0 ) ); } ).setLayout( { name: 'applyIorToRoughness', type: 'float', inputs: [ { name: 'roughness', type: 'float' }, { name: 'ior', type: 'float' } ] } ); const singleViewportMipTexture = /*@__PURE__*/ viewportMipTexture(); const getTransmissionSample = /*@__PURE__*/ Fn( ( [ fragCoord, roughness, ior ] ) => { const transmissionSample = singleViewportMipTexture.uv( fragCoord ); //const transmissionSample = viewportMipTexture( fragCoord ); const lod = log2( float( screenSize.x ) ).mul( applyIorToRoughness( roughness, ior ) ); return textureBicubic( transmissionSample, lod ); } ); const volumeAttenuation = /*@__PURE__*/ Fn( ( [ transmissionDistance, attenuationColor, attenuationDistance ] ) => { If( attenuationDistance.notEqual( 0 ), () => { // Compute light attenuation using Beer's law. const attenuationCoefficient = log( attenuationColor ).negate().div( attenuationDistance ); const transmittance = exp( attenuationCoefficient.negate().mul( transmissionDistance ) ); return transmittance; } ); // Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all. return vec3( 1.0 ); } ).setLayout( { name: 'volumeAttenuation', type: 'vec3', inputs: [ { name: 'transmissionDistance', type: 'float' }, { name: 'attenuationColor', type: 'vec3' }, { name: 'attenuationDistance', type: 'float' } ] } ); const getIBLVolumeRefraction = /*@__PURE__*/ Fn( ( [ n, v, roughness, diffuseColor, specularColor, specularF90, position, modelMatrix, viewMatrix, projMatrix, ior, thickness, attenuationColor, attenuationDistance, dispersion ] ) => { let transmittedLight, transmittance; if ( dispersion ) { transmittedLight = vec4().toVar(); transmittance = vec3().toVar(); const halfSpread = ior.sub( 1.0 ).mul( dispersion.mul( 0.025 ) ); const iors = vec3( ior.sub( halfSpread ), ior, ior.add( halfSpread ) ); Loop( { start: 0, end: 3 }, ( { i } ) => { const ior = iors.element( i ); const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); const refractedRayExit = position.add( transmissionRay ); // Project refracted vector on the framebuffer, while mapping to normalized device coordinates. const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) ); const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar(); refractionCoords.addAssign( 1.0 ); refractionCoords.divAssign( 2.0 ); refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu // Sample framebuffer to get pixel the refracted ray hits. const transmissionSample = getTransmissionSample( refractionCoords, roughness, ior ); transmittedLight.element( i ).assign( transmissionSample.element( i ) ); transmittedLight.a.addAssign( transmissionSample.a ); transmittance.element( i ).assign( diffuseColor.element( i ).mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ).element( i ) ) ); } ); transmittedLight.a.divAssign( 3.0 ); } else { const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); const refractedRayExit = position.add( transmissionRay ); // Project refracted vector on the framebuffer, while mapping to normalized device coordinates. const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) ); const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar(); refractionCoords.addAssign( 1.0 ); refractionCoords.divAssign( 2.0 ); refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu // Sample framebuffer to get pixel the refracted ray hits. transmittedLight = getTransmissionSample( refractionCoords, roughness, ior ); transmittance = diffuseColor.mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ) ); } const attenuatedColor = transmittance.rgb.mul( transmittedLight.rgb ); const dotNV = n.dot( v ).clamp(); // Get the specular component. const F = vec3( EnvironmentBRDF( { // n, v, specularColor, specularF90, roughness dotNV, specularColor, specularF90, roughness } ) ); // As less light is transmitted, the opacity should be increased. This simple approximation does a decent job // of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color. const transmittanceFactor = transmittance.r.add( transmittance.g, transmittance.b ).div( 3.0 ); return vec4( F.oneMinus().mul( attenuatedColor ), transmittedLight.a.oneMinus().mul( transmittanceFactor ).oneMinus() ); } ); // // Iridescence // // XYZ to linear-sRGB color space const XYZ_TO_REC709 = /*@__PURE__*/ mat3( 3.2404542, -0.969266, 0.0556434, -1.5371385, 1.8760108, -0.2040259, -0.4985314, 0.0415560, 1.0572252 ); // Assume air interface for top // Note: We don't handle the case fresnel0 == 1 const Fresnel0ToIor = ( fresnel0 ) => { const sqrtF0 = fresnel0.sqrt(); return vec3( 1.0 ).add( sqrtF0 ).div( vec3( 1.0 ).sub( sqrtF0 ) ); }; // ior is a value between 1.0 and 3.0. 1.0 is air interface const IorToFresnel0 = ( transmittedIor, incidentIor ) => { return transmittedIor.sub( incidentIor ).div( transmittedIor.add( incidentIor ) ).pow2(); }; // Fresnel equations for dielectric/dielectric interfaces. // Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html // Evaluation XYZ sensitivity curves in Fourier space const evalSensitivity = ( OPD, shift ) => { const phase = OPD.mul( 2.0 * Math.PI * 1.0e-9 ); const val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 ); const pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 ); const VAR = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 ); const x = float( 9.7470e-14 * Math.sqrt( 2.0 * Math.PI * 4.5282e+09 ) ).mul( phase.mul( 2.2399e+06 ).add( shift.x ).cos() ).mul( phase.pow2().mul( -45282e5 ).exp() ); let xyz = val.mul( VAR.mul( 2.0 * Math.PI ).sqrt() ).mul( pos.mul( phase ).add( shift ).cos() ).mul( phase.pow2().negate().mul( VAR ).exp() ); xyz = vec3( xyz.x.add( x ), xyz.y, xyz.z ).div( 1.0685e-7 ); const rgb = XYZ_TO_REC709.mul( xyz ); return rgb; }; const evalIridescence = /*@__PURE__*/ Fn( ( { outsideIOR, eta2, cosTheta1, thinFilmThickness, baseF0 } ) => { // Force iridescenceIOR -> outsideIOR when thinFilmThickness -> 0.0 const iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) ); // Evaluate the cosTheta on the base layer (Snell law) const sinTheta2Sq = outsideIOR.div( iridescenceIOR ).pow2().mul( float( 1 ).sub( cosTheta1.pow2() ) ); // Handle TIR: const cosTheta2Sq = float( 1 ).sub( sinTheta2Sq ); /*if ( cosTheta2Sq < 0.0 ) { return vec3( 1.0 ); }*/ const cosTheta2 = cosTheta2Sq.sqrt(); // First interface const R0 = IorToFresnel0( iridescenceIOR, outsideIOR ); const R12 = F_Schlick( { f0: R0, f90: 1.0, dotVH: cosTheta1 } ); //const R21 = R12; const T121 = R12.oneMinus(); const phi12 = iridescenceIOR.lessThan( outsideIOR ).select( Math.PI, 0.0 ); const phi21 = float( Math.PI ).sub( phi12 ); // Second interface const baseIOR = Fresnel0ToIor( baseF0.clamp( 0.0, 0.9999 ) ); // guard against 1.0 const R1 = IorToFresnel0( baseIOR, iridescenceIOR.toVec3() ); const R23 = F_Schlick( { f0: R1, f90: 1.0, dotVH: cosTheta2 } ); const phi23 = vec3( baseIOR.x.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ), baseIOR.y.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ), baseIOR.z.lessThan( iridescenceIOR ).select( Math.PI, 0.0 ) ); // Phase shift const OPD = iridescenceIOR.mul( thinFilmThickness, cosTheta2, 2.0 ); const phi = vec3( phi21 ).add( phi23 ); // Compound terms const R123 = R12.mul( R23 ).clamp( 1e-5, 0.9999 ); const r123 = R123.sqrt(); const Rs = T121.pow2().mul( R23 ).div( vec3( 1.0 ).sub( R123 ) ); // Reflectance term for m = 0 (DC term amplitude) const C0 = R12.add( Rs ); let I = C0; // Reflectance term for m > 0 (pairs of diracs) let Cm = Rs.sub( T121 ); for ( let m = 1; m <= 2; ++ m ) { Cm = Cm.mul( r123 ); const Sm = evalSensitivity( float( m ).mul( OPD ), float( m ).mul( phi ) ).mul( 2.0 ); I = I.add( Cm.mul( Sm ) ); } // Since out of gamut colors might be produced, negative color values are clamped to 0. return I.max( vec3( 0.0 ) ); } ).setLayout( { name: 'evalIridescence', type: 'vec3', inputs: [ { name: 'outsideIOR', type: 'float' }, { name: 'eta2', type: 'float' }, { name: 'cosTheta1', type: 'float' }, { name: 'thinFilmThickness', type: 'float' }, { name: 'baseF0', type: 'vec3' } ] } ); // // Sheen // // This is a curve-fit approxmation to the "Charlie sheen" BRDF integrated over the hemisphere from // Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF". The analysis can be found // in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing const IBLSheenBRDF = /*@__PURE__*/ Fn( ( { normal, viewDir, roughness } ) => { const dotNV = normal.dot( viewDir ).saturate(); const r2 = roughness.pow2(); const a = select( roughness.lessThan( 0.25 ), float( -339.2 ).mul( r2 ).add( float( 161.4 ).mul( roughness ) ).sub( 25.9 ), float( -8.48 ).mul( r2 ).add( float( 14.3 ).mul( roughness ) ).sub( 9.95 ) ); const b = select( roughness.lessThan( 0.25 ), float( 44.0 ).mul( r2 ).sub( float( 23.7 ).mul( roughness ) ).add( 3.26 ), float( 1.97 ).mul( r2 ).sub( float( 3.27 ).mul( roughness ) ).add( 0.72 ) ); const DG = select( roughness.lessThan( 0.25 ), 0.0, float( 0.1 ).mul( roughness ).sub( 0.025 ) ).add( a.mul( dotNV ).add( b ).exp() ); return DG.mul( 1.0 / Math.PI ).saturate(); } ); const clearcoatF0 = vec3( 0.04 ); const clearcoatF90 = float( 1 ); // class PhysicalLightingModel extends LightingModel { constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false ) { super(); this.clearcoat = clearcoat; this.sheen = sheen; this.iridescence = iridescence; this.anisotropy = anisotropy; this.transmission = transmission; this.dispersion = dispersion; this.clearcoatRadiance = null; this.clearcoatSpecularDirect = null; this.clearcoatSpecularIndirect = null; this.sheenSpecularDirect = null; this.sheenSpecularIndirect = null; this.iridescenceFresnel = null; this.iridescenceF0 = null; } start( context ) { if ( this.clearcoat === true ) { this.clearcoatRadiance = vec3().toVar( 'clearcoatRadiance' ); this.clearcoatSpecularDirect = vec3().toVar( 'clearcoatSpecularDirect' ); this.clearcoatSpecularIndirect = vec3().toVar( 'clearcoatSpecularIndirect' ); } if ( this.sheen === true ) { this.sheenSpecularDirect = vec3().toVar( 'sheenSpecularDirect' ); this.sheenSpecularIndirect = vec3().toVar( 'sheenSpecularIndirect' ); } if ( this.iridescence === true ) { const dotNVi = transformedNormalView.dot( positionViewDirection ).clamp(); this.iridescenceFresnel = evalIridescence( { outsideIOR: float( 1.0 ), eta2: iridescenceIOR, cosTheta1: dotNVi, thinFilmThickness: iridescenceThickness, baseF0: specularColor } ); this.iridescenceF0 = Schlick_to_F0( { f: this.iridescenceFresnel, f90: 1.0, dotVH: dotNVi } ); } if ( this.transmission === true ) { const position = positionWorld; const v = cameraPosition.sub( positionWorld ).normalize(); // TODO: Create Node for this, same issue in MaterialX const n = transformedNormalWorld; context.backdrop = getIBLVolumeRefraction( n, v, roughness, diffuseColor, specularColor, specularF90, // specularF90 position, // positionWorld modelWorldMatrix, // modelMatrix cameraViewMatrix, // viewMatrix cameraProjectionMatrix, // projMatrix ior, thickness, attenuationColor, attenuationDistance, this.dispersion ? dispersion : null ); context.backdropAlpha = transmission; diffuseColor.a.mulAssign( mix( 1, context.backdrop.a, transmission ) ); } } // Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting" // Approximates multiscattering in order to preserve energy. // http://www.jcgt.org/published/0008/01/03/ computeMultiscattering( singleScatter, multiScatter, specularF90 ) { const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV const fab = DFGApprox( { roughness, dotNV } ); const Fr = this.iridescenceF0 ? iridescence.mix( specularColor, this.iridescenceF0 ) : specularColor; const FssEss = Fr.mul( fab.x ).add( specularF90.mul( fab.y ) ); const Ess = fab.x.add( fab.y ); const Ems = Ess.oneMinus(); const Favg = specularColor.add( specularColor.oneMinus().mul( 0.047619 ) ); // 1/21 const Fms = FssEss.mul( Favg ).div( Ems.mul( Favg ).oneMinus() ); singleScatter.addAssign( FssEss ); multiScatter.addAssign( Fms.mul( Ems ) ); } direct( { lightDirection, lightColor, reflectedLight } ) { const dotNL = transformedNormalView.dot( lightDirection ).clamp(); const irradiance = dotNL.mul( lightColor ); if ( this.sheen === true ) { this.sheenSpecularDirect.addAssign( irradiance.mul( BRDF_Sheen( { lightDirection } ) ) ); } if ( this.clearcoat === true ) { const dotNLcc = transformedClearcoatNormalView.dot( lightDirection ).clamp(); const ccIrradiance = dotNLcc.mul( lightColor ); this.clearcoatSpecularDirect.addAssign( ccIrradiance.mul( BRDF_GGX( { lightDirection, f0: clearcoatF0, f90: clearcoatF90, roughness: clearcoatRoughness, normalView: transformedClearcoatNormalView } ) ) ); } reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_GGX( { lightDirection, f0: specularColor, f90: 1, roughness, iridescence: this.iridescence, f: this.iridescenceFresnel, USE_IRIDESCENCE: this.iridescence, USE_ANISOTROPY: this.anisotropy } ) ) ); } directRectArea( { lightColor, lightPosition, halfWidth, halfHeight, reflectedLight, ltc_1, ltc_2 } ) { const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction const p1 = lightPosition.sub( halfWidth ).sub( halfHeight ); const p2 = lightPosition.sub( halfWidth ).add( halfHeight ); const p3 = lightPosition.add( halfWidth ).add( halfHeight ); const N = transformedNormalView; const V = positionViewDirection; const P = positionView.toVar(); const uv = LTC_Uv( { N, V, roughness } ); const t1 = ltc_1.uv( uv ).toVar(); const t2 = ltc_2.uv( uv ).toVar(); const mInv = mat3( vec3( t1.x, 0, t1.y ), vec3( 0, 1, 0 ), vec3( t1.z, 0, t1.w ) ).toVar(); // LTC Fresnel Approximation by Stephen Hill // http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf const fresnel = specularColor.mul( t2.x ).add( specularColor.oneMinus().mul( t2.y ) ).toVar(); reflectedLight.directSpecular.addAssign( lightColor.mul( fresnel ).mul( LTC_Evaluate( { N, V, P, mInv, p0, p1, p2, p3 } ) ) ); reflectedLight.directDiffuse.addAssign( lightColor.mul( diffuseColor ).mul( LTC_Evaluate( { N, V, P, mInv: mat3( 1, 0, 0, 0, 1, 0, 0, 0, 1 ), p0, p1, p2, p3 } ) ) ); } indirect( context, stack, builder ) { this.indirectDiffuse( context, stack, builder ); this.indirectSpecular( context, stack, builder ); this.ambientOcclusion( context, stack, builder ); } indirectDiffuse( { irradiance, reflectedLight } ) { reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); } indirectSpecular( { radiance, iblIrradiance, reflectedLight } ) { if ( this.sheen === true ) { this.sheenSpecularIndirect.addAssign( iblIrradiance.mul( sheen, IBLSheenBRDF( { normal: transformedNormalView, viewDir: positionViewDirection, roughness: sheenRoughness } ) ) ); } if ( this.clearcoat === true ) { const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp(); const clearcoatEnv = EnvironmentBRDF( { dotNV: dotNVcc, specularColor: clearcoatF0, specularF90: clearcoatF90, roughness: clearcoatRoughness } ); this.clearcoatSpecularIndirect.addAssign( this.clearcoatRadiance.mul( clearcoatEnv ) ); } // Both indirect specular and indirect diffuse light accumulate here const singleScattering = vec3().toVar( 'singleScattering' ); const multiScattering = vec3().toVar( 'multiScattering' ); const cosineWeightedIrradiance = iblIrradiance.mul( 1 / Math.PI ); this.computeMultiscattering( singleScattering, multiScattering, specularF90 ); const totalScattering = singleScattering.add( multiScattering ); const diffuse = diffuseColor.mul( totalScattering.r.max( totalScattering.g ).max( totalScattering.b ).oneMinus() ); reflectedLight.indirectSpecular.addAssign( radiance.mul( singleScattering ) ); reflectedLight.indirectSpecular.addAssign( multiScattering.mul( cosineWeightedIrradiance ) ); reflectedLight.indirectDiffuse.addAssign( diffuse.mul( cosineWeightedIrradiance ) ); } ambientOcclusion( { ambientOcclusion, reflectedLight } ) { const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV const aoNV = dotNV.add( ambientOcclusion ); const aoExp = roughness.mul( -16 ).oneMinus().negate().exp2(); const aoNode = ambientOcclusion.sub( aoNV.pow( aoExp ).oneMinus() ).clamp(); if ( this.clearcoat === true ) { this.clearcoatSpecularIndirect.mulAssign( ambientOcclusion ); } if ( this.sheen === true ) { this.sheenSpecularIndirect.mulAssign( ambientOcclusion ); } reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); reflectedLight.indirectSpecular.mulAssign( aoNode ); } finish( context ) { const { outgoingLight } = context; if ( this.clearcoat === true ) { const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp(); const Fcc = F_Schlick( { dotVH: dotNVcc, f0: clearcoatF0, f90: clearcoatF90 } ); const clearcoatLight = outgoingLight.mul( clearcoat.mul( Fcc ).oneMinus() ).add( this.clearcoatSpecularDirect.add( this.clearcoatSpecularIndirect ).mul( clearcoat ) ); outgoingLight.assign( clearcoatLight ); } if ( this.sheen === true ) { const sheenEnergyComp = sheen.r.max( sheen.g ).max( sheen.b ).mul( 0.157 ).oneMinus(); const sheenLight = outgoingLight.mul( sheenEnergyComp ).add( this.sheenSpecularDirect, this.sheenSpecularIndirect ); outgoingLight.assign( sheenLight ); } } } // These defines must match with PMREMGenerator const cubeUV_r0 = /*@__PURE__*/ float( 1.0 ); const cubeUV_m0 = /*@__PURE__*/ float( -2 ); const cubeUV_r1 = /*@__PURE__*/ float( 0.8 ); const cubeUV_m1 = /*@__PURE__*/ float( -1 ); const cubeUV_r4 = /*@__PURE__*/ float( 0.4 ); const cubeUV_m4 = /*@__PURE__*/ float( 2.0 ); const cubeUV_r5 = /*@__PURE__*/ float( 0.305 ); const cubeUV_m5 = /*@__PURE__*/ float( 3.0 ); const cubeUV_r6 = /*@__PURE__*/ float( 0.21 ); const cubeUV_m6 = /*@__PURE__*/ float( 4.0 ); const cubeUV_minMipLevel = /*@__PURE__*/ float( 4.0 ); const cubeUV_minTileSize = /*@__PURE__*/ float( 16.0 ); // These shader functions convert between the UV coordinates of a single face of // a cubemap, the 0-5 integer index of a cube face, and the direction vector for // sampling a textureCube (not generally normalized ). const getFace = /*@__PURE__*/ Fn( ( [ direction ] ) => { const absDirection = vec3( abs( direction ) ).toVar(); const face = float( -1 ).toVar(); If( absDirection.x.greaterThan( absDirection.z ), () => { If( absDirection.x.greaterThan( absDirection.y ), () => { face.assign( select( direction.x.greaterThan( 0.0 ), 0.0, 3.0 ) ); } ).Else( () => { face.assign( select( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) ); } ); } ).Else( () => { If( absDirection.z.greaterThan( absDirection.y ), () => { face.assign( select( direction.z.greaterThan( 0.0 ), 2.0, 5.0 ) ); } ).Else( () => { face.assign( select( direction.y.greaterThan( 0.0 ), 1.0, 4.0 ) ); } ); } ); return face; } ).setLayout( { name: 'getFace', type: 'float', inputs: [ { name: 'direction', type: 'vec3' } ] } ); // RH coordinate system; PMREM face-indexing convention const getUV = /*@__PURE__*/ Fn( ( [ direction, face ] ) => { const uv = vec2().toVar(); If( face.equal( 0.0 ), () => { uv.assign( vec2( direction.z, direction.y ).div( abs( direction.x ) ) ); // pos x } ).ElseIf( face.equal( 1.0 ), () => { uv.assign( vec2( direction.x.negate(), direction.z.negate() ).div( abs( direction.y ) ) ); // pos y } ).ElseIf( face.equal( 2.0 ), () => { uv.assign( vec2( direction.x.negate(), direction.y ).div( abs( direction.z ) ) ); // pos z } ).ElseIf( face.equal( 3.0 ), () => { uv.assign( vec2( direction.z.negate(), direction.y ).div( abs( direction.x ) ) ); // neg x } ).ElseIf( face.equal( 4.0 ), () => { uv.assign( vec2( direction.x.negate(), direction.z ).div( abs( direction.y ) ) ); // neg y } ).Else( () => { uv.assign( vec2( direction.x, direction.y ).div( abs( direction.z ) ) ); // neg z } ); return mul( 0.5, uv.add( 1.0 ) ); } ).setLayout( { name: 'getUV', type: 'vec2', inputs: [ { name: 'direction', type: 'vec3' }, { name: 'face', type: 'float' } ] } ); const roughnessToMip = /*@__PURE__*/ Fn( ( [ roughness ] ) => { const mip = float( 0.0 ).toVar(); If( roughness.greaterThanEqual( cubeUV_r1 ), () => { mip.assign( cubeUV_r0.sub( roughness ).mul( cubeUV_m1.sub( cubeUV_m0 ) ).div( cubeUV_r0.sub( cubeUV_r1 ) ).add( cubeUV_m0 ) ); } ).ElseIf( roughness.greaterThanEqual( cubeUV_r4 ), () => { mip.assign( cubeUV_r1.sub( roughness ).mul( cubeUV_m4.sub( cubeUV_m1 ) ).div( cubeUV_r1.sub( cubeUV_r4 ) ).add( cubeUV_m1 ) ); } ).ElseIf( roughness.greaterThanEqual( cubeUV_r5 ), () => { mip.assign( cubeUV_r4.sub( roughness ).mul( cubeUV_m5.sub( cubeUV_m4 ) ).div( cubeUV_r4.sub( cubeUV_r5 ) ).add( cubeUV_m4 ) ); } ).ElseIf( roughness.greaterThanEqual( cubeUV_r6 ), () => { mip.assign( cubeUV_r5.sub( roughness ).mul( cubeUV_m6.sub( cubeUV_m5 ) ).div( cubeUV_r5.sub( cubeUV_r6 ) ).add( cubeUV_m5 ) ); } ).Else( () => { mip.assign( float( -2 ).mul( log2( mul( 1.16, roughness ) ) ) ); // 1.16 = 1.79^0.25 } ); return mip; } ).setLayout( { name: 'roughnessToMip', type: 'float', inputs: [ { name: 'roughness', type: 'float' } ] } ); // RH coordinate system; PMREM face-indexing convention const getDirection = /*@__PURE__*/ Fn( ( [ uv_immutable, face ] ) => { const uv = uv_immutable.toVar(); uv.assign( mul( 2.0, uv ).sub( 1.0 ) ); const direction = vec3( uv, 1.0 ).toVar(); If( face.equal( 0.0 ), () => { direction.assign( direction.zyx ); // ( 1, v, u ) pos x } ).ElseIf( face.equal( 1.0 ), () => { direction.assign( direction.xzy ); direction.xz.mulAssign( -1 ); // ( -u, 1, -v ) pos y } ).ElseIf( face.equal( 2.0 ), () => { direction.x.mulAssign( -1 ); // ( -u, v, 1 ) pos z } ).ElseIf( face.equal( 3.0 ), () => { direction.assign( direction.zyx ); direction.xz.mulAssign( -1 ); // ( -1, v, -u ) neg x } ).ElseIf( face.equal( 4.0 ), () => { direction.assign( direction.xzy ); direction.xy.mulAssign( -1 ); // ( -u, -1, v ) neg y } ).ElseIf( face.equal( 5.0 ), () => { direction.z.mulAssign( -1 ); // ( u, v, -1 ) neg zS } ); return direction; } ).setLayout( { name: 'getDirection', type: 'vec3', inputs: [ { name: 'uv', type: 'vec2' }, { name: 'face', type: 'float' } ] } ); // const textureCubeUV = /*@__PURE__*/ Fn( ( [ envMap, sampleDir_immutable, roughness_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => { const roughness = float( roughness_immutable ); const sampleDir = vec3( sampleDir_immutable ); const mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP ); const mipF = fract( mip ); const mipInt = floor( mip ); const color0 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar(); If( mipF.notEqual( 0.0 ), () => { const color1 = vec3( bilinearCubeUV( envMap, sampleDir, mipInt.add( 1.0 ), CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ) ).toVar(); color0.assign( mix( color0, color1, mipF ) ); } ); return color0; } ); const bilinearCubeUV = /*@__PURE__*/ Fn( ( [ envMap, direction_immutable, mipInt_immutable, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ] ) => { const mipInt = float( mipInt_immutable ).toVar(); const direction = vec3( direction_immutable ); const face = float( getFace( direction ) ).toVar(); const filterInt = float( max$1( cubeUV_minMipLevel.sub( mipInt ), 0.0 ) ).toVar(); mipInt.assign( max$1( mipInt, cubeUV_minMipLevel ) ); const faceSize = float( exp2( mipInt ) ).toVar(); const uv = vec2( getUV( direction, face ).mul( faceSize.sub( 2.0 ) ).add( 1.0 ) ).toVar(); If( face.greaterThan( 2.0 ), () => { uv.y.addAssign( faceSize ); face.subAssign( 3.0 ); } ); uv.x.addAssign( face.mul( faceSize ) ); uv.x.addAssign( filterInt.mul( mul( 3.0, cubeUV_minTileSize ) ) ); uv.y.addAssign( mul( 4.0, exp2( CUBEUV_MAX_MIP ).sub( faceSize ) ) ); uv.x.mulAssign( CUBEUV_TEXEL_WIDTH ); uv.y.mulAssign( CUBEUV_TEXEL_HEIGHT ); return envMap.uv( uv ).grad( vec2(), vec2() ); // disable anisotropic filtering } ); const getSample = /*@__PURE__*/ Fn( ( { envMap, mipInt, outputDirection, theta, axis, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => { const cosTheta = cos( theta ); // Rodrigues' axis-angle rotation const sampleDirection = outputDirection.mul( cosTheta ) .add( axis.cross( outputDirection ).mul( sin( theta ) ) ) .add( axis.mul( axis.dot( outputDirection ).mul( cosTheta.oneMinus() ) ) ); return bilinearCubeUV( envMap, sampleDirection, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP ); } ); const blur = /*@__PURE__*/ Fn( ( { n, latitudinal, poleAxis, outputDirection, weights, samples, dTheta, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) => { const axis = vec3( select( latitudinal, poleAxis, cross( poleAxis, outputDirection ) ) ).toVar(); If( all( axis.equals( vec3( 0.0 ) ) ), () => { axis.assign( vec3( outputDirection.z, 0.0, outputDirection.x.negate() ) ); } ); axis.assign( normalize( axis ) ); const gl_FragColor = vec3().toVar(); gl_FragColor.addAssign( weights.element( int( 0 ) ).mul( getSample( { theta: 0.0, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); Loop( { start: int( 1 ), end: n }, ( { i } ) => { If( i.greaterThanEqual( samples ), () => { Break(); } ); const theta = float( dTheta.mul( float( i ) ) ).toVar(); gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta: theta.mul( -1 ), axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); gl_FragColor.addAssign( weights.element( i ).mul( getSample( { theta, axis, outputDirection, mipInt, envMap, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP } ) ) ); } ); return vec4( gl_FragColor, 1 ); } ); let _generator = null; const _cache = new WeakMap(); function _generateCubeUVSize( imageHeight ) { const maxMip = Math.log2( imageHeight ) - 2; const texelHeight = 1.0 / imageHeight; const texelWidth = 1.0 / ( 3 * Math.max( Math.pow( 2, maxMip ), 7 * 16 ) ); return { texelWidth, texelHeight, maxMip }; } function _getPMREMFromTexture( texture ) { let cacheTexture = _cache.get( texture ); const pmremVersion = cacheTexture !== undefined ? cacheTexture.pmremVersion : -1; if ( pmremVersion !== texture.pmremVersion ) { const image = texture.image; if ( texture.isCubeTexture ) { if ( isCubeMapReady( image ) ) { cacheTexture = _generator.fromCubemap( texture, cacheTexture ); } else { return null; } } else { if ( isEquirectangularMapReady( image ) ) { cacheTexture = _generator.fromEquirectangular( texture, cacheTexture ); } else { return null; } } cacheTexture.pmremVersion = texture.pmremVersion; _cache.set( texture, cacheTexture ); } return cacheTexture.texture; } class PMREMNode extends TempNode { static get type() { return 'PMREMNode'; } constructor( value, uvNode = null, levelNode = null ) { super( 'vec3' ); this._value = value; this._pmrem = null; this.uvNode = uvNode; this.levelNode = levelNode; this._generator = null; const defaultTexture = new Texture(); defaultTexture.isRenderTargetTexture = true; this._texture = texture( defaultTexture ); this._width = uniform( 0 ); this._height = uniform( 0 ); this._maxMip = uniform( 0 ); this.updateBeforeType = NodeUpdateType.RENDER; } set value( value ) { this._value = value; this._pmrem = null; } get value() { return this._value; } updateFromTexture( texture ) { const cubeUVSize = _generateCubeUVSize( texture.image.height ); this._texture.value = texture; this._width.value = cubeUVSize.texelWidth; this._height.value = cubeUVSize.texelHeight; this._maxMip.value = cubeUVSize.maxMip; } updateBefore() { let pmrem = this._pmrem; const pmremVersion = pmrem ? pmrem.pmremVersion : -1; const texture = this._value; if ( pmremVersion !== texture.pmremVersion ) { if ( texture.isPMREMTexture === true ) { pmrem = texture; } else { pmrem = _getPMREMFromTexture( texture ); } if ( pmrem !== null ) { this._pmrem = pmrem; this.updateFromTexture( pmrem ); } } } setup( builder ) { if ( _generator === null ) { _generator = builder.createPMREMGenerator(); } // this.updateBefore( builder ); // let uvNode = this.uvNode; if ( uvNode === null && builder.context.getUV ) { uvNode = builder.context.getUV( this ); } // const texture = this.value; if ( builder.renderer.coordinateSystem === WebGLCoordinateSystem && texture.isPMREMTexture !== true && texture.isRenderTargetTexture === true ) { uvNode = vec3( uvNode.x.negate(), uvNode.yz ); } // let levelNode = this.levelNode; if ( levelNode === null && builder.context.getTextureLevel ) { levelNode = builder.context.getTextureLevel( this ); } // return textureCubeUV( this._texture, uvNode, levelNode, this._width, this._height, this._maxMip ); } } function isCubeMapReady( image ) { if ( image === null || image === undefined ) return false; let count = 0; const length = 6; for ( let i = 0; i < length; i ++ ) { if ( image[ i ] !== undefined ) count ++; } return count === length; } function isEquirectangularMapReady( image ) { if ( image === null || image === undefined ) return false; return image.height > 0; } const pmremTexture = /*@__PURE__*/ nodeProxy( PMREMNode ); const _envNodeCache = new WeakMap(); class EnvironmentNode extends LightingNode { static get type() { return 'EnvironmentNode'; } constructor( envNode = null ) { super(); this.envNode = envNode; } setup( builder ) { const { material } = builder; let envNode = this.envNode; if ( envNode.isTextureNode || envNode.isMaterialReferenceNode ) { const value = ( envNode.isTextureNode ) ? envNode.value : material[ envNode.property ]; let cacheEnvNode = _envNodeCache.get( value ); if ( cacheEnvNode === undefined ) { cacheEnvNode = pmremTexture( value ); _envNodeCache.set( value, cacheEnvNode ); } envNode = cacheEnvNode; } // const envMap = material.envMap; const intensity = envMap ? reference( 'envMapIntensity', 'float', builder.material ) : reference( 'environmentIntensity', 'float', builder.scene ); // @TODO: Add materialEnvIntensity in MaterialNode const useAnisotropy = material.useAnisotropy === true || material.anisotropy > 0; const radianceNormalView = useAnisotropy ? transformedBentNormalView : transformedNormalView; const radiance = envNode.context( createRadianceContext( roughness, radianceNormalView ) ).mul( intensity ); const irradiance = envNode.context( createIrradianceContext( transformedNormalWorld ) ).mul( Math.PI ).mul( intensity ); const isolateRadiance = cache( radiance ); const isolateIrradiance = cache( irradiance ); // builder.context.radiance.addAssign( isolateRadiance ); builder.context.iblIrradiance.addAssign( isolateIrradiance ); // const clearcoatRadiance = builder.context.lightingModel.clearcoatRadiance; if ( clearcoatRadiance ) { const clearcoatRadianceContext = envNode.context( createRadianceContext( clearcoatRoughness, transformedClearcoatNormalView ) ).mul( intensity ); const isolateClearcoatRadiance = cache( clearcoatRadianceContext ); clearcoatRadiance.addAssign( isolateClearcoatRadiance ); } } } const createRadianceContext = ( roughnessNode, normalViewNode ) => { let reflectVec = null; return { getUV: () => { if ( reflectVec === null ) { reflectVec = positionViewDirection.negate().reflect( normalViewNode ); // Mixing the reflection with the normal is more accurate and keeps rough objects from gathering light from behind their tangent plane. reflectVec = roughnessNode.mul( roughnessNode ).mix( reflectVec, normalViewNode ).normalize(); reflectVec = reflectVec.transformDirection( cameraViewMatrix ); } return reflectVec; }, getTextureLevel: () => { return roughnessNode; } }; }; const createIrradianceContext = ( normalWorldNode ) => { return { getUV: () => { return normalWorldNode; }, getTextureLevel: () => { return float( 1.0 ); } }; }; const _defaultValues$6 = /*@__PURE__*/ new MeshStandardMaterial(); class MeshStandardNodeMaterial extends NodeMaterial { static get type() { return 'MeshStandardNodeMaterial'; } constructor( parameters ) { super(); this.isMeshStandardNodeMaterial = true; this.lights = true; this.emissiveNode = null; this.metalnessNode = null; this.roughnessNode = null; this.setDefaultValues( _defaultValues$6 ); this.setValues( parameters ); } setupEnvironment( builder ) { let envNode = super.setupEnvironment( builder ); if ( envNode === null && builder.environmentNode ) { envNode = builder.environmentNode; } return envNode ? new EnvironmentNode( envNode ) : null; } setupLightingModel( /*builder*/ ) { return new PhysicalLightingModel(); } setupSpecular() { const specularColorNode = mix( vec3( 0.04 ), diffuseColor.rgb, metalness ); specularColor.assign( specularColorNode ); specularF90.assign( 1.0 ); } setupVariants() { // METALNESS const metalnessNode = this.metalnessNode ? float( this.metalnessNode ) : materialMetalness; metalness.assign( metalnessNode ); // ROUGHNESS let roughnessNode = this.roughnessNode ? float( this.roughnessNode ) : materialRoughness; roughnessNode = getRoughness( { roughness: roughnessNode } ); roughness.assign( roughnessNode ); // SPECULAR COLOR this.setupSpecular(); // DIFFUSE COLOR diffuseColor.assign( vec4( diffuseColor.rgb.mul( metalnessNode.oneMinus() ), diffuseColor.a ) ); } copy( source ) { this.emissiveNode = source.emissiveNode; this.metalnessNode = source.metalnessNode; this.roughnessNode = source.roughnessNode; return super.copy( source ); } } const _defaultValues$5 = /*@__PURE__*/ new MeshPhysicalMaterial(); class MeshPhysicalNodeMaterial extends MeshStandardNodeMaterial { static get type() { return 'MeshPhysicalNodeMaterial'; } constructor( parameters ) { super(); this.isMeshPhysicalNodeMaterial = true; this.clearcoatNode = null; this.clearcoatRoughnessNode = null; this.clearcoatNormalNode = null; this.sheenNode = null; this.sheenRoughnessNode = null; this.iridescenceNode = null; this.iridescenceIORNode = null; this.iridescenceThicknessNode = null; this.specularIntensityNode = null; this.specularColorNode = null; this.iorNode = null; this.transmissionNode = null; this.thicknessNode = null; this.attenuationDistanceNode = null; this.attenuationColorNode = null; this.dispersionNode = null; this.anisotropyNode = null; this.setDefaultValues( _defaultValues$5 ); this.setValues( parameters ); } get useClearcoat() { return this.clearcoat > 0 || this.clearcoatNode !== null; } get useIridescence() { return this.iridescence > 0 || this.iridescenceNode !== null; } get useSheen() { return this.sheen > 0 || this.sheenNode !== null; } get useAnisotropy() { return this.anisotropy > 0 || this.anisotropyNode !== null; } get useTransmission() { return this.transmission > 0 || this.transmissionNode !== null; } get useDispersion() { return this.dispersion > 0 || this.dispersionNode !== null; } setupSpecular() { const iorNode = this.iorNode ? float( this.iorNode ) : materialIOR; ior.assign( iorNode ); specularColor.assign( mix( min$1( pow2( ior.sub( 1.0 ).div( ior.add( 1.0 ) ) ).mul( materialSpecularColor ), vec3( 1.0 ) ).mul( materialSpecularIntensity ), diffuseColor.rgb, metalness ) ); specularF90.assign( mix( materialSpecularIntensity, 1.0, metalness ) ); } setupLightingModel( /*builder*/ ) { return new PhysicalLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useAnisotropy, this.useTransmission, this.useDispersion ); } setupVariants( builder ) { super.setupVariants( builder ); // CLEARCOAT if ( this.useClearcoat ) { const clearcoatNode = this.clearcoatNode ? float( this.clearcoatNode ) : materialClearcoat; const clearcoatRoughnessNode = this.clearcoatRoughnessNode ? float( this.clearcoatRoughnessNode ) : materialClearcoatRoughness; clearcoat.assign( clearcoatNode ); clearcoatRoughness.assign( getRoughness( { roughness: clearcoatRoughnessNode } ) ); } // SHEEN if ( this.useSheen ) { const sheenNode = this.sheenNode ? vec3( this.sheenNode ) : materialSheen; const sheenRoughnessNode = this.sheenRoughnessNode ? float( this.sheenRoughnessNode ) : materialSheenRoughness; sheen.assign( sheenNode ); sheenRoughness.assign( sheenRoughnessNode ); } // IRIDESCENCE if ( this.useIridescence ) { const iridescenceNode = this.iridescenceNode ? float( this.iridescenceNode ) : materialIridescence; const iridescenceIORNode = this.iridescenceIORNode ? float( this.iridescenceIORNode ) : materialIridescenceIOR; const iridescenceThicknessNode = this.iridescenceThicknessNode ? float( this.iridescenceThicknessNode ) : materialIridescenceThickness; iridescence.assign( iridescenceNode ); iridescenceIOR.assign( iridescenceIORNode ); iridescenceThickness.assign( iridescenceThicknessNode ); } // ANISOTROPY if ( this.useAnisotropy ) { const anisotropyV = ( this.anisotropyNode ? vec2( this.anisotropyNode ) : materialAnisotropy ).toVar(); anisotropy.assign( anisotropyV.length() ); If( anisotropy.equal( 0.0 ), () => { anisotropyV.assign( vec2( 1.0, 0.0 ) ); } ).Else( () => { anisotropyV.divAssign( vec2( anisotropy ) ); anisotropy.assign( anisotropy.saturate() ); } ); // Roughness along the anisotropy bitangent is the material roughness, while the tangent roughness increases with anisotropy. alphaT.assign( anisotropy.pow2().mix( roughness.pow2(), 1.0 ) ); anisotropyT.assign( TBNViewMatrix[ 0 ].mul( anisotropyV.x ).add( TBNViewMatrix[ 1 ].mul( anisotropyV.y ) ) ); anisotropyB.assign( TBNViewMatrix[ 1 ].mul( anisotropyV.x ).sub( TBNViewMatrix[ 0 ].mul( anisotropyV.y ) ) ); } // TRANSMISSION if ( this.useTransmission ) { const transmissionNode = this.transmissionNode ? float( this.transmissionNode ) : materialTransmission; const thicknessNode = this.thicknessNode ? float( this.thicknessNode ) : materialThickness; const attenuationDistanceNode = this.attenuationDistanceNode ? float( this.attenuationDistanceNode ) : materialAttenuationDistance; const attenuationColorNode = this.attenuationColorNode ? vec3( this.attenuationColorNode ) : materialAttenuationColor; transmission.assign( transmissionNode ); thickness.assign( thicknessNode ); attenuationDistance.assign( attenuationDistanceNode ); attenuationColor.assign( attenuationColorNode ); if ( this.useDispersion ) { const dispersionNode = this.dispersionNode ? float( this.dispersionNode ) : materialDispersion; dispersion.assign( dispersionNode ); } } } setupClearcoatNormal() { return this.clearcoatNormalNode ? vec3( this.clearcoatNormalNode ) : materialClearcoatNormal; } setup( builder ) { builder.context.setupClearcoatNormal = () => this.setupClearcoatNormal( builder ); super.setup( builder ); } copy( source ) { this.clearcoatNode = source.clearcoatNode; this.clearcoatRoughnessNode = source.clearcoatRoughnessNode; this.clearcoatNormalNode = source.clearcoatNormalNode; this.sheenNode = source.sheenNode; this.sheenRoughnessNode = source.sheenRoughnessNode; this.iridescenceNode = source.iridescenceNode; this.iridescenceIORNode = source.iridescenceIORNode; this.iridescenceThicknessNode = source.iridescenceThicknessNode; this.specularIntensityNode = source.specularIntensityNode; this.specularColorNode = source.specularColorNode; this.transmissionNode = source.transmissionNode; this.thicknessNode = source.thicknessNode; this.attenuationDistanceNode = source.attenuationDistanceNode; this.attenuationColorNode = source.attenuationColorNode; this.dispersionNode = source.dispersionNode; this.anisotropyNode = source.anisotropyNode; return super.copy( source ); } } class SSSLightingModel extends PhysicalLightingModel { constructor( useClearcoat, useSheen, useIridescence, useSSS ) { super( useClearcoat, useSheen, useIridescence ); this.useSSS = useSSS; } direct( { lightDirection, lightColor, reflectedLight }, stack, builder ) { if ( this.useSSS === true ) { const material = builder.material; const { thicknessColorNode, thicknessDistortionNode, thicknessAmbientNode, thicknessAttenuationNode, thicknessPowerNode, thicknessScaleNode } = material; const scatteringHalf = lightDirection.add( transformedNormalView.mul( thicknessDistortionNode ) ).normalize(); const scatteringDot = float( positionViewDirection.dot( scatteringHalf.negate() ).saturate().pow( thicknessPowerNode ).mul( thicknessScaleNode ) ); const scatteringIllu = vec3( scatteringDot.add( thicknessAmbientNode ).mul( thicknessColorNode ) ); reflectedLight.directDiffuse.addAssign( scatteringIllu.mul( thicknessAttenuationNode.mul( lightColor ) ) ); } super.direct( { lightDirection, lightColor, reflectedLight }, stack, builder ); } } class MeshSSSNodeMaterial extends MeshPhysicalNodeMaterial { static get type() { return 'MeshSSSNodeMaterial'; } constructor( parameters ) { super( parameters ); this.thicknessColorNode = null; this.thicknessDistortionNode = float( 0.1 ); this.thicknessAmbientNode = float( 0.0 ); this.thicknessAttenuationNode = float( .1 ); this.thicknessPowerNode = float( 2.0 ); this.thicknessScaleNode = float( 10.0 ); } get useSSS() { return this.thicknessColorNode !== null; } setupLightingModel( /*builder*/ ) { return new SSSLightingModel( this.useClearcoat, this.useSheen, this.useIridescence, this.useSSS ); } copy( source ) { this.thicknessColorNode = source.thicknessColorNode; this.thicknessDistortionNode = source.thicknessDistortionNode; this.thicknessAmbientNode = source.thicknessAmbientNode; this.thicknessAttenuationNode = source.thicknessAttenuationNode; this.thicknessPowerNode = source.thicknessPowerNode; this.thicknessScaleNode = source.thicknessScaleNode; return super.copy( source ); } } const getGradientIrradiance = /*@__PURE__*/ Fn( ( { normal, lightDirection, builder } ) => { // dotNL will be from -1.0 to 1.0 const dotNL = normal.dot( lightDirection ); const coord = vec2( dotNL.mul( 0.5 ).add( 0.5 ), 0.0 ); if ( builder.material.gradientMap ) { const gradientMap = materialReference( 'gradientMap', 'texture' ).context( { getUV: () => coord } ); return vec3( gradientMap.r ); } else { const fw = coord.fwidth().mul( 0.5 ); return mix( vec3( 0.7 ), vec3( 1.0 ), smoothstep( float( 0.7 ).sub( fw.x ), float( 0.7 ).add( fw.x ), coord.x ) ); } } ); class ToonLightingModel extends LightingModel { direct( { lightDirection, lightColor, reflectedLight }, stack, builder ) { const irradiance = getGradientIrradiance( { normal: normalGeometry, lightDirection, builder } ).mul( lightColor ); reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) ); } indirect( { ambientOcclusion, irradiance, reflectedLight } ) { reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) ); reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion ); } } const _defaultValues$4 = /*@__PURE__*/ new MeshToonMaterial(); class MeshToonNodeMaterial extends NodeMaterial { static get type() { return 'MeshToonNodeMaterial'; } constructor( parameters ) { super(); this.isMeshToonNodeMaterial = true; this.lights = true; this.setDefaultValues( _defaultValues$4 ); this.setValues( parameters ); } setupLightingModel( /*builder*/ ) { return new ToonLightingModel(); } } class MatcapUVNode extends TempNode { static get type() { return 'MatcapUVNode'; } constructor() { super( 'vec2' ); } setup() { const x = vec3( positionViewDirection.z, 0, positionViewDirection.x.negate() ).normalize(); const y = positionViewDirection.cross( x ); return vec2( x.dot( transformedNormalView ), y.dot( transformedNormalView ) ).mul( 0.495 ).add( 0.5 ); // 0.495 to remove artifacts caused by undersized matcap disks } } const matcapUV = /*@__PURE__*/ nodeImmutable( MatcapUVNode ); const _defaultValues$3 = /*@__PURE__*/ new MeshMatcapMaterial(); class MeshMatcapNodeMaterial extends NodeMaterial { static get type() { return 'MeshMatcapNodeMaterial'; } constructor( parameters ) { super(); this.lights = false; this.isMeshMatcapNodeMaterial = true; this.setDefaultValues( _defaultValues$3 ); this.setValues( parameters ); } setupVariants( builder ) { const uv = matcapUV; let matcapColor; if ( builder.material.matcap ) { matcapColor = materialReference( 'matcap', 'texture' ).context( { getUV: () => uv } ); } else { matcapColor = vec3( mix( 0.2, 0.8, uv.y ) ); // default if matcap is missing } diffuseColor.rgb.mulAssign( matcapColor.rgb ); } } const _defaultValues$2 = /*@__PURE__*/ new PointsMaterial(); class PointsNodeMaterial extends NodeMaterial { static get type() { return 'PointsNodeMaterial'; } constructor( parameters ) { super(); this.isPointsNodeMaterial = true; this.lights = false; this.transparent = true; this.sizeNode = null; this.setDefaultValues( _defaultValues$2 ); this.setValues( parameters ); } copy( source ) { this.sizeNode = source.sizeNode; return super.copy( source ); } } class RotateNode extends TempNode { static get type() { return 'RotateNode'; } constructor( positionNode, rotationNode ) { super(); this.positionNode = positionNode; this.rotationNode = rotationNode; } getNodeType( builder ) { return this.positionNode.getNodeType( builder ); } setup( builder ) { const { rotationNode, positionNode } = this; const nodeType = this.getNodeType( builder ); if ( nodeType === 'vec2' ) { const cosAngle = rotationNode.cos(); const sinAngle = rotationNode.sin(); const rotationMatrix = mat2( cosAngle, sinAngle, sinAngle.negate(), cosAngle ); return rotationMatrix.mul( positionNode ); } else { const rotation = rotationNode; const rotationXMatrix = mat4( vec4( 1.0, 0.0, 0.0, 0.0 ), vec4( 0.0, cos( rotation.x ), sin( rotation.x ).negate(), 0.0 ), vec4( 0.0, sin( rotation.x ), cos( rotation.x ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); const rotationYMatrix = mat4( vec4( cos( rotation.y ), 0.0, sin( rotation.y ), 0.0 ), vec4( 0.0, 1.0, 0.0, 0.0 ), vec4( sin( rotation.y ).negate(), 0.0, cos( rotation.y ), 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); const rotationZMatrix = mat4( vec4( cos( rotation.z ), sin( rotation.z ).negate(), 0.0, 0.0 ), vec4( sin( rotation.z ), cos( rotation.z ), 0.0, 0.0 ), vec4( 0.0, 0.0, 1.0, 0.0 ), vec4( 0.0, 0.0, 0.0, 1.0 ) ); return rotationXMatrix.mul( rotationYMatrix ).mul( rotationZMatrix ).mul( vec4( positionNode, 1.0 ) ).xyz; } } } const rotate = /*@__PURE__*/ nodeProxy( RotateNode ); const _defaultValues$1 = /*@__PURE__*/ new SpriteMaterial(); class SpriteNodeMaterial extends NodeMaterial { static get type() { return 'SpriteNodeMaterial'; } constructor( parameters ) { super(); this.isSpriteNodeMaterial = true; this.lights = false; this._useSizeAttenuation = true; this.positionNode = null; this.rotationNode = null; this.scaleNode = null; this.setDefaultValues( _defaultValues$1 ); this.setValues( parameters ); } setupPosition( { object, camera, context } ) { const sizeAttenuation = this.sizeAttenuation; // < VERTEX STAGE > const { positionNode, rotationNode, scaleNode } = this; const vertex = positionLocal; let mvPosition = modelViewMatrix.mul( vec3( positionNode || 0 ) ); let scale = vec2( modelWorldMatrix[ 0 ].xyz.length(), modelWorldMatrix[ 1 ].xyz.length() ); if ( scaleNode !== null ) { scale = scale.mul( scaleNode ); } if ( ! sizeAttenuation && camera.isPerspectiveCamera ) { scale = scale.mul( mvPosition.z.negate() ); } let alignedPosition = vertex.xy; if ( object.center && object.center.isVector2 === true ) { const center = reference$1( 'center', 'vec2' ); alignedPosition = alignedPosition.sub( center.sub( 0.5 ) ); } alignedPosition = alignedPosition.mul( scale ); const rotation = float( rotationNode || materialRotation ); const rotatedPosition = rotate( alignedPosition, rotation ); mvPosition = vec4( mvPosition.xy.add( rotatedPosition ), mvPosition.zw ); const modelViewProjection = cameraProjectionMatrix.mul( mvPosition ); context.vertex = vertex; return modelViewProjection; } copy( source ) { this.positionNode = source.positionNode; this.rotationNode = source.rotationNode; this.scaleNode = source.scaleNode; return super.copy( source ); } get sizeAttenuation() { return this._useSizeAttenuation; } set sizeAttenuation( value ) { if ( this._useSizeAttenuation !== value ) { this._useSizeAttenuation = value; this.needsUpdate = true; } } } class ShadowMaskModel extends LightingModel { constructor() { super(); this.shadowNode = float( 1 ).toVar( 'shadowMask' ); } direct( { shadowMask } ) { this.shadowNode.mulAssign( shadowMask ); } finish( context ) { diffuseColor.a.mulAssign( this.shadowNode.oneMinus() ); context.outgoingLight.rgb.assign( diffuseColor.rgb ); // TODO: Optimize LightsNode to avoid this assignment } } const _defaultValues = /*@__PURE__*/ new ShadowMaterial(); class ShadowNodeMaterial extends NodeMaterial { static get type() { return 'ShadowNodeMaterial'; } constructor( parameters ) { super(); this.isShadowNodeMaterial = true; this.lights = true; this.setDefaultValues( _defaultValues ); this.setValues( parameters ); } setupLightingModel( /*builder*/ ) { return new ShadowMaskModel(); } } const normal = Fn( ( { texture, uv } ) => { const epsilon = 0.0001; const ret = vec3().toVar(); If( uv.x.lessThan( epsilon ), () => { ret.assign( vec3( 1, 0, 0 ) ); } ).ElseIf( uv.y.lessThan( epsilon ), () => { ret.assign( vec3( 0, 1, 0 ) ); } ).ElseIf( uv.z.lessThan( epsilon ), () => { ret.assign( vec3( 0, 0, 1 ) ); } ).ElseIf( uv.x.greaterThan( 1 - epsilon ), () => { ret.assign( vec3( -1, 0, 0 ) ); } ).ElseIf( uv.y.greaterThan( 1 - epsilon ), () => { ret.assign( vec3( 0, -1, 0 ) ); } ).ElseIf( uv.z.greaterThan( 1 - epsilon ), () => { ret.assign( vec3( 0, 0, -1 ) ); } ).Else( () => { const step = 0.01; const x = texture.uv( uv.add( vec3( -0.01, 0.0, 0.0 ) ) ).r.sub( texture.uv( uv.add( vec3( step, 0.0, 0.0 ) ) ).r ); const y = texture.uv( uv.add( vec3( 0.0, -0.01, 0.0 ) ) ).r.sub( texture.uv( uv.add( vec3( 0.0, step, 0.0 ) ) ).r ); const z = texture.uv( uv.add( vec3( 0.0, 0.0, -0.01 ) ) ).r.sub( texture.uv( uv.add( vec3( 0.0, 0.0, step ) ) ).r ); ret.assign( vec3( x, y, z ) ); } ); return ret.normalize(); } ); class Texture3DNode extends TextureNode { static get type() { return 'Texture3DNode'; } constructor( value, uvNode = null, levelNode = null ) { super( value, uvNode, levelNode ); this.isTexture3DNode = true; } getInputType( /*builder*/ ) { return 'texture3D'; } getDefaultUV() { return vec3( 0.5, 0.5, 0.5 ); } setUpdateMatrix( /*updateMatrix*/ ) { } // Ignore .updateMatrix for 3d TextureNode setupUV( builder, uvNode ) { return uvNode; } generateUV( builder, uvNode ) { return uvNode.build( builder, 'vec3' ); } normal( uvNode ) { return normal( { texture: this, uv: uvNode } ); } } const texture3D = /*@__PURE__*/ nodeProxy( Texture3DNode ); class VolumeNodeMaterial extends NodeMaterial { static get type() { return 'VolumeNodeMaterial'; } constructor( params = {} ) { super(); this.lights = false; this.isVolumeNodeMaterial = true; this.testNode = null; this.setValues( params ); } setup( builder ) { const map = texture3D( this.map, null, 0 ); const hitBox = Fn( ( { orig, dir } ) => { const box_min = vec3( -0.5 ); const box_max = vec3( 0.5 ); const inv_dir = dir.reciprocal(); const tmin_tmp = box_min.sub( orig ).mul( inv_dir ); const tmax_tmp = box_max.sub( orig ).mul( inv_dir ); const tmin = min$1( tmin_tmp, tmax_tmp ); const tmax = max$1( tmin_tmp, tmax_tmp ); const t0 = max$1( tmin.x, max$1( tmin.y, tmin.z ) ); const t1 = min$1( tmax.x, min$1( tmax.y, tmax.z ) ); return vec2( t0, t1 ); } ); this.fragmentNode = Fn( () => { const vOrigin = varying( vec3( modelWorldMatrixInverse.mul( vec4( cameraPosition, 1.0 ) ) ) ); const vDirection = varying( positionGeometry.sub( vOrigin ) ); const rayDir = vDirection.normalize(); const bounds = vec2( hitBox( { orig: vOrigin, dir: rayDir } ) ).toVar(); bounds.x.greaterThan( bounds.y ).discard(); bounds.assign( vec2( max$1( bounds.x, 0.0 ), bounds.y ) ); const p = vec3( vOrigin.add( bounds.x.mul( rayDir ) ) ).toVar(); const inc = vec3( rayDir.abs().reciprocal() ).toVar(); const delta = float( min$1( inc.x, min$1( inc.y, inc.z ) ) ).toVar( 'delta' ); // used 'delta' name in loop delta.divAssign( materialReference( 'steps', 'float' ) ); const ac = vec4( materialReference( 'base', 'color' ), 0.0 ).toVar(); Loop( { type: 'float', start: bounds.x, end: bounds.y, update: '+= delta' }, () => { const d = property( 'float', 'd' ).assign( map.uv( p.add( 0.5 ) ).r ); if ( this.testNode !== null ) { this.testNode( { map: map, mapValue: d, probe: p, finalColor: ac } ).append(); } else { // default to show surface of mesh ac.a.assign( 1 ); Break(); } p.addAssign( rayDir.mul( delta ) ); } ); ac.a.equal( 0 ).discard(); return vec4( ac ); } )(); super.setup( builder ); } } class NodeLoader extends Loader { constructor( manager ) { super( manager ); this.textures = {}; this.nodes = {}; } load( url, onLoad, onProgress, onError ) { const loader = new FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, ( text ) => { try { onLoad( this.parse( JSON.parse( text ) ) ); } catch ( e ) { if ( onError ) { onError( e ); } else { console.error( e ); } this.manager.itemError( url ); } }, onProgress, onError ); } parseNodes( json ) { const nodes = {}; if ( json !== undefined ) { for ( const nodeJSON of json ) { const { uuid, type } = nodeJSON; nodes[ uuid ] = this.createNodeFromType( type ); nodes[ uuid ].uuid = uuid; } const meta = { nodes, textures: this.textures }; for ( const nodeJSON of json ) { nodeJSON.meta = meta; const node = nodes[ nodeJSON.uuid ]; node.deserialize( nodeJSON ); delete nodeJSON.meta; } } return nodes; } parse( json ) { const node = this.createNodeFromType( json.type ); node.uuid = json.uuid; const nodes = this.parseNodes( json.nodes ); const meta = { nodes, textures: this.textures }; json.meta = meta; node.deserialize( json ); delete json.meta; return node; } setTextures( value ) { this.textures = value; return this; } setNodes( value ) { this.nodes = value; return this; } createNodeFromType( type ) { if ( this.nodes[ type ] === undefined ) { console.error( 'THREE.NodeLoader: Node type not found:', type ); return float(); } return nodeObject( new this.nodes[ type ]() ); } } class NodeMaterialLoader extends MaterialLoader { constructor( manager ) { super( manager ); this.nodes = {}; this.nodeMaterials = {}; } parse( json ) { const material = super.parse( json ); const nodes = this.nodes; const inputNodes = json.inputNodes; for ( const property in inputNodes ) { const uuid = inputNodes[ property ]; material[ property ] = nodes[ uuid ]; } return material; } setNodes( value ) { this.nodes = value; return this; } setNodeMaterials( value ) { this.nodeMaterials = value; return this; } createMaterialFromType( type ) { const materialClass = this.nodeMaterials[ type ]; if ( materialClass !== undefined ) { return new materialClass(); } return super.createMaterialFromType( type ); } } class NodeObjectLoader extends ObjectLoader { constructor( manager ) { super( manager ); this.nodes = {}; this.nodeMaterials = {}; this._nodesJSON = null; } setNodes( value ) { this.nodes = value; return this; } setNodeMaterials( value ) { this.nodeMaterials = value; return this; } parse( json, onLoad ) { this._nodesJSON = json.nodes; const data = super.parse( json, onLoad ); this._nodesJSON = null; // dispose return data; } parseNodes( json, textures ) { if ( json !== undefined ) { const loader = new NodeLoader(); loader.setNodes( this.nodes ); loader.setTextures( textures ); return loader.parseNodes( json ); } return {}; } parseMaterials( json, textures ) { const materials = {}; if ( json !== undefined ) { const nodes = this.parseNodes( this._nodesJSON, textures ); const loader = new NodeMaterialLoader(); loader.setTextures( textures ); loader.setNodes( nodes ); loader.setNodeMaterials( this.nodeMaterials ); for ( let i = 0, l = json.length; i < l; i ++ ) { const data = json[ i ]; materials[ data.uuid ] = loader.parse( data ); } } return materials; } } class NodeAttribute { constructor( name, type, node = null ) { this.isNodeAttribute = true; this.name = name; this.type = type; this.node = node; } } class NodeUniform { constructor( name, type, node ) { this.isNodeUniform = true; this.name = name; this.type = type; this.node = node.getSelf(); } get value() { return this.node.value; } set value( val ) { this.node.value = val; } get id() { return this.node.id; } get groupNode() { return this.node.groupNode; } } class NodeVar { constructor( name, type ) { this.isNodeVar = true; this.name = name; this.type = type; } } class NodeVarying extends NodeVar { constructor( name, type ) { super( name, type ); this.needsInterpolation = false; this.isNodeVarying = true; } } class NodeCode { constructor( name, type, code = '' ) { this.name = name; this.type = type; this.code = code; Object.defineProperty( this, 'isNodeCode', { value: true } ); } } let id = 0; class NodeCache { constructor( parent = null ) { this.id = id ++; this.nodesData = new WeakMap(); this.parent = parent; } getData( node ) { let data = this.nodesData.get( node ); if ( data === undefined && this.parent !== null ) { data = this.parent.getData( node ); } return data; } setData( node, data ) { this.nodesData.set( node, data ); } } class ParameterNode extends PropertyNode { static get type() { return 'ParameterNode'; } constructor( nodeType, name = null ) { super( nodeType, name ); this.isParameterNode = true; } getHash() { return this.uuid; } generate() { return this.name; } } const parameter = ( type, name ) => nodeObject( new ParameterNode( type, name ) ); class CodeNode extends Node { static get type() { return 'CodeNode'; } constructor( code = '', includes = [], language = '' ) { super( 'code' ); this.isCodeNode = true; this.code = code; this.language = language; this.includes = includes; } isGlobal() { return true; } setIncludes( includes ) { this.includes = includes; return this; } getIncludes( /*builder*/ ) { return this.includes; } generate( builder ) { const includes = this.getIncludes( builder ); for ( const include of includes ) { include.build( builder ); } const nodeCode = builder.getCodeFromNode( this, this.getNodeType( builder ) ); nodeCode.code = this.code; return nodeCode.code; } serialize( data ) { super.serialize( data ); data.code = this.code; data.language = this.language; } deserialize( data ) { super.deserialize( data ); this.code = data.code; this.language = data.language; } } const code = /*@__PURE__*/ nodeProxy( CodeNode ); const js = ( src, includes ) => code( src, includes, 'js' ); const wgsl = ( src, includes ) => code( src, includes, 'wgsl' ); const glsl = ( src, includes ) => code( src, includes, 'glsl' ); class FunctionNode extends CodeNode { static get type() { return 'FunctionNode'; } constructor( code = '', includes = [], language = '' ) { super( code, includes, language ); } getNodeType( builder ) { return this.getNodeFunction( builder ).type; } getInputs( builder ) { return this.getNodeFunction( builder ).inputs; } getNodeFunction( builder ) { const nodeData = builder.getDataFromNode( this ); let nodeFunction = nodeData.nodeFunction; if ( nodeFunction === undefined ) { nodeFunction = builder.parser.parseFunction( this.code ); nodeData.nodeFunction = nodeFunction; } return nodeFunction; } generate( builder, output ) { super.generate( builder ); const nodeFunction = this.getNodeFunction( builder ); const name = nodeFunction.name; const type = nodeFunction.type; const nodeCode = builder.getCodeFromNode( this, type ); if ( name !== '' ) { // use a custom property name nodeCode.name = name; } const propertyName = builder.getPropertyName( nodeCode ); const code = this.getNodeFunction( builder ).getCode( propertyName ); nodeCode.code = code + '\n'; if ( output === 'property' ) { return propertyName; } else { return builder.format( `${ propertyName }()`, type, output ); } } } const nativeFn = ( code, includes = [], language = '' ) => { for ( let i = 0; i < includes.length; i ++ ) { const include = includes[ i ]; // TSL Function: glslFn, wgslFn if ( typeof include === 'function' ) { includes[ i ] = include.functionNode; } } const functionNode = nodeObject( new FunctionNode( code, includes, language ) ); const fn = ( ...params ) => functionNode.call( ...params ); fn.functionNode = functionNode; return fn; }; const glslFn = ( code, includes ) => nativeFn( code, includes, 'glsl' ); const wgslFn = ( code, includes ) => nativeFn( code, includes, 'wgsl' ); class Uniform { constructor( name, value ) { this.name = name; this.value = value; this.boundary = 0; // used to build the uniform buffer according to the STD140 layout this.itemSize = 0; this.offset = 0; // this property is set by WebGPUUniformsGroup and marks the start position in the uniform buffer } setValue( value ) { this.value = value; } getValue() { return this.value; } } class NumberUniform extends Uniform { constructor( name, value = 0 ) { super( name, value ); this.isNumberUniform = true; this.boundary = 4; this.itemSize = 1; } } class Vector2Uniform extends Uniform { constructor( name, value = new Vector2() ) { super( name, value ); this.isVector2Uniform = true; this.boundary = 8; this.itemSize = 2; } } class Vector3Uniform extends Uniform { constructor( name, value = new Vector3() ) { super( name, value ); this.isVector3Uniform = true; this.boundary = 16; this.itemSize = 3; } } class Vector4Uniform extends Uniform { constructor( name, value = new Vector4() ) { super( name, value ); this.isVector4Uniform = true; this.boundary = 16; this.itemSize = 4; } } class ColorUniform extends Uniform { constructor( name, value = new Color() ) { super( name, value ); this.isColorUniform = true; this.boundary = 16; this.itemSize = 3; } } class Matrix3Uniform extends Uniform { constructor( name, value = new Matrix3() ) { super( name, value ); this.isMatrix3Uniform = true; this.boundary = 48; this.itemSize = 12; } } class Matrix4Uniform extends Uniform { constructor( name, value = new Matrix4() ) { super( name, value ); this.isMatrix4Uniform = true; this.boundary = 64; this.itemSize = 16; } } class NumberNodeUniform extends NumberUniform { constructor( nodeUniform ) { super( nodeUniform.name, nodeUniform.value ); this.nodeUniform = nodeUniform; } getValue() { return this.nodeUniform.value; } } class Vector2NodeUniform extends Vector2Uniform { constructor( nodeUniform ) { super( nodeUniform.name, nodeUniform.value ); this.nodeUniform = nodeUniform; } getValue() { return this.nodeUniform.value; } } class Vector3NodeUniform extends Vector3Uniform { constructor( nodeUniform ) { super( nodeUniform.name, nodeUniform.value ); this.nodeUniform = nodeUniform; } getValue() { return this.nodeUniform.value; } } class Vector4NodeUniform extends Vector4Uniform { constructor( nodeUniform ) { super( nodeUniform.name, nodeUniform.value ); this.nodeUniform = nodeUniform; } getValue() { return this.nodeUniform.value; } } class ColorNodeUniform extends ColorUniform { constructor( nodeUniform ) { super( nodeUniform.name, nodeUniform.value ); this.nodeUniform = nodeUniform; } getValue() { return this.nodeUniform.value; } } class Matrix3NodeUniform extends Matrix3Uniform { constructor( nodeUniform ) { super( nodeUniform.name, nodeUniform.value ); this.nodeUniform = nodeUniform; } getValue() { return this.nodeUniform.value; } } class Matrix4NodeUniform extends Matrix4Uniform { constructor( nodeUniform ) { super( nodeUniform.name, nodeUniform.value ); this.nodeUniform = nodeUniform; } getValue() { return this.nodeUniform.value; } } class StackNode extends Node { static get type() { return 'StackNode'; } constructor( parent = null ) { super(); this.nodes = []; this.outputNode = null; this.parent = parent; this._currentCond = null; this.isStackNode = true; } getNodeType( builder ) { return this.outputNode ? this.outputNode.getNodeType( builder ) : 'void'; } add( node ) { this.nodes.push( node ); return this; } If( boolNode, method ) { const methodNode = new ShaderNode( method ); this._currentCond = select( boolNode, methodNode ); return this.add( this._currentCond ); } ElseIf( boolNode, method ) { const methodNode = new ShaderNode( method ); const ifNode = select( boolNode, methodNode ); this._currentCond.elseNode = ifNode; this._currentCond = ifNode; return this; } Else( method ) { this._currentCond.elseNode = new ShaderNode( method ); return this; } build( builder, ...params ) { const previousStack = getCurrentStack(); setCurrentStack( this ); for ( const node of this.nodes ) { node.build( builder, 'void' ); } setCurrentStack( previousStack ); return this.outputNode ? this.outputNode.build( builder, ...params ) : super.build( builder, ...params ); } // else( ...params ) { // @deprecated, r168 console.warn( 'TSL.StackNode: .else() has been renamed to .Else().' ); return this.Else( ...params ); } elseif( ...params ) { // @deprecated, r168 console.warn( 'TSL.StackNode: .elseif() has been renamed to .ElseIf().' ); return this.ElseIf( ...params ); } } const stack = /*@__PURE__*/ nodeProxy( StackNode ); class ChainMap { constructor() { this.weakMap = new WeakMap(); } get( keys ) { let map = this.weakMap; for ( let i = 0; i < keys.length; i ++ ) { map = map.get( keys[ i ] ); if ( map === undefined ) return undefined; } return map.get( keys[ keys.length - 1 ] ); } set( keys, value ) { let map = this.weakMap; for ( let i = 0; i < keys.length; i ++ ) { const key = keys[ i ]; if ( map.has( key ) === false ) map.set( key, new WeakMap() ); map = map.get( key ); } return map.set( keys[ keys.length - 1 ], value ); } delete( keys ) { let map = this.weakMap; for ( let i = 0; i < keys.length; i ++ ) { map = map.get( keys[ i ] ); if ( map === undefined ) return false; } return map.delete( keys[ keys.length - 1 ] ); } } const LOD_MIN = 4; // The standard deviations (radians) associated with the extra mips. These are // chosen to approximate a Trowbridge-Reitz distribution function times the // geometric shadowing function. These sigma values squared must match the // variance #defines in cube_uv_reflection_fragment.glsl.js. const EXTRA_LOD_SIGMA = [ 0.125, 0.215, 0.35, 0.446, 0.526, 0.582 ]; // The maximum length of the blur for loop. Smaller sigmas will use fewer // samples and exit early, but not recompile the shader. const MAX_SAMPLES = 20; const _flatCamera = /*@__PURE__*/ new OrthographicCamera( -1, 1, 1, -1, 0, 1 ); const _cubeCamera = /*@__PURE__*/ new PerspectiveCamera( 90, 1 ); const _clearColor$1 = /*@__PURE__*/ new Color(); let _oldTarget = null; let _oldActiveCubeFace = 0; let _oldActiveMipmapLevel = 0; // Golden Ratio const PHI = ( 1 + Math.sqrt( 5 ) ) / 2; const INV_PHI = 1 / PHI; // Vertices of a dodecahedron (except the opposites, which represent the // same axis), used as axis directions evenly spread on a sphere. const _axisDirections = [ /*@__PURE__*/ new Vector3( - PHI, INV_PHI, 0 ), /*@__PURE__*/ new Vector3( PHI, INV_PHI, 0 ), /*@__PURE__*/ new Vector3( - INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( INV_PHI, 0, PHI ), /*@__PURE__*/ new Vector3( 0, PHI, - INV_PHI ), /*@__PURE__*/ new Vector3( 0, PHI, INV_PHI ), /*@__PURE__*/ new Vector3( -1, 1, -1 ), /*@__PURE__*/ new Vector3( 1, 1, -1 ), /*@__PURE__*/ new Vector3( -1, 1, 1 ), /*@__PURE__*/ new Vector3( 1, 1, 1 ) ]; // // WebGPU Face indices const _faceLib = [ 3, 1, 5, 0, 4, 2 ]; const direction = getDirection( uv(), attribute( 'faceIndex' ) ).normalize(); const outputDirection = vec3( direction.x, direction.y.negate(), direction.z ); /** * This class generates a Prefiltered, Mipmapped Radiance Environment Map * (PMREM) from a cubeMap environment texture. This allows different levels of * blur to be quickly accessed based on material roughness. It is packed into a * special CubeUV format that allows us to perform custom interpolation so that * we can support nonlinear formats such as RGBE. Unlike a traditional mipmap * chain, it only goes down to the LOD_MIN level (above), and then creates extra * even more filtered 'mips' at the same LOD_MIN resolution, associated with * higher roughness levels. In this way we maintain resolution to smoothly * interpolate diffuse lighting while limiting sampling computation. * * Paper: Fast, Accurate Image-Based Lighting * https://drive.google.com/file/d/15y8r_UpKlU9SvV4ILb0C3qCPecS8pvLz/view */ class PMREMGenerator { constructor( renderer ) { this._renderer = renderer; this._pingPongRenderTarget = null; this._lodMax = 0; this._cubeSize = 0; this._lodPlanes = []; this._sizeLods = []; this._sigmas = []; this._lodMeshes = []; this._blurMaterial = null; this._cubemapMaterial = null; this._equirectMaterial = null; this._backgroundBox = null; } /** * Generates a PMREM from a supplied Scene, which can be faster than using an * image if networking bandwidth is low. Optional sigma specifies a blur radius * in radians to be applied to the scene before PMREM generation. Optional near * and far planes ensure the scene is rendered in its entirety (the cubeCamera * is placed at the origin). */ fromScene( scene, sigma = 0, near = 0.1, far = 100 ) { _oldTarget = this._renderer.getRenderTarget(); _oldActiveCubeFace = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); this._setSize( 256 ); const cubeUVRenderTarget = this._allocateTargets(); cubeUVRenderTarget.depthBuffer = true; this._sceneToCubeUV( scene, near, far, cubeUVRenderTarget ); if ( sigma > 0 ) { this._blur( cubeUVRenderTarget, 0, 0, sigma ); } this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } /** * Generates a PMREM from an equirectangular texture, which can be either LDR * or HDR. The ideal input image size is 1k (1024 x 512), * as this matches best with the 256 x 256 cubemap output. */ fromEquirectangular( equirectangular, renderTarget = null ) { return this._fromTexture( equirectangular, renderTarget ); } /** * Generates a PMREM from an cubemap texture, which can be either LDR * or HDR. The ideal input cube size is 256 x 256, * as this matches best with the 256 x 256 cubemap output. */ fromCubemap( cubemap, renderTarget = null ) { return this._fromTexture( cubemap, renderTarget ); } /** * Pre-compiles the cubemap shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ async compileCubemapShader() { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial(); await this._compileMaterial( this._cubemapMaterial ); } } /** * Pre-compiles the equirectangular shader. You can get faster start-up by invoking this method during * your texture's network fetch for increased concurrency. */ async compileEquirectangularShader() { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial(); await this._compileMaterial( this._equirectMaterial ); } } /** * Disposes of the PMREMGenerator's internal memory. Note that PMREMGenerator is a static class, * so you should not need more than one PMREMGenerator object. If you do, calling dispose() on * one of them will cause any others to also become unusable. */ dispose() { this._dispose(); if ( this._cubemapMaterial !== null ) this._cubemapMaterial.dispose(); if ( this._equirectMaterial !== null ) this._equirectMaterial.dispose(); if ( this._backgroundBox !== null ) { this._backgroundBox.geometry.dispose(); this._backgroundBox.material.dispose(); } } // private interface _setSize( cubeSize ) { this._lodMax = Math.floor( Math.log2( cubeSize ) ); this._cubeSize = Math.pow( 2, this._lodMax ); } _dispose() { if ( this._blurMaterial !== null ) this._blurMaterial.dispose(); if ( this._pingPongRenderTarget !== null ) this._pingPongRenderTarget.dispose(); for ( let i = 0; i < this._lodPlanes.length; i ++ ) { this._lodPlanes[ i ].dispose(); } } _cleanup( outputTarget ) { this._renderer.setRenderTarget( _oldTarget, _oldActiveCubeFace, _oldActiveMipmapLevel ); outputTarget.scissorTest = false; _setViewport( outputTarget, 0, 0, outputTarget.width, outputTarget.height ); } _fromTexture( texture, renderTarget ) { if ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ) { this._setSize( texture.image.length === 0 ? 16 : ( texture.image[ 0 ].width || texture.image[ 0 ].image.width ) ); } else { // Equirectangular this._setSize( texture.image.width / 4 ); } _oldTarget = this._renderer.getRenderTarget(); _oldActiveCubeFace = this._renderer.getActiveCubeFace(); _oldActiveMipmapLevel = this._renderer.getActiveMipmapLevel(); const cubeUVRenderTarget = renderTarget || this._allocateTargets(); this._textureToCubeUV( texture, cubeUVRenderTarget ); this._applyPMREM( cubeUVRenderTarget ); this._cleanup( cubeUVRenderTarget ); return cubeUVRenderTarget; } _allocateTargets() { const width = 3 * Math.max( this._cubeSize, 16 * 7 ); const height = 4 * this._cubeSize; const params = { magFilter: LinearFilter, minFilter: LinearFilter, generateMipmaps: false, type: HalfFloatType, format: RGBAFormat, colorSpace: LinearSRGBColorSpace, //depthBuffer: false }; const cubeUVRenderTarget = _createRenderTarget( width, height, params ); if ( this._pingPongRenderTarget === null || this._pingPongRenderTarget.width !== width || this._pingPongRenderTarget.height !== height ) { if ( this._pingPongRenderTarget !== null ) { this._dispose(); } this._pingPongRenderTarget = _createRenderTarget( width, height, params ); const { _lodMax } = this; ( { sizeLods: this._sizeLods, lodPlanes: this._lodPlanes, sigmas: this._sigmas, lodMeshes: this._lodMeshes } = _createPlanes( _lodMax ) ); this._blurMaterial = _getBlurShader( _lodMax, width, height ); } return cubeUVRenderTarget; } async _compileMaterial( material ) { const tmpMesh = new Mesh( this._lodPlanes[ 0 ], material ); await this._renderer.compile( tmpMesh, _flatCamera ); } _sceneToCubeUV( scene, near, far, cubeUVRenderTarget ) { const cubeCamera = _cubeCamera; cubeCamera.near = near; cubeCamera.far = far; // px, py, pz, nx, ny, nz const upSign = [ -1, 1, -1, -1, -1, -1 ]; const forwardSign = [ 1, 1, 1, -1, -1, -1 ]; const renderer = this._renderer; const originalAutoClear = renderer.autoClear; renderer.getClearColor( _clearColor$1 ); renderer.autoClear = false; let backgroundBox = this._backgroundBox; if ( backgroundBox === null ) { const backgroundMaterial = new MeshBasicMaterial( { name: 'PMREM.Background', side: BackSide, depthWrite: false, depthTest: false } ); backgroundBox = new Mesh( new BoxGeometry(), backgroundMaterial ); } let useSolidColor = false; const background = scene.background; if ( background ) { if ( background.isColor ) { backgroundBox.material.color.copy( background ); scene.background = null; useSolidColor = true; } } else { backgroundBox.material.color.copy( _clearColor$1 ); useSolidColor = true; } renderer.setRenderTarget( cubeUVRenderTarget ); renderer.clear(); if ( useSolidColor ) { renderer.render( backgroundBox, cubeCamera ); } for ( let i = 0; i < 6; i ++ ) { const col = i % 3; if ( col === 0 ) { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( forwardSign[ i ], 0, 0 ); } else if ( col === 1 ) { cubeCamera.up.set( 0, 0, upSign[ i ] ); cubeCamera.lookAt( 0, forwardSign[ i ], 0 ); } else { cubeCamera.up.set( 0, upSign[ i ], 0 ); cubeCamera.lookAt( 0, 0, forwardSign[ i ] ); } const size = this._cubeSize; _setViewport( cubeUVRenderTarget, col * size, i > 2 ? size : 0, size, size ); renderer.render( scene, cubeCamera ); } renderer.autoClear = originalAutoClear; scene.background = background; } _textureToCubeUV( texture, cubeUVRenderTarget ) { const renderer = this._renderer; const isCubeTexture = ( texture.mapping === CubeReflectionMapping || texture.mapping === CubeRefractionMapping ); if ( isCubeTexture ) { if ( this._cubemapMaterial === null ) { this._cubemapMaterial = _getCubemapMaterial( texture ); } } else { if ( this._equirectMaterial === null ) { this._equirectMaterial = _getEquirectMaterial( texture ); } } const material = isCubeTexture ? this._cubemapMaterial : this._equirectMaterial; material.fragmentNode.value = texture; const mesh = this._lodMeshes[ 0 ]; mesh.material = material; const size = this._cubeSize; _setViewport( cubeUVRenderTarget, 0, 0, 3 * size, 2 * size ); renderer.setRenderTarget( cubeUVRenderTarget ); renderer.render( mesh, _flatCamera ); } _applyPMREM( cubeUVRenderTarget ) { const renderer = this._renderer; const autoClear = renderer.autoClear; renderer.autoClear = false; const n = this._lodPlanes.length; for ( let i = 1; i < n; i ++ ) { const sigma = Math.sqrt( this._sigmas[ i ] * this._sigmas[ i ] - this._sigmas[ i - 1 ] * this._sigmas[ i - 1 ] ); const poleAxis = _axisDirections[ ( n - i - 1 ) % _axisDirections.length ]; this._blur( cubeUVRenderTarget, i - 1, i, sigma, poleAxis ); } renderer.autoClear = autoClear; } /** * This is a two-pass Gaussian blur for a cubemap. Normally this is done * vertically and horizontally, but this breaks down on a cube. Here we apply * the blur latitudinally (around the poles), and then longitudinally (towards * the poles) to approximate the orthogonally-separable blur. It is least * accurate at the poles, but still does a decent job. */ _blur( cubeUVRenderTarget, lodIn, lodOut, sigma, poleAxis ) { const pingPongRenderTarget = this._pingPongRenderTarget; this._halfBlur( cubeUVRenderTarget, pingPongRenderTarget, lodIn, lodOut, sigma, 'latitudinal', poleAxis ); this._halfBlur( pingPongRenderTarget, cubeUVRenderTarget, lodOut, lodOut, sigma, 'longitudinal', poleAxis ); } _halfBlur( targetIn, targetOut, lodIn, lodOut, sigmaRadians, direction, poleAxis ) { const renderer = this._renderer; const blurMaterial = this._blurMaterial; if ( direction !== 'latitudinal' && direction !== 'longitudinal' ) { console.error( 'blur direction must be either latitudinal or longitudinal!' ); } // Number of standard deviations at which to cut off the discrete approximation. const STANDARD_DEVIATIONS = 3; const blurMesh = this._lodMeshes[ lodOut ]; blurMesh.material = blurMaterial; const blurUniforms = blurMaterial.uniforms; const pixels = this._sizeLods[ lodIn ] - 1; const radiansPerPixel = isFinite( sigmaRadians ) ? Math.PI / ( 2 * pixels ) : 2 * Math.PI / ( 2 * MAX_SAMPLES - 1 ); const sigmaPixels = sigmaRadians / radiansPerPixel; const samples = isFinite( sigmaRadians ) ? 1 + Math.floor( STANDARD_DEVIATIONS * sigmaPixels ) : MAX_SAMPLES; if ( samples > MAX_SAMPLES ) { console.warn( `sigmaRadians, ${ sigmaRadians}, is too large and will clip, as it requested ${ samples} samples when the maximum is set to ${MAX_SAMPLES}` ); } const weights = []; let sum = 0; for ( let i = 0; i < MAX_SAMPLES; ++ i ) { const x = i / sigmaPixels; const weight = Math.exp( - x * x / 2 ); weights.push( weight ); if ( i === 0 ) { sum += weight; } else if ( i < samples ) { sum += 2 * weight; } } for ( let i = 0; i < weights.length; i ++ ) { weights[ i ] = weights[ i ] / sum; } targetIn.texture.frame = ( targetIn.texture.frame || 0 ) + 1; blurUniforms.envMap.value = targetIn.texture; blurUniforms.samples.value = samples; blurUniforms.weights.array = weights; blurUniforms.latitudinal.value = direction === 'latitudinal' ? 1 : 0; if ( poleAxis ) { blurUniforms.poleAxis.value = poleAxis; } const { _lodMax } = this; blurUniforms.dTheta.value = radiansPerPixel; blurUniforms.mipInt.value = _lodMax - lodIn; const outputSize = this._sizeLods[ lodOut ]; const x = 3 * outputSize * ( lodOut > _lodMax - LOD_MIN ? lodOut - _lodMax + LOD_MIN : 0 ); const y = 4 * ( this._cubeSize - outputSize ); _setViewport( targetOut, x, y, 3 * outputSize, 2 * outputSize ); renderer.setRenderTarget( targetOut ); renderer.render( blurMesh, _flatCamera ); } } function _createPlanes( lodMax ) { const lodPlanes = []; const sizeLods = []; const sigmas = []; const lodMeshes = []; let lod = lodMax; const totalLods = lodMax - LOD_MIN + 1 + EXTRA_LOD_SIGMA.length; for ( let i = 0; i < totalLods; i ++ ) { const sizeLod = Math.pow( 2, lod ); sizeLods.push( sizeLod ); let sigma = 1.0 / sizeLod; if ( i > lodMax - LOD_MIN ) { sigma = EXTRA_LOD_SIGMA[ i - lodMax + LOD_MIN - 1 ]; } else if ( i === 0 ) { sigma = 0; } sigmas.push( sigma ); const texelSize = 1.0 / ( sizeLod - 2 ); const min = - texelSize; const max = 1 + texelSize; const uv1 = [ min, min, max, min, max, max, min, min, max, max, min, max ]; const cubeFaces = 6; const vertices = 6; const positionSize = 3; const uvSize = 2; const faceIndexSize = 1; const position = new Float32Array( positionSize * vertices * cubeFaces ); const uv = new Float32Array( uvSize * vertices * cubeFaces ); const faceIndex = new Float32Array( faceIndexSize * vertices * cubeFaces ); for ( let face = 0; face < cubeFaces; face ++ ) { const x = ( face % 3 ) * 2 / 3 - 1; const y = face > 2 ? 0 : -1; const coordinates = [ x, y, 0, x + 2 / 3, y, 0, x + 2 / 3, y + 1, 0, x, y, 0, x + 2 / 3, y + 1, 0, x, y + 1, 0 ]; const faceIdx = _faceLib[ face ]; position.set( coordinates, positionSize * vertices * faceIdx ); uv.set( uv1, uvSize * vertices * faceIdx ); const fill = [ faceIdx, faceIdx, faceIdx, faceIdx, faceIdx, faceIdx ]; faceIndex.set( fill, faceIndexSize * vertices * faceIdx ); } const planes = new BufferGeometry(); planes.setAttribute( 'position', new BufferAttribute( position, positionSize ) ); planes.setAttribute( 'uv', new BufferAttribute( uv, uvSize ) ); planes.setAttribute( 'faceIndex', new BufferAttribute( faceIndex, faceIndexSize ) ); lodPlanes.push( planes ); lodMeshes.push( new Mesh( planes, null ) ); if ( lod > LOD_MIN ) { lod --; } } return { lodPlanes, sizeLods, sigmas, lodMeshes }; } function _createRenderTarget( width, height, params ) { const cubeUVRenderTarget = new RenderTarget( width, height, params ); cubeUVRenderTarget.texture.mapping = CubeUVReflectionMapping; cubeUVRenderTarget.texture.name = 'PMREM.cubeUv'; cubeUVRenderTarget.texture.isPMREMTexture = true; cubeUVRenderTarget.scissorTest = true; return cubeUVRenderTarget; } function _setViewport( target, x, y, width, height ) { target.viewport.set( x, y, width, height ); target.scissor.set( x, y, width, height ); } function _getMaterial( type ) { const material = new NodeMaterial(); material.depthTest = false; material.depthWrite = false; material.blending = NoBlending; material.name = `PMREM_${ type }`; return material; } function _getBlurShader( lodMax, width, height ) { const weights = uniformArray( new Array( MAX_SAMPLES ).fill( 0 ) ); const poleAxis = uniform( new Vector3( 0, 1, 0 ) ); const dTheta = uniform( 0 ); const n = float( MAX_SAMPLES ); const latitudinal = uniform( 0 ); // false, bool const samples = uniform( 1 ); // int const envMap = texture( null ); const mipInt = uniform( 0 ); // int const CUBEUV_TEXEL_WIDTH = float( 1 / width ); const CUBEUV_TEXEL_HEIGHT = float( 1 / height ); const CUBEUV_MAX_MIP = float( lodMax ); const materialUniforms = { n, latitudinal, weights, poleAxis, outputDirection, dTheta, samples, envMap, mipInt, CUBEUV_TEXEL_WIDTH, CUBEUV_TEXEL_HEIGHT, CUBEUV_MAX_MIP }; const material = _getMaterial( 'blur' ); material.uniforms = materialUniforms; // TODO: Move to outside of the material material.fragmentNode = blur( { ...materialUniforms, latitudinal: latitudinal.equal( 1 ) } ); return material; } function _getCubemapMaterial( envTexture ) { const material = _getMaterial( 'cubemap' ); material.fragmentNode = cubeTexture( envTexture, outputDirection ); return material; } function _getEquirectMaterial( envTexture ) { const material = _getMaterial( 'equirect' ); material.fragmentNode = texture( envTexture, equirectUV( outputDirection ), 0 ); return material; } let _id = 0; class BindGroup { constructor( name = '', bindings = [], index = 0, bindingsReference = [] ) { this.name = name; this.bindings = bindings; this.index = index; this.bindingsReference = bindingsReference; this.id = _id ++; } } const rendererCache = new WeakMap(); const typeFromLength = new Map( [ [ 2, 'vec2' ], [ 3, 'vec3' ], [ 4, 'vec4' ], [ 9, 'mat3' ], [ 16, 'mat4' ] ] ); const typeFromArray = new Map( [ [ Int8Array, 'int' ], [ Int16Array, 'int' ], [ Int32Array, 'int' ], [ Uint8Array, 'uint' ], [ Uint16Array, 'uint' ], [ Uint32Array, 'uint' ], [ Float32Array, 'float' ] ] ); const toFloat = ( value ) => { value = Number( value ); return value + ( value % 1 ? '' : '.0' ); }; class NodeBuilder { constructor( object, renderer, parser ) { this.object = object; this.material = ( object && object.material ) || null; this.geometry = ( object && object.geometry ) || null; this.renderer = renderer; this.parser = parser; this.scene = null; this.camera = null; this.nodes = []; this.updateNodes = []; this.updateBeforeNodes = []; this.updateAfterNodes = []; this.hashNodes = {}; this.monitor = null; this.lightsNode = null; this.environmentNode = null; this.fogNode = null; this.clippingContext = null; this.vertexShader = null; this.fragmentShader = null; this.computeShader = null; this.flowNodes = { vertex: [], fragment: [], compute: [] }; this.flowCode = { vertex: '', fragment: '', compute: '' }; this.uniforms = { vertex: [], fragment: [], compute: [], index: 0 }; this.structs = { vertex: [], fragment: [], compute: [], index: 0 }; this.bindings = { vertex: {}, fragment: {}, compute: {} }; this.bindingsIndexes = {}; this.bindGroups = null; this.attributes = []; this.bufferAttributes = []; this.varyings = []; this.codes = {}; this.vars = {}; this.flow = { code: '' }; this.chaining = []; this.stack = stack(); this.stacks = []; this.tab = '\t'; this.currentFunctionNode = null; this.context = { material: this.material }; this.cache = new NodeCache(); this.globalCache = this.cache; this.flowsData = new WeakMap(); this.shaderStage = null; this.buildStage = null; this.useComparisonMethod = false; } getBindGroupsCache() { let bindGroupsCache = rendererCache.get( this.renderer ); if ( bindGroupsCache === undefined ) { bindGroupsCache = new ChainMap(); rendererCache.set( this.renderer, bindGroupsCache ); } return bindGroupsCache; } createRenderTarget( width, height, options ) { return new RenderTarget( width, height, options ); } createCubeRenderTarget( size, options ) { return new CubeRenderTarget( size, options ); } createPMREMGenerator() { // TODO: Move Materials.js to outside of the Nodes.js in order to remove this function and improve tree-shaking support return new PMREMGenerator( this.renderer ); } includes( node ) { return this.nodes.includes( node ); } _getBindGroup( groupName, bindings ) { const bindGroupsCache = this.getBindGroupsCache(); // const bindingsArray = []; let sharedGroup = true; for ( const binding of bindings ) { bindingsArray.push( binding ); sharedGroup = sharedGroup && binding.groupNode.shared !== true; } // let bindGroup; if ( sharedGroup ) { bindGroup = bindGroupsCache.get( bindingsArray ); if ( bindGroup === undefined ) { bindGroup = new BindGroup( groupName, bindingsArray, this.bindingsIndexes[ groupName ].group, bindingsArray ); bindGroupsCache.set( bindingsArray, bindGroup ); } } else { bindGroup = new BindGroup( groupName, bindingsArray, this.bindingsIndexes[ groupName ].group, bindingsArray ); } return bindGroup; } getBindGroupArray( groupName, shaderStage ) { const bindings = this.bindings[ shaderStage ]; let bindGroup = bindings[ groupName ]; if ( bindGroup === undefined ) { if ( this.bindingsIndexes[ groupName ] === undefined ) { this.bindingsIndexes[ groupName ] = { binding: 0, group: Object.keys( this.bindingsIndexes ).length }; } bindings[ groupName ] = bindGroup = []; } return bindGroup; } getBindings() { let bindingsGroups = this.bindGroups; if ( bindingsGroups === null ) { const groups = {}; const bindings = this.bindings; for ( const shaderStage of shaderStages ) { for ( const groupName in bindings[ shaderStage ] ) { const uniforms = bindings[ shaderStage ][ groupName ]; const groupUniforms = groups[ groupName ] || ( groups[ groupName ] = [] ); groupUniforms.push( ...uniforms ); } } bindingsGroups = []; for ( const groupName in groups ) { const group = groups[ groupName ]; const bindingsGroup = this._getBindGroup( groupName, group ); bindingsGroups.push( bindingsGroup ); } this.bindGroups = bindingsGroups; } return bindingsGroups; } sortBindingGroups() { const bindingsGroups = this.getBindings(); bindingsGroups.sort( ( a, b ) => ( a.bindings[ 0 ].groupNode.order - b.bindings[ 0 ].groupNode.order ) ); for ( let i = 0; i < bindingsGroups.length; i ++ ) { const bindingGroup = bindingsGroups[ i ]; this.bindingsIndexes[ bindingGroup.name ].group = i; bindingGroup.index = i; } } setHashNode( node, hash ) { this.hashNodes[ hash ] = node; } addNode( node ) { if ( this.nodes.includes( node ) === false ) { this.nodes.push( node ); this.setHashNode( node, node.getHash( this ) ); } } buildUpdateNodes() { for ( const node of this.nodes ) { const updateType = node.getUpdateType(); const updateBeforeType = node.getUpdateBeforeType(); const updateAfterType = node.getUpdateAfterType(); if ( updateType !== NodeUpdateType.NONE ) { this.updateNodes.push( node.getSelf() ); } if ( updateBeforeType !== NodeUpdateType.NONE ) { this.updateBeforeNodes.push( node.getSelf() ); } if ( updateAfterType !== NodeUpdateType.NONE ) { this.updateAfterNodes.push( node.getSelf() ); } } } get currentNode() { return this.chaining[ this.chaining.length - 1 ]; } isFilteredTexture( texture ) { return ( texture.magFilter === LinearFilter || texture.magFilter === LinearMipmapNearestFilter || texture.magFilter === NearestMipmapLinearFilter || texture.magFilter === LinearMipmapLinearFilter || texture.minFilter === LinearFilter || texture.minFilter === LinearMipmapNearestFilter || texture.minFilter === NearestMipmapLinearFilter || texture.minFilter === LinearMipmapLinearFilter ); } addChain( node ) { /* if ( this.chaining.indexOf( node ) !== - 1 ) { console.warn( 'Recursive node: ', node ); } */ this.chaining.push( node ); } removeChain( node ) { const lastChain = this.chaining.pop(); if ( lastChain !== node ) { throw new Error( 'NodeBuilder: Invalid node chaining!' ); } } getMethod( method ) { return method; } getNodeFromHash( hash ) { return this.hashNodes[ hash ]; } addFlow( shaderStage, node ) { this.flowNodes[ shaderStage ].push( node ); return node; } setContext( context ) { this.context = context; } getContext() { return this.context; } getSharedContext() { ({ ...this.context }); return this.context; } setCache( cache ) { this.cache = cache; } getCache() { return this.cache; } getCacheFromNode( node, parent = true ) { const data = this.getDataFromNode( node ); if ( data.cache === undefined ) data.cache = new NodeCache( parent ? this.getCache() : null ); return data.cache; } isAvailable( /*name*/ ) { return false; } getVertexIndex() { console.warn( 'Abstract function.' ); } getInstanceIndex() { console.warn( 'Abstract function.' ); } getDrawIndex() { console.warn( 'Abstract function.' ); } getFrontFacing() { console.warn( 'Abstract function.' ); } getFragCoord() { console.warn( 'Abstract function.' ); } isFlipY() { return false; } increaseUsage( node ) { const nodeData = this.getDataFromNode( node ); nodeData.usageCount = nodeData.usageCount === undefined ? 1 : nodeData.usageCount + 1; return nodeData.usageCount; } generateTexture( /* texture, textureProperty, uvSnippet */ ) { console.warn( 'Abstract function.' ); } generateTextureLod( /* texture, textureProperty, uvSnippet, levelSnippet */ ) { console.warn( 'Abstract function.' ); } generateConst( type, value = null ) { if ( value === null ) { if ( type === 'float' || type === 'int' || type === 'uint' ) value = 0; else if ( type === 'bool' ) value = false; else if ( type === 'color' ) value = new Color(); else if ( type === 'vec2' ) value = new Vector2(); else if ( type === 'vec3' ) value = new Vector3(); else if ( type === 'vec4' ) value = new Vector4(); } if ( type === 'float' ) return toFloat( value ); if ( type === 'int' ) return `${ Math.round( value ) }`; if ( type === 'uint' ) return value >= 0 ? `${ Math.round( value ) }u` : '0u'; if ( type === 'bool' ) return value ? 'true' : 'false'; if ( type === 'color' ) return `${ this.getType( 'vec3' ) }( ${ toFloat( value.r ) }, ${ toFloat( value.g ) }, ${ toFloat( value.b ) } )`; const typeLength = this.getTypeLength( type ); const componentType = this.getComponentType( type ); const generateConst = value => this.generateConst( componentType, value ); if ( typeLength === 2 ) { return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) } )`; } else if ( typeLength === 3 ) { return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) } )`; } else if ( typeLength === 4 ) { return `${ this.getType( type ) }( ${ generateConst( value.x ) }, ${ generateConst( value.y ) }, ${ generateConst( value.z ) }, ${ generateConst( value.w ) } )`; } else if ( typeLength > 4 && value && ( value.isMatrix3 || value.isMatrix4 ) ) { return `${ this.getType( type ) }( ${ value.elements.map( generateConst ).join( ', ' ) } )`; } else if ( typeLength > 4 ) { return `${ this.getType( type ) }()`; } throw new Error( `NodeBuilder: Type '${type}' not found in generate constant attempt.` ); } getType( type ) { if ( type === 'color' ) return 'vec3'; return type; } hasGeometryAttribute( name ) { return this.geometry && this.geometry.getAttribute( name ) !== undefined; } getAttribute( name, type ) { const attributes = this.attributes; // find attribute for ( const attribute of attributes ) { if ( attribute.name === name ) { return attribute; } } // create a new if no exist const attribute = new NodeAttribute( name, type ); attributes.push( attribute ); return attribute; } getPropertyName( node/*, shaderStage*/ ) { return node.name; } isVector( type ) { return /vec\d/.test( type ); } isMatrix( type ) { return /mat\d/.test( type ); } isReference( type ) { return type === 'void' || type === 'property' || type === 'sampler' || type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'depthTexture' || type === 'texture3D'; } needsToWorkingColorSpace( /*texture*/ ) { return false; } getComponentTypeFromTexture( texture ) { const type = texture.type; if ( texture.isDataTexture ) { if ( type === IntType ) return 'int'; if ( type === UnsignedIntType ) return 'uint'; } return 'float'; } getElementType( type ) { if ( type === 'mat2' ) return 'vec2'; if ( type === 'mat3' ) return 'vec3'; if ( type === 'mat4' ) return 'vec4'; return this.getComponentType( type ); } getComponentType( type ) { type = this.getVectorType( type ); if ( type === 'float' || type === 'bool' || type === 'int' || type === 'uint' ) return type; const componentType = /(b|i|u|)(vec|mat)([2-4])/.exec( type ); if ( componentType === null ) return null; if ( componentType[ 1 ] === 'b' ) return 'bool'; if ( componentType[ 1 ] === 'i' ) return 'int'; if ( componentType[ 1 ] === 'u' ) return 'uint'; return 'float'; } getVectorType( type ) { if ( type === 'color' ) return 'vec3'; if ( type === 'texture' || type === 'cubeTexture' || type === 'storageTexture' || type === 'texture3D' ) return 'vec4'; return type; } getTypeFromLength( length, componentType = 'float' ) { if ( length === 1 ) return componentType; const baseType = typeFromLength.get( length ); const prefix = componentType === 'float' ? '' : componentType[ 0 ]; return prefix + baseType; } getTypeFromArray( array ) { return typeFromArray.get( array.constructor ); } getTypeFromAttribute( attribute ) { let dataAttribute = attribute; if ( attribute.isInterleavedBufferAttribute ) dataAttribute = attribute.data; const array = dataAttribute.array; const itemSize = attribute.itemSize; const normalized = attribute.normalized; let arrayType; if ( ! ( attribute instanceof Float16BufferAttribute ) && normalized !== true ) { arrayType = this.getTypeFromArray( array ); } return this.getTypeFromLength( itemSize, arrayType ); } getTypeLength( type ) { const vecType = this.getVectorType( type ); const vecNum = /vec([2-4])/.exec( vecType ); if ( vecNum !== null ) return Number( vecNum[ 1 ] ); if ( vecType === 'float' || vecType === 'bool' || vecType === 'int' || vecType === 'uint' ) return 1; if ( /mat2/.test( type ) === true ) return 4; if ( /mat3/.test( type ) === true ) return 9; if ( /mat4/.test( type ) === true ) return 16; return 0; } getVectorFromMatrix( type ) { return type.replace( 'mat', 'vec' ); } changeComponentType( type, newComponentType ) { return this.getTypeFromLength( this.getTypeLength( type ), newComponentType ); } getIntegerType( type ) { const componentType = this.getComponentType( type ); if ( componentType === 'int' || componentType === 'uint' ) return type; return this.changeComponentType( type, 'int' ); } addStack() { this.stack = stack( this.stack ); this.stacks.push( getCurrentStack() || this.stack ); setCurrentStack( this.stack ); return this.stack; } removeStack() { const lastStack = this.stack; this.stack = lastStack.parent; setCurrentStack( this.stacks.pop() ); return lastStack; } getDataFromNode( node, shaderStage = this.shaderStage, cache = null ) { cache = cache === null ? ( node.isGlobal( this ) ? this.globalCache : this.cache ) : cache; let nodeData = cache.getData( node ); if ( nodeData === undefined ) { nodeData = {}; cache.setData( node, nodeData ); } if ( nodeData[ shaderStage ] === undefined ) nodeData[ shaderStage ] = {}; return nodeData[ shaderStage ]; } getNodeProperties( node, shaderStage = 'any' ) { const nodeData = this.getDataFromNode( node, shaderStage ); return nodeData.properties || ( nodeData.properties = { outputNode: null } ); } getBufferAttributeFromNode( node, type ) { const nodeData = this.getDataFromNode( node ); let bufferAttribute = nodeData.bufferAttribute; if ( bufferAttribute === undefined ) { const index = this.uniforms.index ++; bufferAttribute = new NodeAttribute( 'nodeAttribute' + index, type, node ); this.bufferAttributes.push( bufferAttribute ); nodeData.bufferAttribute = bufferAttribute; } return bufferAttribute; } getStructTypeFromNode( node, shaderStage = this.shaderStage ) { const nodeData = this.getDataFromNode( node, shaderStage ); if ( nodeData.structType === undefined ) { const index = this.structs.index ++; node.name = `StructType${ index }`; this.structs[ shaderStage ].push( node ); nodeData.structType = node; } return node; } getUniformFromNode( node, type, shaderStage = this.shaderStage, name = null ) { if ( name === 'in' ) { console.warn( 'NodeBuilder: "in" is a reserved word, using "inValue" instead.', node, name ); node.name = 'inValue'; name = node.name; } const nodeData = this.getDataFromNode( node, shaderStage, this.globalCache ); let nodeUniform = nodeData.uniform; if ( nodeUniform === undefined ) { const index = this.uniforms.index ++; nodeUniform = new NodeUniform( name || ( 'nodeUniform' + index ), type, node ); this.uniforms[ shaderStage ].push( nodeUniform ); nodeData.uniform = nodeUniform; } return nodeUniform; } getVarFromNode( node, name = null, type = node.getNodeType( this ), shaderStage = this.shaderStage ) { const nodeData = this.getDataFromNode( node, shaderStage ); let nodeVar = nodeData.variable; if ( nodeVar === undefined ) { const vars = this.vars[ shaderStage ] || ( this.vars[ shaderStage ] = [] ); if ( name === null ) name = 'nodeVar' + vars.length; nodeVar = new NodeVar( name, type ); vars.push( nodeVar ); nodeData.variable = nodeVar; } return nodeVar; } getVaryingFromNode( node, name = null, type = node.getNodeType( this ) ) { const nodeData = this.getDataFromNode( node, 'any' ); let nodeVarying = nodeData.varying; if ( nodeVarying === undefined ) { const varyings = this.varyings; const index = varyings.length; if ( name === null ) name = 'nodeVarying' + index; nodeVarying = new NodeVarying( name, type ); varyings.push( nodeVarying ); nodeData.varying = nodeVarying; } return nodeVarying; } getCodeFromNode( node, type, shaderStage = this.shaderStage ) { const nodeData = this.getDataFromNode( node ); let nodeCode = nodeData.code; if ( nodeCode === undefined ) { const codes = this.codes[ shaderStage ] || ( this.codes[ shaderStage ] = [] ); const index = codes.length; nodeCode = new NodeCode( 'nodeCode' + index, type ); codes.push( nodeCode ); nodeData.code = nodeCode; } return nodeCode; } addFlowCodeHierarchy( node, nodeBlock ) { const { flowCodes, flowCodeBlock } = this.getDataFromNode( node ); let needsFlowCode = true; let nodeBlockHierarchy = nodeBlock; while ( nodeBlockHierarchy ) { if ( flowCodeBlock.get( nodeBlockHierarchy ) === true ) { needsFlowCode = false; break; } nodeBlockHierarchy = this.getDataFromNode( nodeBlockHierarchy ).parentNodeBlock; } if ( needsFlowCode ) { for ( const flowCode of flowCodes ) { this.addLineFlowCode( flowCode ); } } } addLineFlowCodeBlock( node, code, nodeBlock ) { const nodeData = this.getDataFromNode( node ); const flowCodes = nodeData.flowCodes || ( nodeData.flowCodes = [] ); const codeBlock = nodeData.flowCodeBlock || ( nodeData.flowCodeBlock = new WeakMap() ); flowCodes.push( code ); codeBlock.set( nodeBlock, true ); } addLineFlowCode( code, node = null ) { if ( code === '' ) return this; if ( node !== null && this.context.nodeBlock ) { this.addLineFlowCodeBlock( node, code, this.context.nodeBlock ); } code = this.tab + code; if ( ! /;\s*$/.test( code ) ) { code = code + ';\n'; } this.flow.code += code; return this; } addFlowCode( code ) { this.flow.code += code; return this; } addFlowTab() { this.tab += '\t'; return this; } removeFlowTab() { this.tab = this.tab.slice( 0, -1 ); return this; } getFlowData( node/*, shaderStage*/ ) { return this.flowsData.get( node ); } flowNode( node ) { const output = node.getNodeType( this ); const flowData = this.flowChildNode( node, output ); this.flowsData.set( node, flowData ); return flowData; } buildFunctionNode( shaderNode ) { const fn = new FunctionNode(); const previous = this.currentFunctionNode; this.currentFunctionNode = fn; fn.code = this.buildFunctionCode( shaderNode ); this.currentFunctionNode = previous; return fn; } flowShaderNode( shaderNode ) { const layout = shaderNode.layout; const inputs = { [ Symbol.iterator ]() { let index = 0; const values = Object.values( this ); return { next: () => ( { value: values[ index ], done: index ++ >= values.length } ) }; } }; for ( const input of layout.inputs ) { inputs[ input.name ] = new ParameterNode( input.type, input.name ); } // shaderNode.layout = null; const callNode = shaderNode.call( inputs ); const flowData = this.flowStagesNode( callNode, layout.type ); shaderNode.layout = layout; return flowData; } flowStagesNode( node, output = null ) { const previousFlow = this.flow; const previousVars = this.vars; const previousCache = this.cache; const previousBuildStage = this.buildStage; const previousStack = this.stack; const flow = { code: '' }; this.flow = flow; this.vars = {}; this.cache = new NodeCache(); this.stack = stack(); for ( const buildStage of defaultBuildStages ) { this.setBuildStage( buildStage ); flow.result = node.build( this, output ); } flow.vars = this.getVars( this.shaderStage ); this.flow = previousFlow; this.vars = previousVars; this.cache = previousCache; this.stack = previousStack; this.setBuildStage( previousBuildStage ); return flow; } getFunctionOperator() { return null; } flowChildNode( node, output = null ) { const previousFlow = this.flow; const flow = { code: '' }; this.flow = flow; flow.result = node.build( this, output ); this.flow = previousFlow; return flow; } flowNodeFromShaderStage( shaderStage, node, output = null, propertyName = null ) { const previousShaderStage = this.shaderStage; this.setShaderStage( shaderStage ); const flowData = this.flowChildNode( node, output ); if ( propertyName !== null ) { flowData.code += `${ this.tab + propertyName } = ${ flowData.result };\n`; } this.flowCode[ shaderStage ] = this.flowCode[ shaderStage ] + flowData.code; this.setShaderStage( previousShaderStage ); return flowData; } getAttributesArray() { return this.attributes.concat( this.bufferAttributes ); } getAttributes( /*shaderStage*/ ) { console.warn( 'Abstract function.' ); } getVaryings( /*shaderStage*/ ) { console.warn( 'Abstract function.' ); } getVar( type, name ) { return `${ this.getType( type ) } ${ name }`; } getVars( shaderStage ) { let snippet = ''; const vars = this.vars[ shaderStage ]; if ( vars !== undefined ) { for ( const variable of vars ) { snippet += `${ this.getVar( variable.type, variable.name ) }; `; } } return snippet; } getUniforms( /*shaderStage*/ ) { console.warn( 'Abstract function.' ); } getCodes( shaderStage ) { const codes = this.codes[ shaderStage ]; let code = ''; if ( codes !== undefined ) { for ( const nodeCode of codes ) { code += nodeCode.code + '\n'; } } return code; } getHash() { return this.vertexShader + this.fragmentShader + this.computeShader; } setShaderStage( shaderStage ) { this.shaderStage = shaderStage; } getShaderStage() { return this.shaderStage; } setBuildStage( buildStage ) { this.buildStage = buildStage; } getBuildStage() { return this.buildStage; } buildCode() { console.warn( 'Abstract function.' ); } build() { const { object, material, renderer } = this; if ( material !== null ) { let nodeMaterial = renderer.nodes.library.fromMaterial( material ); if ( nodeMaterial === null ) { console.error( `NodeMaterial: Material "${ material.type }" is not compatible.` ); nodeMaterial = new NodeMaterial(); } nodeMaterial.build( this ); } else { this.addFlow( 'compute', object ); } // setup() -> stage 1: create possible new nodes and returns an output reference node // analyze() -> stage 2: analyze nodes to possible optimization and validation // generate() -> stage 3: generate shader for ( const buildStage of defaultBuildStages ) { this.setBuildStage( buildStage ); if ( this.context.vertex && this.context.vertex.isNode ) { this.flowNodeFromShaderStage( 'vertex', this.context.vertex ); } for ( const shaderStage of shaderStages ) { this.setShaderStage( shaderStage ); const flowNodes = this.flowNodes[ shaderStage ]; for ( const node of flowNodes ) { if ( buildStage === 'generate' ) { this.flowNode( node ); } else { node.build( this ); } } } } this.setBuildStage( null ); this.setShaderStage( null ); // stage 4: build code for a specific output this.buildCode(); this.buildUpdateNodes(); return this; } getNodeUniform( uniformNode, type ) { if ( type === 'float' || type === 'int' || type === 'uint' ) return new NumberNodeUniform( uniformNode ); if ( type === 'vec2' || type === 'ivec2' || type === 'uvec2' ) return new Vector2NodeUniform( uniformNode ); if ( type === 'vec3' || type === 'ivec3' || type === 'uvec3' ) return new Vector3NodeUniform( uniformNode ); if ( type === 'vec4' || type === 'ivec4' || type === 'uvec4' ) return new Vector4NodeUniform( uniformNode ); if ( type === 'color' ) return new ColorNodeUniform( uniformNode ); if ( type === 'mat3' ) return new Matrix3NodeUniform( uniformNode ); if ( type === 'mat4' ) return new Matrix4NodeUniform( uniformNode ); throw new Error( `Uniform "${type}" not declared.` ); } createNodeMaterial( type = 'NodeMaterial' ) { // @deprecated, r168 throw new Error( `THREE.NodeBuilder: createNodeMaterial() was deprecated. Use new ${ type }() instead.` ); } format( snippet, fromType, toType ) { fromType = this.getVectorType( fromType ); toType = this.getVectorType( toType ); if ( fromType === toType || toType === null || this.isReference( toType ) ) { return snippet; } const fromTypeLength = this.getTypeLength( fromType ); const toTypeLength = this.getTypeLength( toType ); if ( fromTypeLength === 16 && toTypeLength === 9 ) { return `${ this.getType( toType ) }(${ snippet }[0].xyz, ${ snippet }[1].xyz, ${ snippet }[2].xyz)`; } if ( fromTypeLength === 9 && toTypeLength === 4 ) { return `${ this.getType( toType ) }(${ snippet }[0].xy, ${ snippet }[1].xy)`; } if ( fromTypeLength > 4 ) { // fromType is matrix-like // @TODO: ignore for now return snippet; } if ( toTypeLength > 4 || toTypeLength === 0 ) { // toType is matrix-like or unknown // @TODO: ignore for now return snippet; } if ( fromTypeLength === toTypeLength ) { return `${ this.getType( toType ) }( ${ snippet } )`; } if ( fromTypeLength > toTypeLength ) { return this.format( `${ snippet }.${ 'xyz'.slice( 0, toTypeLength ) }`, this.getTypeFromLength( toTypeLength, this.getComponentType( fromType ) ), toType ); } if ( toTypeLength === 4 && fromTypeLength > 1 ) { // toType is vec4-like return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec3' ) }, 1.0 )`; } if ( fromTypeLength === 2 ) { // fromType is vec2-like and toType is vec3-like return `${ this.getType( toType ) }( ${ this.format( snippet, fromType, 'vec2' ) }, 0.0 )`; } if ( fromTypeLength === 1 && toTypeLength > 1 && fromType !== this.getComponentType( toType ) ) { // fromType is float-like // convert a number value to vector type, e.g: // vec3( 1u ) -> vec3( float( 1u ) ) snippet = `${ this.getType( this.getComponentType( toType ) ) }( ${ snippet } )`; } return `${ this.getType( toType ) }( ${ snippet } )`; // fromType is float-like } getSignature() { return `// Three.js r${ REVISION } - Node System\n`; } } class NodeFrame { constructor() { this.time = 0; this.deltaTime = 0; this.frameId = 0; this.renderId = 0; this.startTime = null; this.updateMap = new WeakMap(); this.updateBeforeMap = new WeakMap(); this.updateAfterMap = new WeakMap(); this.renderer = null; this.material = null; this.camera = null; this.object = null; this.scene = null; } _getMaps( referenceMap, nodeRef ) { let maps = referenceMap.get( nodeRef ); if ( maps === undefined ) { maps = { renderMap: new WeakMap(), frameMap: new WeakMap() }; referenceMap.set( nodeRef, maps ); } return maps; } updateBeforeNode( node ) { const updateType = node.getUpdateBeforeType(); const reference = node.updateReference( this ); if ( updateType === NodeUpdateType.FRAME ) { const { frameMap } = this._getMaps( this.updateBeforeMap, reference ); if ( frameMap.get( reference ) !== this.frameId ) { if ( node.updateBefore( this ) !== false ) { frameMap.set( reference, this.frameId ); } } } else if ( updateType === NodeUpdateType.RENDER ) { const { renderMap } = this._getMaps( this.updateBeforeMap, reference ); if ( renderMap.get( reference ) !== this.renderId ) { if ( node.updateBefore( this ) !== false ) { renderMap.set( reference, this.renderId ); } } } else if ( updateType === NodeUpdateType.OBJECT ) { node.updateBefore( this ); } } updateAfterNode( node ) { const updateType = node.getUpdateAfterType(); const reference = node.updateReference( this ); if ( updateType === NodeUpdateType.FRAME ) { const { frameMap } = this._getMaps( this.updateAfterMap, reference ); if ( frameMap.get( reference ) !== this.frameId ) { if ( node.updateAfter( this ) !== false ) { frameMap.set( reference, this.frameId ); } } } else if ( updateType === NodeUpdateType.RENDER ) { const { renderMap } = this._getMaps( this.updateAfterMap, reference ); if ( renderMap.get( reference ) !== this.renderId ) { if ( node.updateAfter( this ) !== false ) { renderMap.set( reference, this.renderId ); } } } else if ( updateType === NodeUpdateType.OBJECT ) { node.updateAfter( this ); } } updateNode( node ) { const updateType = node.getUpdateType(); const reference = node.updateReference( this ); if ( updateType === NodeUpdateType.FRAME ) { const { frameMap } = this._getMaps( this.updateMap, reference ); if ( frameMap.get( reference ) !== this.frameId ) { if ( node.update( this ) !== false ) { frameMap.set( reference, this.frameId ); } } } else if ( updateType === NodeUpdateType.RENDER ) { const { renderMap } = this._getMaps( this.updateMap, reference ); if ( renderMap.get( reference ) !== this.renderId ) { if ( node.update( this ) !== false ) { renderMap.set( reference, this.renderId ); } } } else if ( updateType === NodeUpdateType.OBJECT ) { node.update( this ); } } update() { this.frameId ++; if ( this.lastTime === undefined ) this.lastTime = performance.now(); this.deltaTime = ( performance.now() - this.lastTime ) / 1000; this.lastTime = performance.now(); this.time += this.deltaTime; } } class NodeFunctionInput { constructor( type, name, count = null, qualifier = '', isConst = false ) { this.type = type; this.name = name; this.count = count; this.qualifier = qualifier; this.isConst = isConst; } } NodeFunctionInput.isNodeFunctionInput = true; class StructTypeNode extends Node { static get type() { return 'StructTypeNode'; } constructor( types ) { super(); this.types = types; this.isStructTypeNode = true; } getMemberTypes() { return this.types; } } class OutputStructNode extends Node { static get type() { return 'OutputStructNode'; } constructor( ...members ) { super(); this.members = members; this.isOutputStructNode = true; } setup( builder ) { super.setup( builder ); const members = this.members; const types = []; for ( let i = 0; i < members.length; i ++ ) { types.push( members[ i ].getNodeType( builder ) ); } this.nodeType = builder.getStructTypeFromNode( new StructTypeNode( types ) ).name; } generate( builder, output ) { const propertyName = builder.getOutputStructName(); const members = this.members; const structPrefix = propertyName !== '' ? propertyName + '.' : ''; for ( let i = 0; i < members.length; i ++ ) { const snippet = members[ i ].build( builder, output ); builder.addLineFlowCode( `${ structPrefix }m${ i } = ${ snippet }`, this ); } return propertyName; } } const outputStruct = /*@__PURE__*/ nodeProxy( OutputStructNode ); function getTextureIndex( textures, name ) { for ( let i = 0; i < textures.length; i ++ ) { if ( textures[ i ].name === name ) { return i; } } return -1; } class MRTNode extends OutputStructNode { static get type() { return 'MRTNode'; } constructor( outputNodes ) { super(); this.outputNodes = outputNodes; this.isMRTNode = true; } has( name ) { return this.outputNodes[ name ] !== undefined; } get( name ) { return this.outputNodes[ name ]; } merge( mrtNode ) { const outputs = { ...this.outputNodes, ...mrtNode.outputNodes }; return mrt( outputs ); } setup( builder ) { const outputNodes = this.outputNodes; const mrt = builder.renderer.getRenderTarget(); const members = []; const textures = mrt.textures; for ( const name in outputNodes ) { const index = getTextureIndex( textures, name ); members[ index ] = vec4( outputNodes[ name ] ); } this.members = members; return super.setup( builder ); } } const mrt = /*@__PURE__*/ nodeProxy( MRTNode ); class FunctionOverloadingNode extends Node { static get type() { return 'FunctionOverloadingNode'; } constructor( functionNodes = [], ...parametersNodes ) { super(); this.functionNodes = functionNodes; this.parametersNodes = parametersNodes; this._candidateFnCall = null; this.global = true; } getNodeType() { return this.functionNodes[ 0 ].shaderNode.layout.type; } setup( builder ) { const params = this.parametersNodes; let candidateFnCall = this._candidateFnCall; if ( candidateFnCall === null ) { let candidateFn = null; let candidateScore = -1; for ( const functionNode of this.functionNodes ) { const shaderNode = functionNode.shaderNode; const layout = shaderNode.layout; if ( layout === null ) { throw new Error( 'FunctionOverloadingNode: FunctionNode must be a layout.' ); } const inputs = layout.inputs; if ( params.length === inputs.length ) { let score = 0; for ( let i = 0; i < params.length; i ++ ) { const param = params[ i ]; const input = inputs[ i ]; if ( param.getNodeType( builder ) === input.type ) { score ++; } else { score = 0; } } if ( score > candidateScore ) { candidateFn = functionNode; candidateScore = score; } } } this._candidateFnCall = candidateFnCall = candidateFn( ...params ); } return candidateFnCall; } } const overloadingBaseFn = /*@__PURE__*/ nodeProxy( FunctionOverloadingNode ); const overloadingFn = ( functionNodes ) => ( ...params ) => overloadingBaseFn( functionNodes, ...params ); class TimerNode extends UniformNode { static get type() { return 'TimerNode'; } constructor( scope = TimerNode.LOCAL, scale = 1, value = 0 ) { super( value ); this.scope = scope; this.scale = scale; this.updateType = NodeUpdateType.FRAME; } /* @TODO: getNodeType( builder ) { const scope = this.scope; if ( scope === TimerNode.FRAME ) { return 'uint'; } return 'float'; } */ update( frame ) { const scope = this.scope; const scale = this.scale; if ( scope === TimerNode.LOCAL ) { this.value += frame.deltaTime * scale; } else if ( scope === TimerNode.DELTA ) { this.value = frame.deltaTime * scale; } else if ( scope === TimerNode.FRAME ) { this.value = frame.frameId; } else { // global this.value = frame.time * scale; } } serialize( data ) { super.serialize( data ); data.scope = this.scope; data.scale = this.scale; } deserialize( data ) { super.deserialize( data ); this.scope = data.scope; this.scale = data.scale; } } TimerNode.LOCAL = 'local'; TimerNode.GLOBAL = 'global'; TimerNode.DELTA = 'delta'; TimerNode.FRAME = 'frame'; // @TODO: add support to use node in timeScale const timerLocal = ( timeScale, value = 0 ) => nodeObject( new TimerNode( TimerNode.LOCAL, timeScale, value ) ); const timerGlobal = ( timeScale, value = 0 ) => nodeObject( new TimerNode( TimerNode.GLOBAL, timeScale, value ) ); const timerDelta = ( timeScale, value = 0 ) => nodeObject( new TimerNode( TimerNode.DELTA, timeScale, value ) ); const frameId = /*@__PURE__*/ nodeImmutable( TimerNode, TimerNode.FRAME ).toUint(); class OscNode extends Node { static get type() { return 'OscNode'; } constructor( method = OscNode.SINE, timeNode = timerLocal() ) { super(); this.method = method; this.timeNode = timeNode; } getNodeType( builder ) { return this.timeNode.getNodeType( builder ); } setup() { const method = this.method; const timeNode = nodeObject( this.timeNode ); let outputNode = null; if ( method === OscNode.SINE ) { outputNode = timeNode.add( 0.75 ).mul( Math.PI * 2 ).sin().mul( 0.5 ).add( 0.5 ); } else if ( method === OscNode.SQUARE ) { outputNode = timeNode.fract().round(); } else if ( method === OscNode.TRIANGLE ) { outputNode = timeNode.add( 0.5 ).fract().mul( 2 ).sub( 1 ).abs(); } else if ( method === OscNode.SAWTOOTH ) { outputNode = timeNode.fract(); } return outputNode; } serialize( data ) { super.serialize( data ); data.method = this.method; } deserialize( data ) { super.deserialize( data ); this.method = data.method; } } OscNode.SINE = 'sine'; OscNode.SQUARE = 'square'; OscNode.TRIANGLE = 'triangle'; OscNode.SAWTOOTH = 'sawtooth'; const oscSine = /*@__PURE__*/ nodeProxy( OscNode, OscNode.SINE ); const oscSquare = /*@__PURE__*/ nodeProxy( OscNode, OscNode.SQUARE ); const oscTriangle = /*@__PURE__*/ nodeProxy( OscNode, OscNode.TRIANGLE ); const oscSawtooth = /*@__PURE__*/ nodeProxy( OscNode, OscNode.SAWTOOTH ); class SpriteSheetUVNode extends Node { static get type() { return 'SpriteSheetUVNode'; } constructor( countNode, uvNode = uv(), frameNode = float( 0 ) ) { super( 'vec2' ); this.countNode = countNode; this.uvNode = uvNode; this.frameNode = frameNode; } setup() { const { frameNode, uvNode, countNode } = this; const { width, height } = countNode; const frameNum = frameNode.mod( width.mul( height ) ).floor(); const column = frameNum.mod( width ); const row = height.sub( frameNum.add( 1 ).div( width ).ceil() ); const scale = countNode.reciprocal(); const uvFrameOffset = vec2( column, row ); return uvNode.add( uvFrameOffset ).mul( scale ); } } const spritesheetUV = /*@__PURE__*/ nodeProxy( SpriteSheetUVNode ); class StorageArrayElementNode extends ArrayElementNode { static get type() { return 'StorageArrayElementNode'; } constructor( storageBufferNode, indexNode ) { super( storageBufferNode, indexNode ); this.isStorageArrayElementNode = true; } set storageBufferNode( value ) { this.node = value; } get storageBufferNode() { return this.node; } setup( builder ) { if ( builder.isAvailable( 'storageBuffer' ) === false ) { if ( this.node.bufferObject === true ) { builder.setupPBO( this.node ); } } return super.setup( builder ); } generate( builder, output ) { let snippet; const isAssignContext = builder.context.assign; // if ( builder.isAvailable( 'storageBuffer' ) === false ) { if ( this.node.bufferObject === true && isAssignContext !== true ) { snippet = builder.generatePBO( this ); } else { snippet = this.node.build( builder ); } } else { snippet = super.generate( builder ); } if ( isAssignContext !== true ) { const type = this.getNodeType( builder ); snippet = builder.format( snippet, type, output ); } return snippet; } } const storageElement = /*@__PURE__*/ nodeProxy( StorageArrayElementNode ); class TriplanarTexturesNode extends Node { static get type() { return 'TriplanarTexturesNode'; } constructor( textureXNode, textureYNode = null, textureZNode = null, scaleNode = float( 1 ), positionNode = positionLocal, normalNode = normalLocal ) { super( 'vec4' ); this.textureXNode = textureXNode; this.textureYNode = textureYNode; this.textureZNode = textureZNode; this.scaleNode = scaleNode; this.positionNode = positionNode; this.normalNode = normalNode; } setup() { const { textureXNode, textureYNode, textureZNode, scaleNode, positionNode, normalNode } = this; // Ref: https://github.com/keijiro/StandardTriplanar // Blending factor of triplanar mapping let bf = normalNode.abs().normalize(); bf = bf.div( bf.dot( vec3( 1.0 ) ) ); // Triplanar mapping const tx = positionNode.yz.mul( scaleNode ); const ty = positionNode.zx.mul( scaleNode ); const tz = positionNode.xy.mul( scaleNode ); // Base color const textureX = textureXNode.value; const textureY = textureYNode !== null ? textureYNode.value : textureX; const textureZ = textureZNode !== null ? textureZNode.value : textureX; const cx = texture( textureX, tx ).mul( bf.x ); const cy = texture( textureY, ty ).mul( bf.y ); const cz = texture( textureZ, tz ).mul( bf.z ); return add( cx, cy, cz ); } } const triplanarTextures = /*@__PURE__*/ nodeProxy( TriplanarTexturesNode ); const triplanarTexture = ( ...params ) => triplanarTextures( ...params ); const _reflectorPlane = new Plane(); const _normal = new Vector3(); const _reflectorWorldPosition = new Vector3(); const _cameraWorldPosition = new Vector3(); const _rotationMatrix = new Matrix4(); const _lookAtPosition = new Vector3( 0, 0, -1 ); const clipPlane = new Vector4(); const _view = new Vector3(); const _target = new Vector3(); const _q = new Vector4(); const _size$8 = new Vector2(); const _defaultRT = new RenderTarget(); const _defaultUV = screenUV.flipX(); let _inReflector = false; class ReflectorNode extends TextureNode { static get type() { return 'ReflectorNode'; } constructor( parameters = {} ) { super( _defaultRT.texture, _defaultUV ); const { target = new Object3D(), resolution = 1, generateMipmaps = false, bounces = true } = parameters; // this.target = target; this.resolution = resolution; this.generateMipmaps = generateMipmaps; this.bounces = bounces; this.updateBeforeType = bounces ? NodeUpdateType.RENDER : NodeUpdateType.FRAME; this.virtualCameras = new WeakMap(); this.renderTargets = new WeakMap(); } _updateResolution( renderTarget, renderer ) { const resolution = this.resolution; renderer.getDrawingBufferSize( _size$8 ); renderTarget.setSize( Math.round( _size$8.width * resolution ), Math.round( _size$8.height * resolution ) ); } setup( builder ) { this._updateResolution( _defaultRT, builder.renderer ); return super.setup( builder ); } getTextureNode() { return this.textureNode; } getVirtualCamera( camera ) { let virtualCamera = this.virtualCameras.get( camera ); if ( virtualCamera === undefined ) { virtualCamera = camera.clone(); this.virtualCameras.set( camera, virtualCamera ); } return virtualCamera; } getRenderTarget( camera ) { let renderTarget = this.renderTargets.get( camera ); if ( renderTarget === undefined ) { renderTarget = new RenderTarget( 0, 0, { type: HalfFloatType } ); if ( this.generateMipmaps === true ) { renderTarget.texture.minFilter = LinearMipMapLinearFilter; renderTarget.texture.generateMipmaps = true; } this.renderTargets.set( camera, renderTarget ); } return renderTarget; } updateBefore( frame ) { if ( this.bounces === false && _inReflector ) return false; _inReflector = true; const { scene, camera, renderer, material } = frame; const { target } = this; const virtualCamera = this.getVirtualCamera( camera ); const renderTarget = this.getRenderTarget( virtualCamera ); renderer.getDrawingBufferSize( _size$8 ); this._updateResolution( renderTarget, renderer ); // _reflectorWorldPosition.setFromMatrixPosition( target.matrixWorld ); _cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld ); _rotationMatrix.extractRotation( target.matrixWorld ); _normal.set( 0, 0, 1 ); _normal.applyMatrix4( _rotationMatrix ); _view.subVectors( _reflectorWorldPosition, _cameraWorldPosition ); // Avoid rendering when reflector is facing away if ( _view.dot( _normal ) > 0 ) return; _view.reflect( _normal ).negate(); _view.add( _reflectorWorldPosition ); _rotationMatrix.extractRotation( camera.matrixWorld ); _lookAtPosition.set( 0, 0, -1 ); _lookAtPosition.applyMatrix4( _rotationMatrix ); _lookAtPosition.add( _cameraWorldPosition ); _target.subVectors( _reflectorWorldPosition, _lookAtPosition ); _target.reflect( _normal ).negate(); _target.add( _reflectorWorldPosition ); // virtualCamera.coordinateSystem = camera.coordinateSystem; virtualCamera.position.copy( _view ); virtualCamera.up.set( 0, 1, 0 ); virtualCamera.up.applyMatrix4( _rotationMatrix ); virtualCamera.up.reflect( _normal ); virtualCamera.lookAt( _target ); virtualCamera.near = camera.near; virtualCamera.far = camera.far; virtualCamera.updateMatrixWorld(); virtualCamera.projectionMatrix.copy( camera.projectionMatrix ); // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf _reflectorPlane.setFromNormalAndCoplanarPoint( _normal, _reflectorWorldPosition ); _reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse ); clipPlane.set( _reflectorPlane.normal.x, _reflectorPlane.normal.y, _reflectorPlane.normal.z, _reflectorPlane.constant ); const projectionMatrix = virtualCamera.projectionMatrix; _q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ]; _q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ]; _q.z = -1; _q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ]; // Calculate the scaled plane vector clipPlane.multiplyScalar( 1.0 / clipPlane.dot( _q ) ); const clipBias = 0; // Replacing the third row of the projection matrix projectionMatrix.elements[ 2 ] = clipPlane.x; projectionMatrix.elements[ 6 ] = clipPlane.y; projectionMatrix.elements[ 10 ] = clipPlane.z - clipBias; projectionMatrix.elements[ 14 ] = clipPlane.w; // this.value = renderTarget.texture; material.visible = false; const currentRenderTarget = renderer.getRenderTarget(); const currentMRT = renderer.getMRT(); renderer.setMRT( null ); renderer.setRenderTarget( renderTarget ); renderer.render( scene, virtualCamera ); renderer.setMRT( currentMRT ); renderer.setRenderTarget( currentRenderTarget ); material.visible = true; _inReflector = false; } } const reflector = ( parameters ) => nodeObject( new ReflectorNode( parameters ) ); // Helper for passes that need to fill the viewport with a single quad. const _camera = /*@__PURE__*/ new OrthographicCamera( -1, 1, 1, -1, 0, 1 ); // https://github.com/mrdoob/three.js/pull/21358 class QuadGeometry extends BufferGeometry { constructor( flipY = false ) { super(); const uv = flipY === false ? [ 0, -1, 0, 1, 2, 1 ] : [ 0, 2, 0, 0, 2, 0 ]; this.setAttribute( 'position', new Float32BufferAttribute( [ -1, 3, 0, -1, -1, 0, 3, -1, 0 ], 3 ) ); this.setAttribute( 'uv', new Float32BufferAttribute( uv, 2 ) ); } } const _geometry = /*@__PURE__*/ new QuadGeometry(); class QuadMesh extends Mesh { constructor( material = null ) { super( _geometry, material ); this.camera = _camera; this.isQuadMesh = true; } renderAsync( renderer ) { return renderer.renderAsync( this, _camera ); } render( renderer ) { renderer.render( this, _camera ); } } const _size$7 = /*@__PURE__*/ new Vector2(); class RTTNode extends TextureNode { static get type() { return 'RTTNode'; } constructor( node, width = null, height = null, options = { type: HalfFloatType } ) { const renderTarget = new RenderTarget( width, height, options ); super( renderTarget.texture, uv() ); this.node = node; this.width = width; this.height = height; this.renderTarget = renderTarget; this.textureNeedsUpdate = true; this.autoUpdate = true; this.updateMap = new WeakMap(); this._rttNode = null; this._quadMesh = new QuadMesh( new NodeMaterial() ); this.updateBeforeType = NodeUpdateType.RENDER; } get autoSize() { return this.width === null; } setup( builder ) { this._rttNode = this.node.context( builder.getSharedContext() ); this._quadMesh.material.name = 'RTT'; this._quadMesh.material.needsUpdate = true; return super.setup( builder ); } setSize( width, height ) { this.width = width; this.height = height; const effectiveWidth = width * this.pixelRatio; const effectiveHeight = height * this.pixelRatio; this.renderTarget.setSize( effectiveWidth, effectiveHeight ); this.textureNeedsUpdate = true; } setPixelRatio( pixelRatio ) { this.pixelRatio = pixelRatio; this.setSize( this.width, this.height ); } updateBefore( { renderer } ) { if ( this.textureNeedsUpdate === false && this.autoUpdate === false ) return; this.textureNeedsUpdate = false; // if ( this.autoSize === true ) { this.pixelRatio = renderer.getPixelRatio(); const size = renderer.getSize( _size$7 ); this.setSize( size.width, size.height ); } // this._quadMesh.material.fragmentNode = this._rttNode; // const currentRenderTarget = renderer.getRenderTarget(); renderer.setRenderTarget( this.renderTarget ); this._quadMesh.render( renderer ); renderer.setRenderTarget( currentRenderTarget ); } clone() { const newNode = new TextureNode( this.value, this.uvNode, this.levelNode ); newNode.sampler = this.sampler; newNode.referenceNode = this; return newNode; } } const rtt = ( node, ...params ) => nodeObject( new RTTNode( nodeObject( node ), ...params ) ); const convertToTexture = ( node, ...params ) => node.isTextureNode ? node : rtt( node, ...params ); class VertexColorNode extends AttributeNode { static get type() { return 'VertexColorNode'; } constructor( index = 0 ) { super( null, 'vec4' ); this.isVertexColorNode = true; this.index = index; } getAttributeName( /*builder*/ ) { const index = this.index; return 'color' + ( index > 0 ? index : '' ); } generate( builder ) { const attributeName = this.getAttributeName( builder ); const geometryAttribute = builder.hasGeometryAttribute( attributeName ); let result; if ( geometryAttribute === true ) { result = super.generate( builder ); } else { // Vertex color fallback should be white result = builder.generateConst( this.nodeType, new Vector4( 1, 1, 1, 1 ) ); } return result; } serialize( data ) { super.serialize( data ); data.index = this.index; } deserialize( data ) { super.deserialize( data ); this.index = data.index; } } const vertexColor = ( ...params ) => nodeObject( new VertexColorNode( ...params ) ); class PointUVNode extends Node { static get type() { return 'PointUVNode'; } constructor() { super( 'vec2' ); this.isPointUVNode = true; } generate( /*builder*/ ) { return 'vec2( gl_PointCoord.x, 1.0 - gl_PointCoord.y )'; } } const pointUV = /*@__PURE__*/ nodeImmutable( PointUVNode ); class SceneNode extends Node { static get type() { return 'SceneNode'; } constructor( scope = SceneNode.BACKGROUND_BLURRINESS, scene = null ) { super(); this.scope = scope; this.scene = scene; } setup( builder ) { const scope = this.scope; const scene = this.scene !== null ? this.scene : builder.scene; let output; if ( scope === SceneNode.BACKGROUND_BLURRINESS ) { output = reference( 'backgroundBlurriness', 'float', scene ); } else if ( scope === SceneNode.BACKGROUND_INTENSITY ) { output = reference( 'backgroundIntensity', 'float', scene ); } else { console.error( 'THREE.SceneNode: Unknown scope:', scope ); } return output; } } SceneNode.BACKGROUND_BLURRINESS = 'backgroundBlurriness'; SceneNode.BACKGROUND_INTENSITY = 'backgroundIntensity'; const backgroundBlurriness = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_BLURRINESS ); const backgroundIntensity = /*@__PURE__*/ nodeImmutable( SceneNode, SceneNode.BACKGROUND_INTENSITY ); const GPUBufferBindingType = { Uniform: 'uniform', Storage: 'storage', ReadOnlyStorage: 'read-only-storage' }; const GPUStorageTextureAccess = { WriteOnly: 'write-only', ReadOnly: 'read-only', ReadWrite: 'read-write', }; class StorageBufferNode extends BufferNode { static get type() { return 'StorageBufferNode'; } constructor( value, bufferType, bufferCount = 0 ) { super( value, bufferType, bufferCount ); this.isStorageBufferNode = true; this.access = GPUBufferBindingType.Storage; this.isAtomic = false; this.bufferObject = false; this.bufferCount = bufferCount; this._attribute = null; this._varying = null; this.global = true; if ( value.isStorageBufferAttribute !== true && value.isStorageInstancedBufferAttribute !== true ) { // TOOD: Improve it, possibly adding a new property to the BufferAttribute to identify it as a storage buffer read-only attribute in Renderer if ( value.isInstancedBufferAttribute ) value.isStorageInstancedBufferAttribute = true; else value.isStorageBufferAttribute = true; } } getHash( builder ) { if ( this.bufferCount === 0 ) { let bufferData = builder.globalCache.getData( this.value ); if ( bufferData === undefined ) { bufferData = { node: this }; builder.globalCache.setData( this.value, bufferData ); } return bufferData.node.uuid; } return this.uuid; } getInputType( /*builder*/ ) { return 'storageBuffer'; } element( indexNode ) { return storageElement( this, indexNode ); } setBufferObject( value ) { this.bufferObject = value; return this; } setAccess( value ) { this.access = value; return this; } toReadOnly() { return this.setAccess( GPUBufferBindingType.ReadOnlyStorage ); } setAtomic( value ) { this.isAtomic = value; return this; } toAtomic() { return this.setAtomic( true ); } generate( builder ) { if ( builder.isAvailable( 'storageBuffer' ) ) { return super.generate( builder ); } const nodeType = this.getNodeType( builder ); if ( this._attribute === null ) { this._attribute = bufferAttribute( this.value ); this._varying = varying( this._attribute ); } const output = this._varying.build( builder, nodeType ); builder.registerTransform( output, this._attribute ); return output; } } // Read-Write Storage const storage = ( value, type, count ) => nodeObject( new StorageBufferNode( value, type, count ) ); const storageObject = ( value, type, count ) => nodeObject( new StorageBufferNode( value, type, count ).setBufferObject( true ) ); class StorageTextureNode extends TextureNode { static get type() { return 'StorageTextureNode'; } constructor( value, uvNode, storeNode = null ) { super( value, uvNode ); this.storeNode = storeNode; this.isStorageTextureNode = true; this.access = GPUStorageTextureAccess.WriteOnly; } getInputType( /*builder*/ ) { return 'storageTexture'; } setup( builder ) { super.setup( builder ); const properties = builder.getNodeProperties( this ); properties.storeNode = this.storeNode; } setAccess( value ) { this.access = value; return this; } generate( builder, output ) { let snippet; if ( this.storeNode !== null ) { snippet = this.generateStore( builder ); } else { snippet = super.generate( builder, output ); } return snippet; } toReadOnly() { return this.setAccess( GPUStorageTextureAccess.ReadOnly ); } toWriteOnly() { return this.setAccess( GPUStorageTextureAccess.WriteOnly ); } generateStore( builder ) { const properties = builder.getNodeProperties( this ); const { uvNode, storeNode } = properties; const textureProperty = super.generate( builder, 'property' ); const uvSnippet = uvNode.build( builder, 'uvec2' ); const storeSnippet = storeNode.build( builder, 'vec4' ); const snippet = builder.generateTextureStore( builder, textureProperty, uvSnippet, storeSnippet ); builder.addLineFlowCode( snippet, this ); } } const storageTexture = /*@__PURE__*/ nodeProxy( StorageTextureNode ); const textureStore = ( value, uvNode, storeNode ) => { const node = storageTexture( value, uvNode, storeNode ); if ( storeNode !== null ) node.append(); return node; }; class UserDataNode extends ReferenceNode { static get type() { return 'UserDataNode'; } constructor( property, inputType, userData = null ) { super( property, inputType, userData ); this.userData = userData; } updateReference( state ) { this.reference = this.userData !== null ? this.userData : state.object.userData; return this.reference; } } const userData = ( name, inputType, userData ) => nodeObject( new UserDataNode( name, inputType, userData ) ); class PosterizeNode extends TempNode { static get type() { return 'PosterizeNode'; } constructor( sourceNode, stepsNode ) { super(); this.sourceNode = sourceNode; this.stepsNode = stepsNode; } setup() { const { sourceNode, stepsNode } = this; return sourceNode.mul( stepsNode ).floor().div( stepsNode ); } } const posterize = /*@__PURE__*/ nodeProxy( PosterizeNode ); let _sharedFramebuffer = null; class ViewportSharedTextureNode extends ViewportTextureNode { static get type() { return 'ViewportSharedTextureNode'; } constructor( uvNode = screenUV, levelNode = null ) { if ( _sharedFramebuffer === null ) { _sharedFramebuffer = new FramebufferTexture(); } super( uvNode, levelNode, _sharedFramebuffer ); } updateReference() { return this; } } const viewportSharedTexture = /*@__PURE__*/ nodeProxy( ViewportSharedTextureNode ); const _size$6 = /*@__PURE__*/ new Vector2(); class PassTextureNode extends TextureNode { static get type() { return 'PassTextureNode'; } constructor( passNode, texture ) { super( texture ); this.passNode = passNode; this.setUpdateMatrix( false ); } setup( builder ) { if ( builder.object.isQuadMesh ) this.passNode.build( builder ); return super.setup( builder ); } clone() { return new this.constructor( this.passNode, this.value ); } } class PassMultipleTextureNode extends PassTextureNode { static get type() { return 'PassMultipleTextureNode'; } constructor( passNode, textureName, previousTexture = false ) { super( passNode, null ); this.textureName = textureName; this.previousTexture = previousTexture; } updateTexture() { this.value = this.previousTexture ? this.passNode.getPreviousTexture( this.textureName ) : this.passNode.getTexture( this.textureName ); } setup( builder ) { this.updateTexture(); return super.setup( builder ); } clone() { return new this.constructor( this.passNode, this.textureName, this.previousTexture ); } } class PassNode extends TempNode { static get type() { return 'PassNode'; } constructor( scope, scene, camera, options = {} ) { super( 'vec4' ); this.scope = scope; this.scene = scene; this.camera = camera; this.options = options; this._pixelRatio = 1; this._width = 1; this._height = 1; const depthTexture = new DepthTexture(); depthTexture.isRenderTargetTexture = true; //depthTexture.type = FloatType; depthTexture.name = 'depth'; const renderTarget = new RenderTarget( this._width * this._pixelRatio, this._height * this._pixelRatio, { type: HalfFloatType, ...options, } ); renderTarget.texture.name = 'output'; renderTarget.depthTexture = depthTexture; this.renderTarget = renderTarget; this.updateBeforeType = NodeUpdateType.FRAME; this._textures = { output: renderTarget.texture, depth: depthTexture }; this._textureNodes = {}; this._linearDepthNodes = {}; this._viewZNodes = {}; this._previousTextures = {}; this._previousTextureNodes = {}; this._cameraNear = uniform( 0 ); this._cameraFar = uniform( 0 ); this._mrt = null; this.isPassNode = true; } setMRT( mrt ) { this._mrt = mrt; return this; } getMRT() { return this._mrt; } isGlobal() { return true; } getTexture( name ) { let texture = this._textures[ name ]; if ( texture === undefined ) { const refTexture = this.renderTarget.texture; texture = refTexture.clone(); texture.isRenderTargetTexture = true; texture.name = name; this._textures[ name ] = texture; this.renderTarget.textures.push( texture ); } return texture; } getPreviousTexture( name ) { let texture = this._previousTextures[ name ]; if ( texture === undefined ) { texture = this.getTexture( name ).clone(); texture.isRenderTargetTexture = true; this._previousTextures[ name ] = texture; } return texture; } toggleTexture( name ) { const prevTexture = this._previousTextures[ name ]; if ( prevTexture !== undefined ) { const texture = this._textures[ name ]; const index = this.renderTarget.textures.indexOf( texture ); this.renderTarget.textures[ index ] = prevTexture; this._textures[ name ] = prevTexture; this._previousTextures[ name ] = texture; this._textureNodes[ name ].updateTexture(); this._previousTextureNodes[ name ].updateTexture(); } } getTextureNode( name = 'output' ) { let textureNode = this._textureNodes[ name ]; if ( textureNode === undefined ) { this._textureNodes[ name ] = textureNode = nodeObject( new PassMultipleTextureNode( this, name ) ); this._textureNodes[ name ].updateTexture(); } return textureNode; } getPreviousTextureNode( name = 'output' ) { let textureNode = this._previousTextureNodes[ name ]; if ( textureNode === undefined ) { if ( this._textureNodes[ name ] === undefined ) this.getTextureNode( name ); this._previousTextureNodes[ name ] = textureNode = nodeObject( new PassMultipleTextureNode( this, name, true ) ); this._previousTextureNodes[ name ].updateTexture(); } return textureNode; } getViewZNode( name = 'depth' ) { let viewZNode = this._viewZNodes[ name ]; if ( viewZNode === undefined ) { const cameraNear = this._cameraNear; const cameraFar = this._cameraFar; this._viewZNodes[ name ] = viewZNode = perspectiveDepthToViewZ( this.getTextureNode( name ), cameraNear, cameraFar ); } return viewZNode; } getLinearDepthNode( name = 'depth' ) { let linearDepthNode = this._linearDepthNodes[ name ]; if ( linearDepthNode === undefined ) { const cameraNear = this._cameraNear; const cameraFar = this._cameraFar; const viewZNode = this.getViewZNode( name ); // TODO: just if ( builder.camera.isPerspectiveCamera ) this._linearDepthNodes[ name ] = linearDepthNode = viewZToOrthographicDepth( viewZNode, cameraNear, cameraFar ); } return linearDepthNode; } setup( { renderer } ) { this.renderTarget.samples = this.options.samples === undefined ? renderer.samples : this.options.samples; // Disable MSAA for WebGL backend for now if ( renderer.backend.isWebGLBackend === true ) { this.renderTarget.samples = 0; } this.renderTarget.depthTexture.isMultisampleRenderTargetTexture = this.renderTarget.samples > 1; return this.scope === PassNode.COLOR ? this.getTextureNode() : this.getLinearDepthNode(); } updateBefore( frame ) { const { renderer } = frame; const { scene, camera } = this; this._pixelRatio = renderer.getPixelRatio(); const size = renderer.getSize( _size$6 ); this.setSize( size.width, size.height ); const currentRenderTarget = renderer.getRenderTarget(); const currentMRT = renderer.getMRT(); this._cameraNear.value = camera.near; this._cameraFar.value = camera.far; for ( const name in this._previousTextures ) { this.toggleTexture( name ); } renderer.setRenderTarget( this.renderTarget ); renderer.setMRT( this._mrt ); renderer.render( scene, camera ); renderer.setRenderTarget( currentRenderTarget ); renderer.setMRT( currentMRT ); } setSize( width, height ) { this._width = width; this._height = height; const effectiveWidth = this._width * this._pixelRatio; const effectiveHeight = this._height * this._pixelRatio; this.renderTarget.setSize( effectiveWidth, effectiveHeight ); } setPixelRatio( pixelRatio ) { this._pixelRatio = pixelRatio; this.setSize( this._width, this._height ); } dispose() { this.renderTarget.dispose(); } } PassNode.COLOR = 'color'; PassNode.DEPTH = 'depth'; const pass = ( scene, camera, options ) => nodeObject( new PassNode( PassNode.COLOR, scene, camera, options ) ); const passTexture = ( pass, texture ) => nodeObject( new PassTextureNode( pass, texture ) ); const depthPass = ( scene, camera ) => nodeObject( new PassNode( PassNode.DEPTH, scene, camera ) ); // WebGPU: The use of a single QuadMesh for both gaussian blur passes results in a single RenderObject with a SampledTexture binding that // alternates between source textures and triggers creation of new BindGroups and BindGroupLayouts every frame. const _quadMesh1 = /*@__PURE__*/ new QuadMesh(); const _quadMesh2 = /*@__PURE__*/ new QuadMesh(); class GaussianBlurNode extends TempNode { static get type() { return 'GaussianBlurNode'; } constructor( textureNode, directionNode = null, sigma = 2 ) { super( 'vec4' ); this.textureNode = textureNode; this.directionNode = directionNode; this.sigma = sigma; this._invSize = uniform( new Vector2() ); this._passDirection = uniform( new Vector2() ); this._horizontalRT = new RenderTarget(); this._horizontalRT.texture.name = 'GaussianBlurNode.horizontal'; this._verticalRT = new RenderTarget(); this._verticalRT.texture.name = 'GaussianBlurNode.vertical'; this._textureNode = passTexture( this, this._verticalRT.texture ); this.updateBeforeType = NodeUpdateType.RENDER; this.resolution = new Vector2( 1, 1 ); } setSize( width, height ) { width = Math.max( Math.round( width * this.resolution.x ), 1 ); height = Math.max( Math.round( height * this.resolution.y ), 1 ); this._invSize.value.set( 1 / width, 1 / height ); this._horizontalRT.setSize( width, height ); this._verticalRT.setSize( width, height ); } updateBefore( frame ) { const { renderer } = frame; const textureNode = this.textureNode; const map = textureNode.value; const currentRenderTarget = renderer.getRenderTarget(); const currentMRT = renderer.getMRT(); const currentTexture = textureNode.value; _quadMesh1.material = this._material; _quadMesh2.material = this._material; this.setSize( map.image.width, map.image.height ); const textureType = map.type; this._horizontalRT.texture.type = textureType; this._verticalRT.texture.type = textureType; // clear renderer.setMRT( null ); // horizontal renderer.setRenderTarget( this._horizontalRT ); this._passDirection.value.set( 1, 0 ); _quadMesh1.render( renderer ); // vertical textureNode.value = this._horizontalRT.texture; renderer.setRenderTarget( this._verticalRT ); this._passDirection.value.set( 0, 1 ); _quadMesh2.render( renderer ); // restore renderer.setRenderTarget( currentRenderTarget ); renderer.setMRT( currentMRT ); textureNode.value = currentTexture; } getTextureNode() { return this._textureNode; } setup( builder ) { const textureNode = this.textureNode; if ( textureNode.isTextureNode !== true ) { console.error( 'GaussianBlurNode requires a TextureNode.' ); return vec4(); } // const uvNode = textureNode.uvNode || uv(); const directionNode = vec2( this.directionNode || 1 ); const sampleTexture = ( uv ) => textureNode.uv( uv ); const blur = Fn( () => { const kernelSize = 3 + ( 2 * this.sigma ); const gaussianCoefficients = this._getCoefficients( kernelSize ); const invSize = this._invSize; const direction = directionNode.mul( this._passDirection ); const weightSum = float( gaussianCoefficients[ 0 ] ).toVar(); const diffuseSum = vec4( sampleTexture( uvNode ).mul( weightSum ) ).toVar(); for ( let i = 1; i < kernelSize; i ++ ) { const x = float( i ); const w = float( gaussianCoefficients[ i ] ); const uvOffset = vec2( direction.mul( invSize.mul( x ) ) ).toVar(); const sample1 = vec4( sampleTexture( uvNode.add( uvOffset ) ) ); const sample2 = vec4( sampleTexture( uvNode.sub( uvOffset ) ) ); diffuseSum.addAssign( sample1.add( sample2 ).mul( w ) ); weightSum.addAssign( mul( 2.0, w ) ); } return diffuseSum.div( weightSum ); } ); // const material = this._material || ( this._material = new NodeMaterial() ); material.fragmentNode = blur().context( builder.getSharedContext() ); material.name = 'Gaussian_blur'; material.needsUpdate = true; // const properties = builder.getNodeProperties( this ); properties.textureNode = textureNode; // return this._textureNode; } dispose() { this._horizontalRT.dispose(); this._verticalRT.dispose(); } _getCoefficients( kernelRadius ) { const coefficients = []; for ( let i = 0; i < kernelRadius; i ++ ) { coefficients.push( 0.39894 * Math.exp( -0.5 * i * i / ( kernelRadius * kernelRadius ) ) / kernelRadius ); } return coefficients; } } const gaussianBlur = ( node, directionNode, sigma ) => nodeObject( new GaussianBlurNode( convertToTexture( node ), directionNode, sigma ) ); const _size$5 = /*@__PURE__*/ new Vector2(); const _quadMeshComp = /*@__PURE__*/ new QuadMesh(); class AfterImageNode extends TempNode { static get type() { return 'AfterImageNode'; } constructor( textureNode, damp = 0.96 ) { super( textureNode ); this.textureNode = textureNode; this.textureNodeOld = texture(); this.damp = uniform( damp ); this._compRT = new RenderTarget(); this._compRT.texture.name = 'AfterImageNode.comp'; this._oldRT = new RenderTarget(); this._oldRT.texture.name = 'AfterImageNode.old'; this._textureNode = passTexture( this, this._compRT.texture ); this.updateBeforeType = NodeUpdateType.RENDER; } getTextureNode() { return this._textureNode; } setSize( width, height ) { this._compRT.setSize( width, height ); this._oldRT.setSize( width, height ); } updateBefore( frame ) { const { renderer } = frame; const textureNode = this.textureNode; const map = textureNode.value; const textureType = map.type; this._compRT.texture.type = textureType; this._oldRT.texture.type = textureType; renderer.getDrawingBufferSize( _size$5 ); this.setSize( _size$5.x, _size$5.y ); const currentRenderTarget = renderer.getRenderTarget(); const currentTexture = textureNode.value; this.textureNodeOld.value = this._oldRT.texture; // comp renderer.setRenderTarget( this._compRT ); _quadMeshComp.render( renderer ); // Swap the textures const temp = this._oldRT; this._oldRT = this._compRT; this._compRT = temp; renderer.setRenderTarget( currentRenderTarget ); textureNode.value = currentTexture; } setup( builder ) { const textureNode = this.textureNode; const textureNodeOld = this.textureNodeOld; // const uvNode = textureNode.uvNode || uv(); textureNodeOld.uvNode = uvNode; const sampleTexture = ( uv ) => textureNode.uv( uv ); const when_gt = Fn( ( [ x_immutable, y_immutable ] ) => { const y = float( y_immutable ).toVar(); const x = vec4( x_immutable ).toVar(); return max$1( sign( x.sub( y ) ), 0.0 ); } ); const afterImg = Fn( () => { const texelOld = vec4( textureNodeOld ); const texelNew = vec4( sampleTexture( uvNode ) ); texelOld.mulAssign( this.damp.mul( when_gt( texelOld, 0.1 ) ) ); return max$1( texelNew, texelOld ); } ); // const materialComposed = this._materialComposed || ( this._materialComposed = new NodeMaterial() ); materialComposed.name = 'AfterImage'; materialComposed.fragmentNode = afterImg(); _quadMeshComp.material = materialComposed; // const properties = builder.getNodeProperties( this ); properties.textureNode = textureNode; // return this._textureNode; } dispose() { this._compRT.dispose(); this._oldRT.dispose(); } } const afterImage = ( node, damp ) => nodeObject( new AfterImageNode( convertToTexture( node ), damp ) ); const grayscale = /*@__PURE__*/ Fn( ( [ color ] ) => { return luminance( color.rgb ); } ); const saturation = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { return adjustment.mix( luminance( color.rgb ), color.rgb ); } ); const vibrance = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { const average = add( color.r, color.g, color.b ).div( 3.0 ); const mx = color.r.max( color.g.max( color.b ) ); const amt = mx.sub( average ).mul( adjustment ).mul( -3 ); return mix( color.rgb, mx, amt ); } ); const hue = /*@__PURE__*/ Fn( ( [ color, adjustment = float( 1 ) ] ) => { const k = vec3( 0.57735, 0.57735, 0.57735 ); const cosAngle = adjustment.cos(); return vec3( color.rgb.mul( cosAngle ).add( k.cross( color.rgb ).mul( adjustment.sin() ).add( k.mul( dot( k, color.rgb ).mul( cosAngle.oneMinus() ) ) ) ) ); } ); const _luminanceCoefficients = /*@__PURE__*/ new Vector3(); const luminance = ( color, luminanceCoefficients = vec3( ... ColorManagement.getLuminanceCoefficients( _luminanceCoefficients ) ) ) => dot( color, luminanceCoefficients ); const threshold = ( color, threshold ) => mix( vec3( 0.0 ), color, luminance( color ).sub( threshold ).max( 0 ) ); const _quadMesh$4 = /*@__PURE__*/ new QuadMesh(); class AnamorphicNode extends TempNode { static get type() { return 'AnamorphicNode'; } constructor( textureNode, tresholdNode, scaleNode, samples ) { super( 'vec4' ); this.textureNode = textureNode; this.tresholdNode = tresholdNode; this.scaleNode = scaleNode; this.colorNode = vec3( 0.1, 0.0, 1.0 ); this.samples = samples; this.resolution = new Vector2( 1, 1 ); this._renderTarget = new RenderTarget(); this._renderTarget.texture.name = 'anamorphic'; this._invSize = uniform( new Vector2() ); this._textureNode = passTexture( this, this._renderTarget.texture ); this.updateBeforeType = NodeUpdateType.RENDER; } getTextureNode() { return this._textureNode; } setSize( width, height ) { this._invSize.value.set( 1 / width, 1 / height ); width = Math.max( Math.round( width * this.resolution.x ), 1 ); height = Math.max( Math.round( height * this.resolution.y ), 1 ); this._renderTarget.setSize( width, height ); } updateBefore( frame ) { const { renderer } = frame; const textureNode = this.textureNode; const map = textureNode.value; this._renderTarget.texture.type = map.type; const currentRenderTarget = renderer.getRenderTarget(); const currentTexture = textureNode.value; _quadMesh$4.material = this._material; this.setSize( map.image.width, map.image.height ); // render renderer.setRenderTarget( this._renderTarget ); _quadMesh$4.render( renderer ); // restore renderer.setRenderTarget( currentRenderTarget ); textureNode.value = currentTexture; } setup( builder ) { const textureNode = this.textureNode; const uvNode = textureNode.uvNode || uv(); const sampleTexture = ( uv ) => textureNode.uv( uv ); const anamorph = Fn( () => { const samples = this.samples; const halfSamples = Math.floor( samples / 2 ); const total = vec3( 0 ).toVar(); Loop( { start: - halfSamples, end: halfSamples }, ( { i } ) => { const softness = float( i ).abs().div( halfSamples ).oneMinus(); const uv = vec2( uvNode.x.add( this._invSize.x.mul( i ).mul( this.scaleNode ) ), uvNode.y ); const color = sampleTexture( uv ); const pass = threshold( color, this.tresholdNode ).mul( softness ); total.addAssign( pass ); } ); return total.mul( this.colorNode ); } ); // const material = this._material || ( this._material = new NodeMaterial() ); material.name = 'Anamorphic'; material.fragmentNode = anamorph(); // const properties = builder.getNodeProperties( this ); properties.textureNode = textureNode; // return this._textureNode; } dispose() { this._renderTarget.dispose(); } } const anamorphic = ( node, threshold = .9, scale = 3, samples = 32 ) => nodeObject( new AnamorphicNode( convertToTexture( node ), nodeObject( threshold ), nodeObject( scale ), samples ) ); class SobelOperatorNode extends TempNode { static get type() { return 'SobelOperatorNode'; } constructor( textureNode ) { super(); this.textureNode = textureNode; this.updateBeforeType = NodeUpdateType.RENDER; this._invSize = uniform( new Vector2() ); } updateBefore() { const map = this.textureNode.value; this._invSize.value.set( 1 / map.image.width, 1 / map.image.height ); } setup() { const { textureNode } = this; const uvNode = textureNode.uvNode || uv(); const sampleTexture = ( uv ) => textureNode.uv( uv ); const sobel = Fn( () => { // Sobel Edge Detection (see https://youtu.be/uihBwtPIBxM) const texel = this._invSize; // kernel definition (in glsl matrices are filled in column-major order) const Gx = mat3( -1, -2, -1, 0, 0, 0, 1, 2, 1 ); // x direction kernel const Gy = mat3( -1, 0, 1, -2, 0, 2, -1, 0, 1 ); // y direction kernel // fetch the 3x3 neighbourhood of a fragment // first column const tx0y0 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( -1, -1 ) ) ) ).xyz ); const tx0y1 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( -1, 0 ) ) ) ).xyz ); const tx0y2 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( -1, 1 ) ) ) ).xyz ); // second column const tx1y0 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 0, -1 ) ) ) ).xyz ); const tx1y1 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 0, 0 ) ) ) ).xyz ); const tx1y2 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 0, 1 ) ) ) ).xyz ); // third column const tx2y0 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 1, -1 ) ) ) ).xyz ); const tx2y1 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 1, 0 ) ) ) ).xyz ); const tx2y2 = luminance( sampleTexture( uvNode.add( texel.mul( vec2( 1, 1 ) ) ) ).xyz ); // gradient value in x direction const valueGx = add( Gx[ 0 ][ 0 ].mul( tx0y0 ), Gx[ 1 ][ 0 ].mul( tx1y0 ), Gx[ 2 ][ 0 ].mul( tx2y0 ), Gx[ 0 ][ 1 ].mul( tx0y1 ), Gx[ 1 ][ 1 ].mul( tx1y1 ), Gx[ 2 ][ 1 ].mul( tx2y1 ), Gx[ 0 ][ 2 ].mul( tx0y2 ), Gx[ 1 ][ 2 ].mul( tx1y2 ), Gx[ 2 ][ 2 ].mul( tx2y2 ) ); // gradient value in y direction const valueGy = add( Gy[ 0 ][ 0 ].mul( tx0y0 ), Gy[ 1 ][ 0 ].mul( tx1y0 ), Gy[ 2 ][ 0 ].mul( tx2y0 ), Gy[ 0 ][ 1 ].mul( tx0y1 ), Gy[ 1 ][ 1 ].mul( tx1y1 ), Gy[ 2 ][ 1 ].mul( tx2y1 ), Gy[ 0 ][ 2 ].mul( tx0y2 ), Gy[ 1 ][ 2 ].mul( tx1y2 ), Gy[ 2 ][ 2 ].mul( tx2y2 ) ); // magnitute of the total gradient const G = valueGx.mul( valueGx ).add( valueGy.mul( valueGy ) ).sqrt(); return vec4( vec3( G ), 1 ); } ); const outputNode = sobel(); return outputNode; } } const sobel = ( node ) => nodeObject( new SobelOperatorNode( convertToTexture( node ) ) ); class DepthOfFieldNode extends TempNode { static get type() { return 'DepthOfFieldNode'; } constructor( textureNode, viewZNode, focusNode, apertureNode, maxblurNode ) { super(); this.textureNode = textureNode; this.viewZNode = viewZNode; this.focusNode = focusNode; this.apertureNode = apertureNode; this.maxblurNode = maxblurNode; this._aspect = uniform( 0 ); this.updateBeforeType = NodeUpdateType.RENDER; } updateBefore() { const map = this.textureNode.value; this._aspect.value = map.image.width / map.image.height; } setup() { const textureNode = this.textureNode; const uvNode = textureNode.uvNode || uv(); const sampleTexture = ( uv ) => textureNode.uv( uv ); const dof = Fn( () => { const aspectcorrect = vec2( 1.0, this._aspect ); const factor = this.focusNode.add( this.viewZNode ); const dofblur = vec2( clamp( factor.mul( this.apertureNode ), this.maxblurNode.negate(), this.maxblurNode ) ); const dofblur9 = dofblur.mul( 0.9 ); const dofblur7 = dofblur.mul( 0.7 ); const dofblur4 = dofblur.mul( 0.4 ); let col = vec4( 0.0 ); col = col.add( sampleTexture( uvNode ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.0, 0.4 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.40, 0.0 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.37, -0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.29, -0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.15, -0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.0, -0.4 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.37, -0.15 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.29, -0.29 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.15, -0.37 ).mul( aspectcorrect ).mul( dofblur ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.37, -0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.15, -0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.15, 0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.37, 0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.37, -0.15 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.15, -0.37 ).mul( aspectcorrect ).mul( dofblur9 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.40, 0.0 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.29, -0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.0, -0.4 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.29, -0.29 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.0, 0.4 ).mul( aspectcorrect ).mul( dofblur7 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.29, -0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.0, -0.4 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.29, 0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.4, 0.0 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( -0.29, -0.29 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.add( sampleTexture( uvNode.add( vec2( 0.0, 0.4 ).mul( aspectcorrect ).mul( dofblur4 ) ) ) ); col = col.div( 41 ); col.a = 1; return vec4( col ); } ); const outputNode = dof(); return outputNode; } } const dof = ( node, viewZNode, focus = 1, aperture = 0.025, maxblur = 1 ) => nodeObject( new DepthOfFieldNode( convertToTexture( node ), nodeObject( viewZNode ), nodeObject( focus ), nodeObject( aperture ), nodeObject( maxblur ) ) ); class DotScreenNode extends TempNode { static get type() { return 'DotScreenNode'; } constructor( inputNode, center = new Vector2( 0.5, 0.5 ), angle = 1.57, scale = 1 ) { super( 'vec4' ); this.inputNode = inputNode; this.center = uniform( center ); this.angle = uniform( angle ); this.scale = uniform( scale ); } setup() { const inputNode = this.inputNode; const pattern = Fn( () => { const s = sin( this.angle ); const c = cos( this.angle ); const tex = uv().mul( screenSize ).sub( this.center ); const point = vec2( c.mul( tex.x ).sub( s.mul( tex.y ) ), s.mul( tex.x ).add( c.mul( tex.y ) ) ).mul( this.scale ); return sin( point.x ).mul( sin( point.y ) ).mul( 4 ); } ); const dotScreen = Fn( () => { const color = inputNode; const average = add( color.r, color.g, color.b ).div( 3 ); return vec4( vec3( average.mul( 10 ).sub( 5 ).add( pattern() ) ), color.a ); } ); const outputNode = dotScreen(); return outputNode; } } const dotScreen = ( node, center, angle, scale ) => nodeObject( new DotScreenNode( nodeObject( node ), center, angle, scale ) ); class RGBShiftNode extends TempNode { static get type() { return 'RGBShiftNode'; } constructor( textureNode, amount = 0.005, angle = 0 ) { super( 'vec4' ); this.textureNode = textureNode; this.amount = uniform( amount ); this.angle = uniform( angle ); } setup() { const { textureNode } = this; const uvNode = textureNode.uvNode || uv(); const sampleTexture = ( uv ) => textureNode.uv( uv ); const rgbShift = Fn( () => { const offset = vec2( cos( this.angle ), sin( this.angle ) ).mul( this.amount ); const cr = sampleTexture( uvNode.add( offset ) ); const cga = sampleTexture( uvNode ); const cb = sampleTexture( uvNode.sub( offset ) ); return vec4( cr.r, cga.g, cb.b, cga.a ); } ); return rgbShift(); } } const rgbShift = ( node, amount, angle ) => nodeObject( new RGBShiftNode( convertToTexture( node ), amount, angle ) ); class FilmNode extends TempNode { static get type() { return 'FilmNode'; } constructor( inputNode, intensityNode = null, uvNode = null ) { super(); this.inputNode = inputNode; this.intensityNode = intensityNode; this.uvNode = uvNode; } setup() { const uvNode = this.uvNode || uv(); const film = Fn( () => { const base = this.inputNode.rgb; const noise = rand( fract( uvNode.add( timerLocal() ) ) ); let color = base.add( base.mul( clamp( noise.add( 0.1 ), 0, 1 ) ) ); if ( this.intensityNode !== null ) { color = mix( base, color, this.intensityNode ); } return vec4( color, this.inputNode.a ); } ); const outputNode = film(); return outputNode; } } const film = /*@__PURE__*/ nodeProxy( FilmNode ); class Lut3DNode extends TempNode { static get type() { return 'Lut3DNode'; } constructor( inputNode, lutNode, size, intensityNode ) { super(); this.inputNode = inputNode; this.lutNode = lutNode; this.size = uniform( size ); this.intensityNode = intensityNode; } setup() { const { inputNode, lutNode } = this; const sampleLut = ( uv ) => lutNode.uv( uv ); const lut3D = Fn( () => { const base = inputNode; // pull the sample in by half a pixel so the sample begins at the center of the edge pixels. const pixelWidth = float( 1.0 ).div( this.size ); const halfPixelWidth = float( 0.5 ).div( this.size ); const uvw = vec3( halfPixelWidth ).add( base.rgb.mul( float( 1.0 ).sub( pixelWidth ) ) ); const lutValue = vec4( sampleLut( uvw ).rgb, base.a ); return vec4( mix( base, lutValue, this.intensityNode ) ); } ); const outputNode = lut3D(); return outputNode; } } const lut3D = ( node, lut, size, intensity ) => nodeObject( new Lut3DNode( nodeObject( node ), nodeObject( lut ), size, nodeObject( intensity ) ) ); const _quadMesh$3 = /*@__PURE__*/ new QuadMesh(); const _currentClearColor$1 = /*@__PURE__*/ new Color(); const _size$4 = /*@__PURE__*/ new Vector2(); class GTAONode extends TempNode { static get type() { return 'GTAONode'; } constructor( depthNode, normalNode, camera ) { super(); this.depthNode = depthNode; this.normalNode = normalNode; this.radius = uniform( 0.25 ); this.resolution = uniform( new Vector2() ); this.thickness = uniform( 1 ); this.distanceExponent = uniform( 1 ); this.distanceFallOff = uniform( 1 ); this.scale = uniform( 1 ); this.noiseNode = texture( generateMagicSquareNoise() ); this.cameraProjectionMatrix = uniform( camera.projectionMatrix ); this.cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse ); this.SAMPLES = uniform( 16 ); this._aoRenderTarget = new RenderTarget(); this._aoRenderTarget.texture.name = 'GTAONode.AO'; this._material = null; this._textureNode = passTexture( this, this._aoRenderTarget.texture ); this.updateBeforeType = NodeUpdateType.FRAME; } getTextureNode() { return this._textureNode; } setSize( width, height ) { this.resolution.value.set( width, height ); this._aoRenderTarget.setSize( width, height ); } updateBefore( frame ) { const { renderer } = frame; const size = renderer.getDrawingBufferSize( _size$4 ); const currentRenderTarget = renderer.getRenderTarget(); const currentMRT = renderer.getMRT(); renderer.getClearColor( _currentClearColor$1 ); const currentClearAlpha = renderer.getClearAlpha(); _quadMesh$3.material = this._material; this.setSize( size.width, size.height ); // clear renderer.setMRT( null ); renderer.setClearColor( 0xffffff, 1 ); // ao renderer.setRenderTarget( this._aoRenderTarget ); _quadMesh$3.render( renderer ); // restore renderer.setRenderTarget( currentRenderTarget ); renderer.setMRT( currentMRT ); renderer.setClearColor( _currentClearColor$1, currentClearAlpha ); } setup( builder ) { const uvNode = uv(); const sampleDepth = ( uv ) => this.depthNode.uv( uv ).x; const sampleNoise = ( uv ) => this.noiseNode.uv( uv ); const getSceneUvAndDepth = Fn( ( [ sampleViewPos ] )=> { const sampleClipPos = this.cameraProjectionMatrix.mul( vec4( sampleViewPos, 1.0 ) ); let sampleUv = sampleClipPos.xy.div( sampleClipPos.w ).mul( 0.5 ).add( 0.5 ).toVar(); sampleUv = vec2( sampleUv.x, sampleUv.y.oneMinus() ); const sampleSceneDepth = sampleDepth( sampleUv ); return vec3( sampleUv, sampleSceneDepth ); } ); const getViewPosition = Fn( ( [ screenPosition, depth ] ) => { screenPosition = vec2( screenPosition.x, screenPosition.y.oneMinus() ).mul( 2.0 ).sub( 1.0 ); const clipSpacePosition = vec4( vec3( screenPosition, depth ), 1.0 ); const viewSpacePosition = vec4( this.cameraProjectionMatrixInverse.mul( clipSpacePosition ) ); return viewSpacePosition.xyz.div( viewSpacePosition.w ); } ); const ao = Fn( () => { const depth = sampleDepth( uvNode ); depth.greaterThanEqual( 1.0 ).discard(); const viewPosition = getViewPosition( uvNode, depth ); const viewNormal = this.normalNode.rgb.normalize(); const radiusToUse = this.radius; const noiseResolution = textureSize( this.noiseNode, 0 ); let noiseUv = vec2( uvNode.x, uvNode.y.oneMinus() ); noiseUv = noiseUv.mul( this.resolution.div( noiseResolution ) ); const noiseTexel = sampleNoise( noiseUv ); const randomVec = noiseTexel.xyz.mul( 2.0 ).sub( 1.0 ); const tangent = vec3( randomVec.xy, 0.0 ).normalize(); const bitangent = vec3( tangent.y.mul( -1 ), tangent.x, 0.0 ); const kernelMatrix = mat3( tangent, bitangent, vec3( 0.0, 0.0, 1.0 ) ); const DIRECTIONS = this.SAMPLES.lessThan( 30 ).select( 3, 5 ); const STEPS = add( this.SAMPLES, DIRECTIONS.sub( 1 ) ).div( DIRECTIONS ); const ao = float( 0 ).toVar(); Loop( { start: int( 0 ), end: DIRECTIONS, type: 'int', condition: '<' }, ( { i } ) => { const angle = float( i ).div( float( DIRECTIONS ) ).mul( PI ); const sampleDir = vec4( cos( angle ), sin( angle ), 0., add( 0.5, mul( 0.5, noiseTexel.w ) ) ); sampleDir.xyz = normalize( kernelMatrix.mul( sampleDir.xyz ) ); const viewDir = normalize( viewPosition.xyz.negate() ); const sliceBitangent = normalize( cross( sampleDir.xyz, viewDir ) ); const sliceTangent = cross( sliceBitangent, viewDir ); const normalInSlice = normalize( viewNormal.sub( sliceBitangent.mul( dot( viewNormal, sliceBitangent ) ) ) ); const tangentToNormalInSlice = cross( normalInSlice, sliceBitangent ); const cosHorizons = vec2( dot( viewDir, tangentToNormalInSlice ), dot( viewDir, tangentToNormalInSlice.negate() ) ).toVar(); Loop( { end: STEPS, type: 'int', name: 'j', condition: '<' }, ( { j } ) => { const sampleViewOffset = sampleDir.xyz.mul( radiusToUse ).mul( sampleDir.w ).mul( pow( div( float( j ).add( 1.0 ), float( STEPS ) ), this.distanceExponent ) ); // x const sampleSceneUvDepthX = getSceneUvAndDepth( viewPosition.add( sampleViewOffset ) ); const sampleSceneViewPositionX = getViewPosition( sampleSceneUvDepthX.xy, sampleSceneUvDepthX.z ); const viewDeltaX = sampleSceneViewPositionX.sub( viewPosition ); If( abs( viewDeltaX.z ).lessThan( this.thickness ), () => { const sampleCosHorizon = dot( viewDir, normalize( viewDeltaX ) ); cosHorizons.x.addAssign( max$1( 0, mul( sampleCosHorizon.sub( cosHorizons.x ), mix( 1.0, float( 2.0 ).div( float( j ).add( 2 ) ), this.distanceFallOff ) ) ) ); } ); // y const sampleSceneUvDepthY = getSceneUvAndDepth( viewPosition.sub( sampleViewOffset ) ); const sampleSceneViewPositionY = getViewPosition( sampleSceneUvDepthY.xy, sampleSceneUvDepthY.z ); const viewDeltaY = sampleSceneViewPositionY.sub( viewPosition ); If( abs( viewDeltaY.z ).lessThan( this.thickness ), () => { const sampleCosHorizon = dot( viewDir, normalize( viewDeltaY ) ); cosHorizons.y.addAssign( max$1( 0, mul( sampleCosHorizon.sub( cosHorizons.y ), mix( 1.0, float( 2.0 ).div( float( j ).add( 2 ) ), this.distanceFallOff ) ) ) ); } ); } ); const sinHorizons = sqrt( sub( 1.0, cosHorizons.mul( cosHorizons ) ) ); const nx = dot( normalInSlice, sliceTangent ); const ny = dot( normalInSlice, viewDir ); const nxb = mul( 0.5, acos( cosHorizons.y ).sub( acos( cosHorizons.x ) ).add( sinHorizons.x.mul( cosHorizons.x ).sub( sinHorizons.y.mul( cosHorizons.y ) ) ) ); const nyb = mul( 0.5, sub( 2.0, cosHorizons.x.mul( cosHorizons.x ) ).sub( cosHorizons.y.mul( cosHorizons.y ) ) ); const occlusion = nx.mul( nxb ).add( ny.mul( nyb ) ); ao.addAssign( occlusion ); } ); ao.assign( clamp( ao.div( DIRECTIONS ), 0, 1 ) ); ao.assign( pow( ao, this.scale ) ); return vec4( vec3( ao ), 1.0 ); } ); const material = this._material || ( this._material = new NodeMaterial() ); material.fragmentNode = ao().context( builder.getSharedContext() ); material.name = 'GTAO'; material.needsUpdate = true; // return this._textureNode; } dispose() { this._aoRenderTarget.dispose(); } } function generateMagicSquareNoise( size = 5 ) { const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size ); const magicSquare = generateMagicSquare( noiseSize ); const noiseSquareSize = magicSquare.length; const data = new Uint8Array( noiseSquareSize * 4 ); for ( let inx = 0; inx < noiseSquareSize; ++ inx ) { const iAng = magicSquare[ inx ]; const angle = ( 2 * Math.PI * iAng ) / noiseSquareSize; const randomVec = new Vector3( Math.cos( angle ), Math.sin( angle ), 0 ).normalize(); data[ inx * 4 ] = ( randomVec.x * 0.5 + 0.5 ) * 255; data[ inx * 4 + 1 ] = ( randomVec.y * 0.5 + 0.5 ) * 255; data[ inx * 4 + 2 ] = 127; data[ inx * 4 + 3 ] = 255; } const noiseTexture = new DataTexture( data, noiseSize, noiseSize ); noiseTexture.wrapS = RepeatWrapping; noiseTexture.wrapT = RepeatWrapping; noiseTexture.needsUpdate = true; return noiseTexture; } function generateMagicSquare( size ) { const noiseSize = Math.floor( size ) % 2 === 0 ? Math.floor( size ) + 1 : Math.floor( size ); const noiseSquareSize = noiseSize * noiseSize; const magicSquare = Array( noiseSquareSize ).fill( 0 ); let i = Math.floor( noiseSize / 2 ); let j = noiseSize - 1; for ( let num = 1; num <= noiseSquareSize; ) { if ( i === -1 && j === noiseSize ) { j = noiseSize - 2; i = 0; } else { if ( j === noiseSize ) { j = 0; } if ( i < 0 ) { i = noiseSize - 1; } } if ( magicSquare[ i * noiseSize + j ] !== 0 ) { j -= 2; i ++; continue; } else { magicSquare[ i * noiseSize + j ] = num ++; } j ++; i --; } return magicSquare; } const ao = ( depthNode, normalNode, camera ) => nodeObject( new GTAONode( nodeObject( depthNode ), nodeObject( normalNode ), camera ) ); class DenoiseNode extends TempNode { static get type() { return 'DenoiseNode'; } constructor( textureNode, depthNode, normalNode, noiseNode, camera ) { super(); this.textureNode = textureNode; this.depthNode = depthNode; this.normalNode = normalNode; this.noiseNode = noiseNode; this.cameraProjectionMatrixInverse = uniform( camera.projectionMatrixInverse ); this.lumaPhi = uniform( 5 ); this.depthPhi = uniform( 5 ); this.normalPhi = uniform( 5 ); this.radius = uniform( 5 ); this.index = uniform( 0 ); this._resolution = uniform( new Vector2() ); this._sampleVectors = uniformArray( generatePdSamplePointInitializer( 16, 2, 1 ) ); this.updateBeforeType = NodeUpdateType.RENDER; } updateBefore() { const map = this.textureNode.value; this._resolution.value.set( map.image.width, map.image.height ); } setup() { const uvNode = uv(); const sampleTexture = ( uv ) => this.textureNode.uv( uv ); const sampleDepth = ( uv ) => this.depthNode.uv( uv ).x; const sampleNormal = ( uv ) => this.normalNode.uv( uv ); const sampleNoise = ( uv ) => this.noiseNode.uv( uv ); const getViewPosition = Fn( ( [ screenPosition, depth ] ) => { screenPosition = vec2( screenPosition.x, screenPosition.y.oneMinus() ).mul( 2.0 ).sub( 1.0 ); const clipSpacePosition = vec4( vec3( screenPosition, depth ), 1.0 ); const viewSpacePosition = vec4( this.cameraProjectionMatrixInverse.mul( clipSpacePosition ) ); return viewSpacePosition.xyz.div( viewSpacePosition.w ); } ); const denoiseSample = Fn( ( [ center, viewNormal, viewPosition, sampleUv ] ) => { const texel = sampleTexture( sampleUv ); const depth = sampleDepth( sampleUv ); const normal = sampleNormal( sampleUv ).rgb.normalize(); const neighborColor = texel.rgb; const viewPos = getViewPosition( sampleUv, depth ); const normalDiff = dot( viewNormal, normal ).toVar(); const normalSimilarity = pow( max$1( normalDiff, 0 ), this.normalPhi ).toVar(); const lumaDiff = abs( luminance( neighborColor ).sub( luminance( center ) ) ).toVar(); const lumaSimilarity = max$1( float( 1.0 ).sub( lumaDiff.div( this.lumaPhi ) ), 0 ).toVar(); const depthDiff = abs( dot( viewPosition.sub( viewPos ), viewNormal ) ).toVar(); const depthSimilarity = max$1( float( 1.0 ).sub( depthDiff.div( this.depthPhi ) ), 0 ); const w = lumaSimilarity.mul( depthSimilarity ).mul( normalSimilarity ); return vec4( neighborColor.mul( w ), w ); } ); const denoise = Fn( ( [ uvNode ] ) => { const depth = sampleDepth( uvNode ); const viewNormal = sampleNormal( uvNode ).rgb.normalize(); const texel = sampleTexture( uvNode ); If( depth.greaterThanEqual( 1.0 ).or( dot( viewNormal, viewNormal ).equal( 0.0 ) ), () => { return texel; } ); const center = vec3( texel.rgb ); const viewPosition = getViewPosition( uvNode, depth ); const noiseResolution = textureSize( this.noiseNode, 0 ); let noiseUv = vec2( uvNode.x, uvNode.y.oneMinus() ); noiseUv = noiseUv.mul( this._resolution.div( noiseResolution ) ); const noiseTexel = sampleNoise( noiseUv ); const x = sin( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ); const y = cos( noiseTexel.element( this.index.mod( 4 ).mul( 2 ).mul( PI ) ) ); const noiseVec = vec2( x, y ); const rotationMatrix = mat2( noiseVec.x, noiseVec.y.negate(), noiseVec.x, noiseVec.y ); const totalWeight = float( 1.0 ).toVar(); const denoised = vec3( texel.rgb ).toVar(); Loop( { start: int( 0 ), end: int( 16 ), type: 'int', condition: '<' }, ( { i } ) => { const sampleDir = this._sampleVectors.element( i ).toVar(); const offset = rotationMatrix.mul( sampleDir.xy.mul( float( 1.0 ).add( sampleDir.z.mul( this.radius.sub( 1 ) ) ) ) ).div( this._resolution ).toVar(); const sampleUv = uvNode.add( offset ).toVar(); const result = denoiseSample( center, viewNormal, viewPosition, sampleUv ); denoised.addAssign( result.xyz ); totalWeight.addAssign( result.w ); } ); If( totalWeight.greaterThan( float( 0 ) ), () => { denoised.divAssign( totalWeight ); } ); return vec4( denoised, texel.a ); } ).setLayout( { name: 'denoise', type: 'vec4', inputs: [ { name: 'uv', type: 'vec2' } ] } ); const output = Fn( () => { return denoise( uvNode ); } ); const outputNode = output(); return outputNode; } } function generatePdSamplePointInitializer( samples, rings, radiusExponent ) { const poissonDisk = generateDenoiseSamples( samples, rings, radiusExponent ); const array = []; for ( let i = 0; i < samples; i ++ ) { const sample = poissonDisk[ i ]; array.push( sample ); } return array; } function generateDenoiseSamples( numSamples, numRings, radiusExponent ) { const samples = []; for ( let i = 0; i < numSamples; i ++ ) { const angle = 2 * Math.PI * numRings * i / numSamples; const radius = Math.pow( i / ( numSamples - 1 ), radiusExponent ); samples.push( new Vector3( Math.cos( angle ), Math.sin( angle ), radius ) ); } return samples; } const denoise = ( node, depthNode, normalNode, noiseNode, camera ) => nodeObject( new DenoiseNode( convertToTexture( node ), nodeObject( depthNode ), nodeObject( normalNode ), nodeObject( noiseNode ), camera ) ); class FXAANode extends TempNode { static get type() { return 'FXAANode'; } constructor( textureNode ) { super(); this.textureNode = textureNode; this.updateBeforeType = NodeUpdateType.RENDER; this._invSize = uniform( new Vector2() ); } updateBefore() { const map = this.textureNode.value; this._invSize.value.set( 1 / map.image.width, 1 / map.image.height ); } setup() { const textureNode = this.textureNode.bias( -100 ); const uvNode = textureNode.uvNode || uv(); // FXAA 3.11 implementation by NVIDIA, ported to WebGL by Agost Biro (biro@archilogic.com) //---------------------------------------------------------------------------------- // File: es3-kepler\FXAA\assets\shaders/FXAA_DefaultES.frag // SDK Version: v3.00 // Email: gameworks@nvidia.com // Site: http://developer.nvidia.com/ // // Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of NVIDIA CORPORATION nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // //---------------------------------------------------------------------------------- const FxaaTexTop = ( p ) => textureNode.uv( p ); const FxaaTexOff = ( p, o, r ) => textureNode.uv( p.add( o.mul( r ) ) ); const NUM_SAMPLES = int( 5 ); const contrast = Fn( ( [ a_immutable, b_immutable ] ) => { // assumes colors have premultipliedAlpha, so that the calculated color contrast is scaled by alpha const b = vec4( b_immutable ).toVar(); const a = vec4( a_immutable ).toVar(); const diff = vec4( abs( a.sub( b ) ) ).toVar(); return max$1( max$1( max$1( diff.r, diff.g ), diff.b ), diff.a ); } ); // FXAA3 QUALITY - PC const FxaaPixelShader = Fn( ( [ uv, fxaaQualityRcpFrame, fxaaQualityEdgeThreshold, fxaaQualityinvEdgeThreshold ] ) => { const rgbaM = FxaaTexTop( uv ).toVar(); const rgbaS = FxaaTexOff( uv, vec2( 0.0, -1 ), fxaaQualityRcpFrame.xy ).toVar(); const rgbaE = FxaaTexOff( uv, vec2( 1.0, 0.0 ), fxaaQualityRcpFrame.xy ).toVar(); const rgbaN = FxaaTexOff( uv, vec2( 0.0, 1.0 ), fxaaQualityRcpFrame.xy ).toVar(); const rgbaW = FxaaTexOff( uv, vec2( -1, 0.0 ), fxaaQualityRcpFrame.xy ).toVar(); // . S . // W M E // . N . const contrastN = contrast( rgbaM, rgbaN ).toVar(); const contrastS = contrast( rgbaM, rgbaS ).toVar(); const contrastE = contrast( rgbaM, rgbaE ).toVar(); const contrastW = contrast( rgbaM, rgbaW ).toVar(); const maxValue = max$1( contrastN, max$1( contrastS, max$1( contrastE, contrastW ) ) ).toVar(); // . 0 . // 0 0 0 // . 0 . If( maxValue.lessThan( fxaaQualityEdgeThreshold ), () => { return rgbaM; // assuming define FXAA_DISCARD is always 0 } ); // const relativeVContrast = sub( contrastN.add( contrastS ), ( contrastE.add( contrastW ) ) ).toVar(); relativeVContrast.mulAssign( fxaaQualityinvEdgeThreshold ); // 45 deg edge detection and corners of objects, aka V/H contrast is too similar If( abs( relativeVContrast ).lessThan( 0.3 ), () => { // locate the edge const x = contrastE.greaterThan( contrastW ).select( 1, -1 ).toVar(); const y = contrastS.greaterThan( contrastN ).select( 1, -1 ).toVar(); const dirToEdge = vec2( x, y ).toVar(); // . 2 . . 1 . // 1 0 2 ~= 0 0 1 // . 1 . . 0 . // tap 2 pixels and see which ones are "outside" the edge, to // determine if the edge is vertical or horizontal const rgbaAlongH = FxaaTexOff( uv, vec2( dirToEdge.x, dirToEdge.y ), fxaaQualityRcpFrame.xy ); const matchAlongH = contrast( rgbaM, rgbaAlongH ).toVar(); // . 1 . // 0 0 1 // . 0 H const rgbaAlongV = FxaaTexOff( uv, vec2( dirToEdge.x.negate(), dirToEdge.y.negate() ), fxaaQualityRcpFrame.xy ); const matchAlongV = contrast( rgbaM, rgbaAlongV ).toVar(); // V 1 . // 0 0 1 // . 0 . relativeVContrast.assign( matchAlongV.sub( matchAlongH ) ); relativeVContrast.mulAssign( fxaaQualityinvEdgeThreshold ); If( abs( relativeVContrast ).lessThan( 0.3 ), () => { // 45 deg edge // 1 1 . // 0 0 1 // . 0 1 // do a simple blur const sum = rgbaN.add( rgbaS ).add( rgbaE ).add( rgbaW ); return mix( rgbaM, sum.mul( 0.25 ), 0.4 ); } ); } ); const offNP = vec2().toVar(); If( relativeVContrast.lessThanEqual( 0 ), () => { rgbaN.assign( rgbaW ); rgbaS.assign( rgbaE ); // . 0 . 1 // 1 0 1 -> 0 // . 0 . 1 offNP.x.assign( 0 ); offNP.y.assign( fxaaQualityRcpFrame.y ); } ).Else( () => { offNP.x.assign( fxaaQualityRcpFrame.x ); offNP.y.assign( 0 ); } ); const mn = contrast( rgbaM, rgbaN ).toVar(); const ms = contrast( rgbaM, rgbaS ).toVar(); If( mn.lessThanEqual( ms ), () => { rgbaN.assign( rgbaS ); } ); const doneN = int( 0 ).toVar(); const doneP = int( 0 ).toVar(); const nDist = float( 0 ).toVar(); const pDist = float( 0 ).toVar(); const posN = vec2( uv ).toVar(); const posP = vec2( uv ).toVar(); const iterationsUsedN = int( 0 ).toVar(); const iterationsUsedP = int( 0 ).toVar(); Loop( NUM_SAMPLES, ( { i } ) => { const increment = i.add( 1 ).toVar(); If( doneN.equal( 0 ), () => { nDist.addAssign( increment ); posN.assign( uv.add( offNP.mul( nDist ) ) ); const rgbaEndN = FxaaTexTop( posN.xy ); const nm = contrast( rgbaEndN, rgbaM ).toVar(); const nn = contrast( rgbaEndN, rgbaN ).toVar(); If( nm.greaterThan( nn ), () => { doneN.assign( 1 ); } ); iterationsUsedN.assign( i ); } ); If( doneP.equal( 0 ), () => { pDist.addAssign( increment ); posP.assign( uv.sub( offNP.mul( pDist ) ) ); const rgbaEndP = FxaaTexTop( posP.xy ); const pm = contrast( rgbaEndP, rgbaM ).toVar(); const pn = contrast( rgbaEndP, rgbaN ).toVar(); If( pm.greaterThan( pn ), () => { doneP.assign( 1 ); } ); iterationsUsedP.assign( i ); } ); If( doneN.equal( 1 ).or( doneP.equal( 1 ) ), () => { Break(); } ); } ); If( doneN.equal( 0 ).and( doneP.equal( 0 ) ), () => { return rgbaM; // failed to find end of edge } ); const distN = float( 1 ).toVar(); const distP = float( 1 ).toVar(); If( doneN.equal( 1 ), () => { distN.assign( float( iterationsUsedN ).div( float( NUM_SAMPLES.sub( 1 ) ) ) ); } ); If( doneP.equal( 1 ), () => { distP.assign( float( iterationsUsedP ).div( float( NUM_SAMPLES.sub( 1 ) ) ) ); } ); const dist = min$1( distN, distP ); // hacky way of reduces blurriness of mostly diagonal edges // but reduces AA quality dist.assign( pow( dist, 0.5 ) ); dist.assign( float( 1 ).sub( dist ) ); return mix( rgbaM, rgbaN, dist.mul( 0.5 ) ); } ).setLayout( { name: 'FxaaPixelShader', type: 'vec4', inputs: [ { name: 'uv', type: 'vec2' }, { name: 'fxaaQualityRcpFrame', type: 'vec2' }, { name: 'fxaaQualityEdgeThreshold', type: 'float' }, { name: 'fxaaQualityinvEdgeThreshold', type: 'float' }, ] } ); const fxaa = Fn( () => { const edgeDetectionQuality = float( 0.2 ); const invEdgeDetectionQuality = float( 1 ).div( edgeDetectionQuality ); return FxaaPixelShader( uvNode, this._invSize, edgeDetectionQuality, invEdgeDetectionQuality ); } ); const outputNode = fxaa(); return outputNode; } } const fxaa = ( node ) => nodeObject( new FXAANode( convertToTexture( node ) ) ); const _quadMesh$2 = /*@__PURE__*/ new QuadMesh(); const _clearColor = /*@__PURE__*/ new Color( 0, 0, 0 ); const _currentClearColor = /*@__PURE__*/ new Color(); const _size$3 = /*@__PURE__*/ new Vector2(); const _BlurDirectionX = /*@__PURE__*/ new Vector2( 1.0, 0.0 ); const _BlurDirectionY = /*@__PURE__*/ new Vector2( 0.0, 1.0 ); class BloomNode extends TempNode { static get type() { return 'BloomNode'; } constructor( inputNode, strength = 1, radius = 0, threshold = 0 ) { super(); this.inputNode = inputNode; this.strength = uniform( strength ); this.radius = uniform( radius ); this.threshold = uniform( threshold ); this.smoothWidth = uniform( 0.01 ); // this._renderTargetsHorizontal = []; this._renderTargetsVertical = []; this._nMips = 5; // render targets this._renderTargetBright = new RenderTarget( 1, 1, { type: HalfFloatType } ); this._renderTargetBright.texture.name = 'UnrealBloomPass.bright'; this._renderTargetBright.texture.generateMipmaps = false; for ( let i = 0; i < this._nMips; i ++ ) { const renderTargetHorizontal = new RenderTarget( 1, 1, { type: HalfFloatType } ); renderTargetHorizontal.texture.name = 'UnrealBloomPass.h' + i; renderTargetHorizontal.texture.generateMipmaps = false; this._renderTargetsHorizontal.push( renderTargetHorizontal ); const renderTargetVertical = new RenderTarget( 1, 1, { type: HalfFloatType } ); renderTargetVertical.texture.name = 'UnrealBloomPass.v' + i; renderTargetVertical.texture.generateMipmaps = false; this._renderTargetsVertical.push( renderTargetVertical ); } // materials this._compositeMaterial = null; this._highPassFilterMaterial = null; this._separableBlurMaterials = []; // pass and texture nodes this._textureNodeBright = texture( this._renderTargetBright.texture ); this._textureNodeBlur0 = texture( this._renderTargetsVertical[ 0 ].texture ); this._textureNodeBlur1 = texture( this._renderTargetsVertical[ 1 ].texture ); this._textureNodeBlur2 = texture( this._renderTargetsVertical[ 2 ].texture ); this._textureNodeBlur3 = texture( this._renderTargetsVertical[ 3 ].texture ); this._textureNodeBlur4 = texture( this._renderTargetsVertical[ 4 ].texture ); this._textureOutput = passTexture( this, this._renderTargetsHorizontal[ 0 ].texture ); this.updateBeforeType = NodeUpdateType.FRAME; } getTextureNode() { return this._textureOutput; } setSize( width, height ) { let resx = Math.round( width / 2 ); let resy = Math.round( height / 2 ); this._renderTargetBright.setSize( resx, resy ); for ( let i = 0; i < this._nMips; i ++ ) { this._renderTargetsHorizontal[ i ].setSize( resx, resy ); this._renderTargetsVertical[ i ].setSize( resx, resy ); this._separableBlurMaterials[ i ].invSize.value.set( 1 / resx, 1 / resy ); resx = Math.round( resx / 2 ); resy = Math.round( resy / 2 ); } } updateBefore( frame ) { const { renderer } = frame; const size = renderer.getDrawingBufferSize( _size$3 ); this.setSize( size.width, size.height ); const currentRenderTarget = renderer.getRenderTarget(); const currentMRT = renderer.getMRT(); renderer.getClearColor( _currentClearColor ); const currentClearAlpha = renderer.getClearAlpha(); this.setSize( size.width, size.height ); renderer.setMRT( null ); renderer.setClearColor( _clearColor, 0 ); // 1. Extract Bright Areas renderer.setRenderTarget( this._renderTargetBright ); _quadMesh$2.material = this._highPassFilterMaterial; _quadMesh$2.render( renderer ); // 2. Blur All the mips progressively let inputRenderTarget = this._renderTargetBright; for ( let i = 0; i < this._nMips; i ++ ) { _quadMesh$2.material = this._separableBlurMaterials[ i ]; this._separableBlurMaterials[ i ].colorTexture.value = inputRenderTarget.texture; this._separableBlurMaterials[ i ].direction.value = _BlurDirectionX; renderer.setRenderTarget( this._renderTargetsHorizontal[ i ] ); renderer.clear(); _quadMesh$2.render( renderer ); this._separableBlurMaterials[ i ].colorTexture.value = this._renderTargetsHorizontal[ i ].texture; this._separableBlurMaterials[ i ].direction.value = _BlurDirectionY; renderer.setRenderTarget( this._renderTargetsVertical[ i ] ); renderer.clear(); _quadMesh$2.render( renderer ); inputRenderTarget = this._renderTargetsVertical[ i ]; } // 3. Composite All the mips renderer.setRenderTarget( this._renderTargetsHorizontal[ 0 ] ); renderer.clear(); _quadMesh$2.material = this._compositeMaterial; _quadMesh$2.render( renderer ); // restore renderer.setRenderTarget( currentRenderTarget ); renderer.setMRT( currentMRT ); renderer.setClearColor( _currentClearColor, currentClearAlpha ); } setup( builder ) { // luminosity high pass material const luminosityHighPass = Fn( () => { const texel = this.inputNode; const v = luminance( texel.rgb ); const alpha = smoothstep( this.threshold, this.threshold.add( this.smoothWidth ), v ); return mix( vec4( 0 ), texel, alpha ); } ); this._highPassFilterMaterial = this._highPassFilterMaterial || new NodeMaterial(); this._highPassFilterMaterial.fragmentNode = luminosityHighPass().context( builder.getSharedContext() ); this._highPassFilterMaterial.name = 'Bloom_highPass'; this._highPassFilterMaterial.needsUpdate = true; // gaussian blur materials const kernelSizeArray = [ 3, 5, 7, 9, 11 ]; for ( let i = 0; i < this._nMips; i ++ ) { this._separableBlurMaterials.push( this._getSeperableBlurMaterial( builder, kernelSizeArray[ i ] ) ); } // composite material const bloomFactors = uniformArray( [ 1.0, 0.8, 0.6, 0.4, 0.2 ] ); const bloomTintColors = uniformArray( [ new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ), new Vector3( 1, 1, 1 ) ] ); const lerpBloomFactor = Fn( ( [ factor, radius ] ) => { const mirrorFactor = float( 1.2 ).sub( factor ); return mix( factor, mirrorFactor, radius ); } ).setLayout( { name: 'lerpBloomFactor', type: 'float', inputs: [ { name: 'factor', type: 'float' }, { name: 'radius', type: 'float' }, ] } ); const compositePass = Fn( () => { const color0 = lerpBloomFactor( bloomFactors.element( 0 ), this.radius ).mul( vec4( bloomTintColors.element( 0 ), 1.0 ) ).mul( this._textureNodeBlur0 ); const color1 = lerpBloomFactor( bloomFactors.element( 1 ), this.radius ).mul( vec4( bloomTintColors.element( 1 ), 1.0 ) ).mul( this._textureNodeBlur1 ); const color2 = lerpBloomFactor( bloomFactors.element( 2 ), this.radius ).mul( vec4( bloomTintColors.element( 2 ), 1.0 ) ).mul( this._textureNodeBlur2 ); const color3 = lerpBloomFactor( bloomFactors.element( 3 ), this.radius ).mul( vec4( bloomTintColors.element( 3 ), 1.0 ) ).mul( this._textureNodeBlur3 ); const color4 = lerpBloomFactor( bloomFactors.element( 4 ), this.radius ).mul( vec4( bloomTintColors.element( 4 ), 1.0 ) ).mul( this._textureNodeBlur4 ); const sum = color0.add( color1 ).add( color2 ).add( color3 ).add( color4 ); return sum.mul( this.strength ); } ); this._compositeMaterial = this._compositeMaterial || new NodeMaterial(); this._compositeMaterial.fragmentNode = compositePass().context( builder.getSharedContext() ); this._compositeMaterial.name = 'Bloom_comp'; this._compositeMaterial.needsUpdate = true; // return this._textureOutput; } dispose() { for ( let i = 0; i < this._renderTargetsHorizontal.length; i ++ ) { this._renderTargetsHorizontal[ i ].dispose(); } for ( let i = 0; i < this._renderTargetsVertical.length; i ++ ) { this._renderTargetsVertical[ i ].dispose(); } this._renderTargetBright.dispose(); } _getSeperableBlurMaterial( builder, kernelRadius ) { const coefficients = []; for ( let i = 0; i < kernelRadius; i ++ ) { coefficients.push( 0.39894 * Math.exp( -0.5 * i * i / ( kernelRadius * kernelRadius ) ) / kernelRadius ); } // const colorTexture = texture(); const gaussianCoefficients = uniformArray( coefficients ); const invSize = uniform( new Vector2() ); const direction = uniform( new Vector2( 0.5, 0.5 ) ); const uvNode = uv(); const sampleTexel = ( uv ) => colorTexture.uv( uv ); const seperableBlurPass = Fn( () => { const weightSum = gaussianCoefficients.element( 0 ).toVar(); const diffuseSum = sampleTexel( uvNode ).rgb.mul( weightSum ).toVar(); Loop( { start: int( 1 ), end: int( kernelRadius ), type: 'int', condition: '<' }, ( { i } ) => { const x = float( i ); const w = gaussianCoefficients.element( i ); const uvOffset = direction.mul( invSize ).mul( x ); const sample1 = sampleTexel( uvNode.add( uvOffset ) ).rgb; const sample2 = sampleTexel( uvNode.sub( uvOffset ) ).rgb; diffuseSum.addAssign( add( sample1, sample2 ).mul( w ) ); weightSum.addAssign( float( 2.0 ).mul( w ) ); } ); return vec4( diffuseSum.div( weightSum ), 1.0 ); } ); const seperableBlurMaterial = new NodeMaterial(); seperableBlurMaterial.fragmentNode = seperableBlurPass().context( builder.getSharedContext() ); seperableBlurMaterial.name = 'Bloom_seperable'; seperableBlurMaterial.needsUpdate = true; // uniforms seperableBlurMaterial.colorTexture = colorTexture; seperableBlurMaterial.direction = direction; seperableBlurMaterial.invSize = invSize; return seperableBlurMaterial; } } const bloom = ( node, strength, radius, threshold ) => nodeObject( new BloomNode( nodeObject( node ), strength, radius, threshold ) ); class TransitionNode extends TempNode { static get type() { return 'TransitionNode'; } constructor( textureNodeA, textureNodeB, mixTextureNode, mixRatioNode, thresholdNode, useTextureNode ) { super(); // Input textures this.textureNodeA = textureNodeA; this.textureNodeB = textureNodeB; this.mixTextureNode = mixTextureNode; // Uniforms this.mixRatioNode = mixRatioNode; this.thresholdNode = thresholdNode; this.useTextureNode = useTextureNode; } setup() { const { textureNodeA, textureNodeB, mixTextureNode, mixRatioNode, thresholdNode, useTextureNode } = this; const sampleTexture = ( textureNode ) => { const uvNodeTexture = textureNode.uvNode || uv(); return textureNode.uv( uvNodeTexture ); }; const transition = Fn( () => { const texelOne = sampleTexture( textureNodeA ); const texelTwo = sampleTexture( textureNodeB ); const color = vec4().toVar(); If( useTextureNode.equal( int( 1 ) ), () => { const transitionTexel = sampleTexture( mixTextureNode ); const r = mixRatioNode.mul( thresholdNode.mul( 2.0 ).add( 1.0 ) ).sub( thresholdNode ); const mixf = clamp( sub( transitionTexel.r, r ).mul( float( 1.0 ).div( thresholdNode ) ), 0.0, 1.0 ); color.assign( mix( texelOne, texelTwo, mixf ) ); } ).Else( () => { color.assign( mix( texelTwo, texelOne, mixRatioNode ) ); } ); return color; } ); const outputNode = transition(); return outputNode; } } const transition = ( nodeA, nodeB, mixTexture, mixRatio = 0.0, threshold = 0.1, useTexture = 0 ) => nodeObject( new TransitionNode( convertToTexture( nodeA ), convertToTexture( nodeB ), convertToTexture( mixTexture ), nodeObject( mixRatio ), nodeObject( threshold ), nodeObject( useTexture ) ) ); class PixelationNode extends TempNode { static get type() { return 'PixelationNode'; } constructor( textureNode, depthNode, normalNode, pixelSize, normalEdgeStrength, depthEdgeStrength ) { super(); // Input textures this.textureNode = textureNode; this.depthNode = depthNode; this.normalNode = normalNode; // Input uniforms this.pixelSize = pixelSize; this.normalEdgeStrength = normalEdgeStrength; this.depthEdgeStrength = depthEdgeStrength; // Private uniforms this._resolution = uniform( new Vector4() ); this.updateBeforeType = NodeUpdateType.RENDER; } updateBefore() { const map = this.textureNode.value; const width = map.image.width; const height = map.image.height; this._resolution.value.set( width, height, 1 / width, 1 / height ); } setup() { const { textureNode, depthNode, normalNode } = this; const uvNodeTexture = textureNode.uvNode || uv(); const uvNodeDepth = depthNode.uvNode || uv(); const uvNodeNormal = normalNode.uvNode || uv(); const sampleTexture = () => textureNode.uv( uvNodeTexture ); const sampleDepth = ( x, y ) => depthNode.uv( uvNodeDepth.add( vec2( x, y ).mul( this._resolution.zw ) ) ).r; const sampleNormal = ( x, y ) => normalNode.uv( uvNodeNormal.add( vec2( x, y ).mul( this._resolution.zw ) ) ).rgb.normalize(); const depthEdgeIndicator = ( depth ) => { const diff = property( 'float', 'diff' ); diff.addAssign( clamp( sampleDepth( 1, 0 ).sub( depth ) ) ); diff.addAssign( clamp( sampleDepth( -1, 0 ).sub( depth ) ) ); diff.addAssign( clamp( sampleDepth( 0, 1 ).sub( depth ) ) ); diff.addAssign( clamp( sampleDepth( 0, -1 ).sub( depth ) ) ); return floor( smoothstep( 0.01, 0.02, diff ).mul( 2 ) ).div( 2 ); }; const neighborNormalEdgeIndicator = ( x, y, depth, normal ) => { const depthDiff = sampleDepth( x, y ).sub( depth ); const neighborNormal = sampleNormal( x, y ); // Edge pixels should yield to faces who's normals are closer to the bias normal. const normalEdgeBias = vec3( 1, 1, 1 ); // This should probably be a parameter. const normalDiff = dot( normal.sub( neighborNormal ), normalEdgeBias ); const normalIndicator = clamp( smoothstep( -0.01, 0.01, normalDiff ), 0.0, 1.0 ); // Only the shallower pixel should detect the normal edge. const depthIndicator = clamp( sign( depthDiff.mul( .25 ).add( .0025 ) ), 0.0, 1.0 ); return float( 1.0 ).sub( dot( normal, neighborNormal ) ).mul( depthIndicator ).mul( normalIndicator ); }; const normalEdgeIndicator = ( depth, normal ) => { const indicator = property( 'float', 'indicator' ); indicator.addAssign( neighborNormalEdgeIndicator( 0, -1, depth, normal ) ); indicator.addAssign( neighborNormalEdgeIndicator( 0, 1, depth, normal ) ); indicator.addAssign( neighborNormalEdgeIndicator( -1, 0, depth, normal ) ); indicator.addAssign( neighborNormalEdgeIndicator( 1, 0, depth, normal ) ); return step( 0.1, indicator ); }; const pixelation = Fn( () => { const texel = sampleTexture(); const depth = property( 'float', 'depth' ); const normal = property( 'vec3', 'normal' ); If( this.depthEdgeStrength.greaterThan( 0.0 ).or( this.normalEdgeStrength.greaterThan( 0.0 ) ), () => { depth.assign( sampleDepth( 0, 0 ) ); normal.assign( sampleNormal( 0, 0 ) ); } ); const dei = property( 'float', 'dei' ); If( this.depthEdgeStrength.greaterThan( 0.0 ), () => { dei.assign( depthEdgeIndicator( depth ) ); } ); const nei = property( 'float', 'nei' ); If( this.normalEdgeStrength.greaterThan( 0.0 ), () => { nei.assign( normalEdgeIndicator( depth, normal ) ); } ); const strength = dei.greaterThan( 0 ).select( float( 1.0 ).sub( dei.mul( this.depthEdgeStrength ) ), nei.mul( this.normalEdgeStrength ).add( 1 ) ); return texel.mul( strength ); } ); const outputNode = pixelation(); return outputNode; } } const pixelation = ( node, depthNode, normalNode, pixelSize = 6, normalEdgeStrength = 0.3, depthEdgeStrength = 0.4 ) => nodeObject( new PixelationNode( convertToTexture( node ), convertToTexture( depthNode ), convertToTexture( normalNode ), nodeObject( pixelSize ), nodeObject( normalEdgeStrength ), nodeObject( depthEdgeStrength ) ) ); class PixelationPassNode extends PassNode { static get type() { return 'PixelationPassNode'; } constructor( scene, camera, pixelSize = 6, normalEdgeStrength = 0.3, depthEdgeStrength = 0.4 ) { super( 'color', scene, camera, { minFilter: NearestFilter, magFilter: NearestFilter } ); this.pixelSize = pixelSize; this.normalEdgeStrength = normalEdgeStrength; this.depthEdgeStrength = depthEdgeStrength; this.isPixelationPassNode = true; this._mrt = mrt( { output: output, normal: normalView } ); } setSize( width, height ) { const pixelSize = this.pixelSize.value ? this.pixelSize.value : this.pixelSize; const adjustedWidth = Math.floor( width / pixelSize ); const adjustedHeight = Math.floor( height / pixelSize ); super.setSize( adjustedWidth, adjustedHeight ); } setup() { const color = super.getTextureNode( 'output' ); const depth = super.getTextureNode( 'depth' ); const normal = super.getTextureNode( 'normal' ); return pixelation( color, depth, normal, this.pixelSize, this.normalEdgeStrength, this.depthEdgeStrength ); } } const pixelationPass = ( scene, camera, pixelSize, normalEdgeStrength, depthEdgeStrength ) => nodeObject( new PixelationPassNode( scene, camera, pixelSize, normalEdgeStrength, depthEdgeStrength ) ); const _size$2 = /*@__PURE__*/ new Vector2(); /** * * Supersample Anti-Aliasing Render Pass * * This manual approach to SSAA re-renders the scene ones for each sample with camera jitter and accumulates the results. * * References: https://en.wikipedia.org/wiki/Supersampling * */ class SSAAPassNode extends PassNode { static get type() { return 'SSAAPassNode'; } constructor( scene, camera ) { super( PassNode.COLOR, scene, camera ); this.isSSAAPassNode = true; this.sampleLevel = 4; // specified as n, where the number of samples is 2^n, so sampleLevel = 4, is 2^4 samples, 16. this.unbiased = true; this.clearColor = new Color( 0x000000 ); this.clearAlpha = 0; this._currentClearColor = new Color(); this.sampleWeight = uniform( 1 ); this.sampleRenderTarget = null; this._quadMesh = new QuadMesh(); } updateBefore( frame ) { const { renderer } = frame; const { scene, camera } = this; this._pixelRatio = renderer.getPixelRatio(); const size = renderer.getSize( _size$2 ); this.setSize( size.width, size.height ); this.sampleRenderTarget.setSize( this.renderTarget.width, this.renderTarget.height ); // save current renderer settings renderer.getClearColor( this._currentClearColor ); const currentClearAlpha = renderer.getClearAlpha(); const currentRenderTarget = renderer.getRenderTarget(); const currentMRT = renderer.getMRT(); const currentAutoClear = renderer.autoClear; // this._cameraNear.value = camera.near; this._cameraFar.value = camera.far; renderer.setMRT( this.getMRT() ); renderer.autoClear = false; const jitterOffsets = _JitterVectors[ Math.max( 0, Math.min( this.sampleLevel, 5 ) ) ]; const baseSampleWeight = 1.0 / jitterOffsets.length; const roundingRange = 1 / 32; const viewOffset = { fullWidth: this.renderTarget.width, fullHeight: this.renderTarget.height, offsetX: 0, offsetY: 0, width: this.renderTarget.width, height: this.renderTarget.height }; const originalViewOffset = Object.assign( {}, camera.view ); if ( originalViewOffset.enabled ) Object.assign( viewOffset, originalViewOffset ); // render the scene multiple times, each slightly jitter offset from the last and accumulate the results. for ( let i = 0; i < jitterOffsets.length; i ++ ) { const jitterOffset = jitterOffsets[ i ]; if ( camera.setViewOffset ) { camera.setViewOffset( viewOffset.fullWidth, viewOffset.fullHeight, viewOffset.offsetX + jitterOffset[ 0 ] * 0.0625, viewOffset.offsetY + jitterOffset[ 1 ] * 0.0625, // 0.0625 = 1 / 16 viewOffset.width, viewOffset.height ); } this.sampleWeight.value = baseSampleWeight; if ( this.unbiased ) { // the theory is that equal weights for each sample lead to an accumulation of rounding errors. // The following equation varies the sampleWeight per sample so that it is uniformly distributed // across a range of values whose rounding errors cancel each other out. const uniformCenteredDistribution = ( -0.5 + ( i + 0.5 ) / jitterOffsets.length ); this.sampleWeight.value += roundingRange * uniformCenteredDistribution; } renderer.setClearColor( this.clearColor, this.clearAlpha ); renderer.setRenderTarget( this.sampleRenderTarget ); renderer.clear(); renderer.render( scene, camera ); // accumulation renderer.setRenderTarget( this.renderTarget ); if ( i === 0 ) { renderer.setClearColor( 0x000000, 0.0 ); renderer.clear(); } this._quadMesh.render( renderer ); } renderer.copyTextureToTexture( this.sampleRenderTarget.depthTexture, this.renderTarget.depthTexture ); // restore if ( camera.setViewOffset && originalViewOffset.enabled ) { camera.setViewOffset( originalViewOffset.fullWidth, originalViewOffset.fullHeight, originalViewOffset.offsetX, originalViewOffset.offsetY, originalViewOffset.width, originalViewOffset.height ); } else if ( camera.clearViewOffset ) { camera.clearViewOffset(); } renderer.setRenderTarget( currentRenderTarget ); renderer.setMRT( currentMRT ); renderer.autoClear = currentAutoClear; renderer.setClearColor( this._currentClearColor, currentClearAlpha ); } setup( builder ) { if ( this.sampleRenderTarget === null ) { this.sampleRenderTarget = this.renderTarget.clone(); } let sampleTexture; const passMRT = this.getMRT(); if ( passMRT !== null ) { const outputs = {}; for ( const name in passMRT.outputNodes ) { const index = getTextureIndex( this.sampleRenderTarget.textures, name ); if ( index >= 0 ) { outputs[ name ] = texture( this.sampleRenderTarget.textures[ index ] ).mul( this.sampleWeight ); } } sampleTexture = mrt( outputs ); } else { sampleTexture = texture( this.sampleRenderTarget.texture ).mul( this.sampleWeight ); } this._quadMesh.material = new NodeMaterial(); this._quadMesh.material.fragmentNode = sampleTexture; this._quadMesh.material.transparent = true; this._quadMesh.material.depthTest = false; this._quadMesh.material.depthWrite = false; this._quadMesh.material.premultipliedAlpha = true; this._quadMesh.material.blending = AdditiveBlending; this._quadMesh.material.normals = false; this._quadMesh.material.name = 'SSAA'; return super.setup( builder ); } dispose() { super.dispose(); if ( this.sampleRenderTarget !== null ) { this.sampleRenderTarget.dispose(); } } } // These jitter vectors are specified in integers because it is easier. // I am assuming a [-8,8) integer grid, but it needs to be mapped onto [-0.5,0.5) // before being used, thus these integers need to be scaled by 1/16. // // Sample patterns reference: https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396 const _JitterVectors = [ [ [ 0, 0 ] ], [ [ 4, 4 ], [ -4, -4 ] ], [ [ -2, -6 ], [ 6, -2 ], [ -6, 2 ], [ 2, 6 ] ], [ [ 1, -3 ], [ -1, 3 ], [ 5, 1 ], [ -3, -5 ], [ -5, 5 ], [ -7, -1 ], [ 3, 7 ], [ 7, -7 ] ], [ [ 1, 1 ], [ -1, -3 ], [ -3, 2 ], [ 4, -1 ], [ -5, -2 ], [ 2, 5 ], [ 5, 3 ], [ 3, -5 ], [ -2, 6 ], [ 0, -7 ], [ -4, -6 ], [ -6, 4 ], [ -8, 0 ], [ 7, -4 ], [ 6, 7 ], [ -7, -8 ] ], [ [ -4, -7 ], [ -7, -5 ], [ -3, -5 ], [ -5, -4 ], [ -1, -4 ], [ -2, -2 ], [ -6, -1 ], [ -4, 0 ], [ -7, 1 ], [ -1, 2 ], [ -6, 3 ], [ -3, 3 ], [ -7, 6 ], [ -3, 6 ], [ -5, 7 ], [ -1, 7 ], [ 5, -7 ], [ 1, -6 ], [ 6, -5 ], [ 4, -4 ], [ 2, -3 ], [ 7, -2 ], [ 1, -1 ], [ 4, -1 ], [ 2, 1 ], [ 6, 2 ], [ 0, 4 ], [ 4, 4 ], [ 2, 5 ], [ 7, 5 ], [ 5, 6 ], [ 3, 7 ] ] ]; const ssaaPass = ( scene, camera ) => nodeObject( new SSAAPassNode( scene, camera ) ); const _size$1 = /*@__PURE__*/ new Vector2(); class StereoPassNode extends PassNode { static get type() { return 'StereoPassNode'; } constructor( scene, camera ) { super( PassNode.COLOR, scene, camera ); this.isStereoPassNode = true; this.stereo = new StereoCamera(); this.stereo.aspect = 0.5; } updateBefore( frame ) { const { renderer } = frame; const { scene, camera, stereo, renderTarget } = this; this._pixelRatio = renderer.getPixelRatio(); stereo.cameraL.coordinateSystem = renderer.coordinateSystem; stereo.cameraR.coordinateSystem = renderer.coordinateSystem; stereo.update( camera ); const size = renderer.getSize( _size$1 ); this.setSize( size.width, size.height ); const currentAutoClear = renderer.autoClear; renderer.autoClear = false; const currentRenderTarget = renderer.getRenderTarget(); const currentMRT = renderer.getMRT(); this._cameraNear.value = camera.near; this._cameraFar.value = camera.far; for ( const name in this._previousTextures ) { this.toggleTexture( name ); } renderer.setRenderTarget( renderTarget ); renderer.setMRT( this._mrt ); renderer.clear(); renderTarget.scissorTest = true; renderTarget.scissor.set( 0, 0, renderTarget.width / 2, renderTarget.height ); renderTarget.viewport.set( 0, 0, renderTarget.width / 2, renderTarget.height ); renderer.render( scene, stereo.cameraL ); renderTarget.scissor.set( renderTarget.width / 2, 0, renderTarget.width / 2, renderTarget.height ); renderTarget.viewport.set( renderTarget.width / 2, 0, renderTarget.width / 2, renderTarget.height ); renderer.render( scene, stereo.cameraR ); renderTarget.scissorTest = false; renderer.setRenderTarget( currentRenderTarget ); renderer.setMRT( currentMRT ); renderer.autoClear = currentAutoClear; } } const stereoPass = ( scene, camera ) => nodeObject( new StereoPassNode( scene, camera ) ); const _size = /*@__PURE__*/ new Vector2(); const _quadMesh$1 = /*@__PURE__*/ new QuadMesh(); class StereoCompositePassNode extends PassNode { static get type() { return 'StereoCompositePassNode'; } constructor( scene, camera ) { super( PassNode.COLOR, scene, camera ); this.isStereoCompositePassNode = true; this.stereo = new StereoCamera(); const _params = { minFilter: LinearFilter, magFilter: NearestFilter, type: HalfFloatType }; this._renderTargetL = new RenderTarget( 1, 1, _params ); this._renderTargetR = new RenderTarget( 1, 1, _params ); this._mapLeft = texture( this._renderTargetL.texture ); this._mapRight = texture( this._renderTargetR.texture ); this._material = null; } updateStereoCamera( coordinateSystem ) { this.stereo.cameraL.coordinateSystem = coordinateSystem; this.stereo.cameraR.coordinateSystem = coordinateSystem; this.stereo.update( this.camera ); } setSize( width, height ) { super.setSize( width, height ); this._renderTargetL.setSize( this.renderTarget.width, this.renderTarget.height ); this._renderTargetR.setSize( this.renderTarget.width, this.renderTarget.height ); } updateBefore( frame ) { const { renderer } = frame; const { scene, stereo, renderTarget } = this; this._pixelRatio = renderer.getPixelRatio(); this.updateStereoCamera( renderer.coordinateSystem ); const size = renderer.getSize( _size ); this.setSize( size.width, size.height ); const currentRenderTarget = renderer.getRenderTarget(); // left renderer.setRenderTarget( this._renderTargetL ); renderer.render( scene, stereo.cameraL ); // right renderer.setRenderTarget( this._renderTargetR ); renderer.render( scene, stereo.cameraR ); // composite renderer.setRenderTarget( renderTarget ); _quadMesh$1.material = this._material; _quadMesh$1.render( renderer ); // restore renderer.setRenderTarget( currentRenderTarget ); } dispose() { super.dispose(); this._renderTargetL.dispose(); this._renderTargetR.dispose(); if ( this._material !== null ) { this._material.dispose(); } } } class AnaglyphPassNode extends StereoCompositePassNode { static get type() { return 'AnaglyphPassNode'; } constructor( scene, camera ) { super( scene, camera ); this.isAnaglyphPassNode = true; // Dubois matrices from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.6968&rep=rep1&type=pdf#page=4 this._colorMatrixLeft = uniform( new Matrix3().fromArray( [ 0.456100, -0.0400822, -0.0152161, 0.500484, -0.0378246, -0.0205971, 0.176381, -0.0157589, -546856e-8 ] ) ); this._colorMatrixRight = uniform( new Matrix3().fromArray( [ -0.0434706, 0.378476, -0.0721527, -0.0879388, 0.73364, -0.112961, -155529e-8, -0.0184503, 1.2264 ] ) ); } setup( builder ) { const uvNode = uv(); const anaglyph = Fn( () => { const colorL = this._mapLeft.uv( uvNode ); const colorR = this._mapRight.uv( uvNode ); const color = clamp( this._colorMatrixLeft.mul( colorL.rgb ).add( this._colorMatrixRight.mul( colorR.rgb ) ) ); return vec4( color.rgb, max$1( colorL.a, colorR.a ) ); } ); const material = this._material || ( this._material = new NodeMaterial() ); material.fragmentNode = anaglyph().context( builder.getSharedContext() ); material.name = 'Anaglyph'; material.needsUpdate = true; return super.setup( builder ); } } const anaglyphPass = ( scene, camera ) => nodeObject( new AnaglyphPassNode( scene, camera ) ); class ParallaxBarrierPassNode extends StereoCompositePassNode { static get type() { return 'ParallaxBarrierPassNode'; } constructor( scene, camera ) { super( scene, camera ); this.isParallaxBarrierPassNode = true; } setup( builder ) { const uvNode = uv(); const parallaxBarrier = Fn( () => { const color = vec4().toVar(); If( mod( screenCoordinate.y, 2 ).greaterThan( 1 ), () => { color.assign( this._mapLeft.uv( uvNode ) ); } ).Else( () => { color.assign( this._mapRight.uv( uvNode ) ); } ); return color; } ); const material = this._material || ( this._material = new NodeMaterial() ); material.fragmentNode = parallaxBarrier().context( builder.getSharedContext() ); material.needsUpdate = true; return super.setup( builder ); } } const parallaxBarrierPass = ( scene, camera ) => nodeObject( new ParallaxBarrierPassNode( scene, camera ) ); class ToonOutlinePassNode extends PassNode { static get type() { return 'ToonOutlinePassNode'; } constructor( scene, camera, colorNode, thicknessNode, alphaNode ) { super( PassNode.COLOR, scene, camera ); this.colorNode = colorNode; this.thicknessNode = thicknessNode; this.alphaNode = alphaNode; this._materialCache = new WeakMap(); } updateBefore( frame ) { const { renderer } = frame; const currentRenderObjectFunction = renderer.getRenderObjectFunction(); renderer.setRenderObjectFunction( ( object, scene, camera, geometry, material, group, lightsNode ) => { // only render outline for supported materials if ( material.isMeshToonMaterial || material.isMeshToonNodeMaterial ) { if ( material.wireframe === false ) { const outlineMaterial = this._getOutlineMaterial( material ); renderer.renderObject( object, scene, camera, geometry, outlineMaterial, group, lightsNode ); } } // default renderer.renderObject( object, scene, camera, geometry, material, group, lightsNode ); } ); super.updateBefore( frame ); renderer.setRenderObjectFunction( currentRenderObjectFunction ); } _createMaterial() { const material = new NodeMaterial(); material.isMeshToonOutlineMaterial = true; material.name = 'Toon_Outline'; material.side = BackSide; // vertex node const outlineNormal = normalLocal.negate(); const mvp = cameraProjectionMatrix.mul( modelViewMatrix ); const ratio = float( 1.0 ); // TODO: support outline thickness ratio for each vertex const pos = mvp.mul( vec4( positionLocal, 1.0 ) ); const pos2 = mvp.mul( vec4( positionLocal.add( outlineNormal ), 1.0 ) ); const norm = normalize( pos.sub( pos2 ) ); // NOTE: subtract pos2 from pos because BackSide objectNormal is negative material.vertexNode = pos.add( norm.mul( this.thicknessNode ).mul( pos.w ).mul( ratio ) ); // color node material.colorNode = vec4( this.colorNode, this.alphaNode ); return material; } _getOutlineMaterial( originalMaterial ) { let outlineMaterial = this._materialCache.get( originalMaterial ); if ( outlineMaterial === undefined ) { outlineMaterial = this._createMaterial(); this._materialCache.set( originalMaterial, outlineMaterial ); } return outlineMaterial; } } const toonOutlinePass = ( scene, camera, color = new Color( 0, 0, 0 ), thickness = 0.003, alpha = 1 ) => nodeObject( new ToonOutlinePassNode( scene, camera, nodeObject( color ), nodeObject( thickness ), nodeObject( alpha ) ) ); class ScriptableValueNode extends Node { static get type() { return 'ScriptableValueNode'; } constructor( value = null ) { super(); this._value = value; this._cache = null; this.inputType = null; this.outpuType = null; this.events = new EventDispatcher(); this.isScriptableValueNode = true; } get isScriptableOutputNode() { return this.outputType !== null; } set value( val ) { if ( this._value === val ) return; if ( this._cache && this.inputType === 'URL' && this.value.value instanceof ArrayBuffer ) { URL.revokeObjectURL( this._cache ); this._cache = null; } this._value = val; this.events.dispatchEvent( { type: 'change' } ); this.refresh(); } get value() { return this._value; } refresh() { this.events.dispatchEvent( { type: 'refresh' } ); } getValue() { const value = this.value; if ( value && this._cache === null && this.inputType === 'URL' && value.value instanceof ArrayBuffer ) { this._cache = URL.createObjectURL( new Blob( [ value.value ] ) ); } else if ( value && value.value !== null && value.value !== undefined && ( ( ( this.inputType === 'URL' || this.inputType === 'String' ) && typeof value.value === 'string' ) || ( this.inputType === 'Number' && typeof value.value === 'number' ) || ( this.inputType === 'Vector2' && value.value.isVector2 ) || ( this.inputType === 'Vector3' && value.value.isVector3 ) || ( this.inputType === 'Vector4' && value.value.isVector4 ) || ( this.inputType === 'Color' && value.value.isColor ) || ( this.inputType === 'Matrix3' && value.value.isMatrix3 ) || ( this.inputType === 'Matrix4' && value.value.isMatrix4 ) ) ) { return value.value; } return this._cache || value; } getNodeType( builder ) { return this.value && this.value.isNode ? this.value.getNodeType( builder ) : 'float'; } setup() { return this.value && this.value.isNode ? this.value : float(); } serialize( data ) { super.serialize( data ); if ( this.value !== null ) { if ( this.inputType === 'ArrayBuffer' ) { data.value = arrayBufferToBase64( this.value ); } else { data.value = this.value ? this.value.toJSON( data.meta ).uuid : null; } } else { data.value = null; } data.inputType = this.inputType; data.outputType = this.outputType; } deserialize( data ) { super.deserialize( data ); let value = null; if ( data.value !== null ) { if ( data.inputType === 'ArrayBuffer' ) { value = base64ToArrayBuffer( data.value ); } else if ( data.inputType === 'Texture' ) { value = data.meta.textures[ data.value ]; } else { value = data.meta.nodes[ data.value ] || null; } } this.value = value; this.inputType = data.inputType; this.outputType = data.outputType; } } const scriptableValue = /*@__PURE__*/ nodeProxy( ScriptableValueNode ); class Resources extends Map { get( key, callback = null, ...params ) { if ( this.has( key ) ) return super.get( key ); if ( callback !== null ) { const value = callback( ...params ); this.set( key, value ); return value; } } } class Parameters { constructor( scriptableNode ) { this.scriptableNode = scriptableNode; } get parameters() { return this.scriptableNode.parameters; } get layout() { return this.scriptableNode.getLayout(); } getInputLayout( id ) { return this.scriptableNode.getInputLayout( id ); } get( name ) { const param = this.parameters[ name ]; const value = param ? param.getValue() : null; return value; } } const global = new Resources(); class ScriptableNode extends Node { static get type() { return 'ScriptableNode'; } constructor( codeNode = null, parameters = {} ) { super(); this.codeNode = codeNode; this.parameters = parameters; this._local = new Resources(); this._output = scriptableValue(); this._outputs = {}; this._source = this.source; this._method = null; this._object = null; this._value = null; this._needsOutputUpdate = true; this.onRefresh = this.onRefresh.bind( this ); this.isScriptableNode = true; } get source() { return this.codeNode ? this.codeNode.code : ''; } setLocal( name, value ) { return this._local.set( name, value ); } getLocal( name ) { return this._local.get( name ); } onRefresh() { this._refresh(); } getInputLayout( id ) { for ( const element of this.getLayout() ) { if ( element.inputType && ( element.id === id || element.name === id ) ) { return element; } } } getOutputLayout( id ) { for ( const element of this.getLayout() ) { if ( element.outputType && ( element.id === id || element.name === id ) ) { return element; } } } setOutput( name, value ) { const outputs = this._outputs; if ( outputs[ name ] === undefined ) { outputs[ name ] = scriptableValue( value ); } else { outputs[ name ].value = value; } return this; } getOutput( name ) { return this._outputs[ name ]; } getParameter( name ) { return this.parameters[ name ]; } setParameter( name, value ) { const parameters = this.parameters; if ( value && value.isScriptableNode ) { this.deleteParameter( name ); parameters[ name ] = value; parameters[ name ].getDefaultOutput().events.addEventListener( 'refresh', this.onRefresh ); } else if ( value && value.isScriptableValueNode ) { this.deleteParameter( name ); parameters[ name ] = value; parameters[ name ].events.addEventListener( 'refresh', this.onRefresh ); } else if ( parameters[ name ] === undefined ) { parameters[ name ] = scriptableValue( value ); parameters[ name ].events.addEventListener( 'refresh', this.onRefresh ); } else { parameters[ name ].value = value; } return this; } getValue() { return this.getDefaultOutput().getValue(); } deleteParameter( name ) { let valueNode = this.parameters[ name ]; if ( valueNode ) { if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput(); valueNode.events.removeEventListener( 'refresh', this.onRefresh ); } return this; } clearParameters() { for ( const name of Object.keys( this.parameters ) ) { this.deleteParameter( name ); } this.needsUpdate = true; return this; } call( name, ...params ) { const object = this.getObject(); const method = object[ name ]; if ( typeof method === 'function' ) { return method( ...params ); } } async callAsync( name, ...params ) { const object = this.getObject(); const method = object[ name ]; if ( typeof method === 'function' ) { return method.constructor.name === 'AsyncFunction' ? await method( ...params ) : method( ...params ); } } getNodeType( builder ) { return this.getDefaultOutputNode().getNodeType( builder ); } refresh( output = null ) { if ( output !== null ) { this.getOutput( output ).refresh(); } else { this._refresh(); } } getObject() { if ( this.needsUpdate ) this.dispose(); if ( this._object !== null ) return this._object; // const refresh = () => this.refresh(); const setOutput = ( id, value ) => this.setOutput( id, value ); const parameters = new Parameters( this ); const THREE = global.get( 'THREE' ); const TSL = global.get( 'TSL' ); const method = this.getMethod( this.codeNode ); const params = [ parameters, this._local, global, refresh, setOutput, THREE, TSL ]; this._object = method( ...params ); const layout = this._object.layout; if ( layout ) { if ( layout.cache === false ) { this._local.clear(); } // default output this._output.outputType = layout.outputType || null; if ( Array.isArray( layout.elements ) ) { for ( const element of layout.elements ) { const id = element.id || element.name; if ( element.inputType ) { if ( this.getParameter( id ) === undefined ) this.setParameter( id, null ); this.getParameter( id ).inputType = element.inputType; } if ( element.outputType ) { if ( this.getOutput( id ) === undefined ) this.setOutput( id, null ); this.getOutput( id ).outputType = element.outputType; } } } } return this._object; } deserialize( data ) { super.deserialize( data ); for ( const name in this.parameters ) { let valueNode = this.parameters[ name ]; if ( valueNode.isScriptableNode ) valueNode = valueNode.getDefaultOutput(); valueNode.events.addEventListener( 'refresh', this.onRefresh ); } } getLayout() { return this.getObject().layout; } getDefaultOutputNode() { const output = this.getDefaultOutput().value; if ( output && output.isNode ) { return output; } return float(); } getDefaultOutput() { return this._exec()._output; } getMethod() { if ( this.needsUpdate ) this.dispose(); if ( this._method !== null ) return this._method; // const parametersProps = [ 'parameters', 'local', 'global', 'refresh', 'setOutput', 'THREE', 'TSL' ]; const interfaceProps = [ 'layout', 'init', 'main', 'dispose' ]; const properties = interfaceProps.join( ', ' ); const declarations = 'var ' + properties + '; var output = {};\n'; const returns = '\nreturn { ...output, ' + properties + ' };'; const code = declarations + this.codeNode.code + returns; // this._method = new Function( ...parametersProps, code ); return this._method; } dispose() { if ( this._method === null ) return; if ( this._object && typeof this._object.dispose === 'function' ) { this._object.dispose(); } this._method = null; this._object = null; this._source = null; this._value = null; this._needsOutputUpdate = true; this._output.value = null; this._outputs = {}; } setup() { return this.getDefaultOutputNode(); } getCacheKey( force ) { const values = [ hashString( this.source ), this.getDefaultOutputNode().getCacheKey( force ) ]; for ( const param in this.parameters ) { values.push( this.parameters[ param ].getCacheKey( force ) ); } return hashArray( values ); } set needsUpdate( value ) { if ( value === true ) this.dispose(); } get needsUpdate() { return this.source !== this._source; } _exec() { if ( this.codeNode === null ) return this; if ( this._needsOutputUpdate === true ) { this._value = this.call( 'main' ); this._needsOutputUpdate = false; } this._output.value = this._value; return this; } _refresh() { this.needsUpdate = true; this._exec(); this._output.refresh(); } } const scriptable = /*@__PURE__*/ nodeProxy( ScriptableNode ); class FogNode extends Node { static get type() { return 'FogNode'; } constructor( colorNode, factorNode ) { super( 'float' ); this.isFogNode = true; this.colorNode = colorNode; this.factorNode = factorNode; } getViewZNode( builder ) { let viewZ; const getViewZ = builder.context.getViewZ; if ( getViewZ !== undefined ) { viewZ = getViewZ( this ); } return ( viewZ || positionView.z ).negate(); } setup() { return this.factorNode; } } const fog = /*@__PURE__*/ nodeProxy( FogNode ); class FogRangeNode extends FogNode { static get type() { return 'FogRangeNode'; } constructor( colorNode, nearNode, farNode ) { super( colorNode ); this.isFogRangeNode = true; this.nearNode = nearNode; this.farNode = farNode; } setup( builder ) { const viewZ = this.getViewZNode( builder ); return smoothstep( this.nearNode, this.farNode, viewZ ); } } const rangeFog = /*@__PURE__*/ nodeProxy( FogRangeNode ); class FogExp2Node extends FogNode { static get type() { return 'FogExp2Node'; } constructor( colorNode, densityNode ) { super( colorNode ); this.isFogExp2Node = true; this.densityNode = densityNode; } setup( builder ) { const viewZ = this.getViewZNode( builder ); const density = this.densityNode; return density.mul( density, viewZ, viewZ ).negate().exp().oneMinus(); } } const densityFog = /*@__PURE__*/ nodeProxy( FogExp2Node ); let min = null; let max = null; class RangeNode extends Node { static get type() { return 'RangeNode'; } constructor( minNode = float(), maxNode = float() ) { super(); this.minNode = minNode; this.maxNode = maxNode; } getVectorLength( builder ) { const minLength = builder.getTypeLength( getValueType( this.minNode.value ) ); const maxLength = builder.getTypeLength( getValueType( this.maxNode.value ) ); return minLength > maxLength ? minLength : maxLength; } getNodeType( builder ) { return builder.object.count > 1 ? builder.getTypeFromLength( this.getVectorLength( builder ) ) : 'float'; } setup( builder ) { const object = builder.object; let output = null; if ( object.count > 1 ) { const minValue = this.minNode.value; const maxValue = this.maxNode.value; const minLength = builder.getTypeLength( getValueType( minValue ) ); const maxLength = builder.getTypeLength( getValueType( maxValue ) ); min = min || new Vector4(); max = max || new Vector4(); min.setScalar( 0 ); max.setScalar( 0 ); if ( minLength === 1 ) min.setScalar( minValue ); else if ( minValue.isColor ) min.set( minValue.r, minValue.g, minValue.b ); else min.set( minValue.x, minValue.y, minValue.z || 0, minValue.w || 0 ); if ( maxLength === 1 ) max.setScalar( maxValue ); else if ( maxValue.isColor ) max.set( maxValue.r, maxValue.g, maxValue.b ); else max.set( maxValue.x, maxValue.y, maxValue.z || 0, maxValue.w || 0 ); const stride = 4; const length = stride * object.count; const array = new Float32Array( length ); for ( let i = 0; i < length; i ++ ) { const index = i % stride; const minElementValue = min.getComponent( index ); const maxElementValue = max.getComponent( index ); array[ i ] = MathUtils.lerp( minElementValue, maxElementValue, Math.random() ); } const nodeType = this.getNodeType( builder ); if ( object.count <= 4096 ) { output = buffer( array, 'vec4', object.count ).element( instanceIndex ).convert( nodeType ); } else { // TODO: Improve anonymous buffer attribute creation removing this part const bufferAttribute = new InstancedBufferAttribute( array, 4 ); builder.geometry.setAttribute( '__range' + this.id, bufferAttribute ); output = instancedBufferAttribute( bufferAttribute ).convert( nodeType ); } } else { output = float( 0 ); } return output; } } const range = /*@__PURE__*/ nodeProxy( RangeNode ); const BasicShadowMap = Fn( ( { depthTexture, shadowCoord } ) => { return texture( depthTexture, shadowCoord.xy ).compare( shadowCoord.z ); } ); const PCFShadowMap = Fn( ( { depthTexture, shadowCoord, shadow } ) => { const depthCompare = ( uv, compare ) => texture( depthTexture, uv ).compare( compare ); const mapSize = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); const texelSize = vec2( 1 ).div( mapSize ); const dx0 = texelSize.x.negate().mul( radius ); const dy0 = texelSize.y.negate().mul( radius ); const dx1 = texelSize.x.mul( radius ); const dy1 = texelSize.y.mul( radius ); const dx2 = dx0.div( 2 ); const dy2 = dy0.div( 2 ); const dx3 = dx1.div( 2 ); const dy3 = dy1.div( 2 ); return add( depthCompare( shadowCoord.xy.add( vec2( dx0, dy0 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( 0, dy0 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx1, dy0 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx2, dy2 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( 0, dy2 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx3, dy2 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx0, 0 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx2, 0 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy, shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx3, 0 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx1, 0 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx2, dy3 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( 0, dy3 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx3, dy3 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx0, dy1 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( 0, dy1 ) ), shadowCoord.z ), depthCompare( shadowCoord.xy.add( vec2( dx1, dy1 ) ), shadowCoord.z ) ).mul( 1 / 17 ); } ); const PCFSoftShadowMap = Fn( ( { depthTexture, shadowCoord, shadow } ) => { const depthCompare = ( uv, compare ) => texture( depthTexture, uv ).compare( compare ); const mapSize = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); const texelSize = vec2( 1 ).div( mapSize ); const dx = texelSize.x; const dy = texelSize.y; const uv = shadowCoord.xy; const f = fract( uv.mul( mapSize ).add( 0.5 ) ); uv.subAssign( f.mul( texelSize ) ); return add( depthCompare( uv, shadowCoord.z ), depthCompare( uv.add( vec2( dx, 0 ) ), shadowCoord.z ), depthCompare( uv.add( vec2( 0, dy ) ), shadowCoord.z ), depthCompare( uv.add( texelSize ), shadowCoord.z ), mix( depthCompare( uv.add( vec2( dx.negate(), 0 ) ), shadowCoord.z ), depthCompare( uv.add( vec2( dx.mul( 2 ), 0 ) ), shadowCoord.z ), f.x ), mix( depthCompare( uv.add( vec2( dx.negate(), dy ) ), shadowCoord.z ), depthCompare( uv.add( vec2( dx.mul( 2 ), dy ) ), shadowCoord.z ), f.x ), mix( depthCompare( uv.add( vec2( 0, dy.negate() ) ), shadowCoord.z ), depthCompare( uv.add( vec2( 0, dy.mul( 2 ) ) ), shadowCoord.z ), f.y ), mix( depthCompare( uv.add( vec2( dx, dy.negate() ) ), shadowCoord.z ), depthCompare( uv.add( vec2( dx, dy.mul( 2 ) ) ), shadowCoord.z ), f.y ), mix( mix( depthCompare( uv.add( vec2( dx.negate(), dy.negate() ) ), shadowCoord.z ), depthCompare( uv.add( vec2( dx.mul( 2 ), dy.negate() ) ), shadowCoord.z ), f.x ), mix( depthCompare( uv.add( vec2( dx.negate(), dy.mul( 2 ) ) ), shadowCoord.z ), depthCompare( uv.add( vec2( dx.mul( 2 ), dy.mul( 2 ) ) ), shadowCoord.z ), f.x ), f.y ) ).mul( 1 / 9 ); } ); // VSM const VSMShadowMapNode = Fn( ( { depthTexture, shadowCoord } ) => { const occlusion = float( 1 ).toVar(); const distribution = texture( depthTexture ).uv( shadowCoord.xy ).rg; const hardShadow = step( shadowCoord.z, distribution.x ); If( hardShadow.notEqual( float( 1.0 ) ), () => { const distance = shadowCoord.z.sub( distribution.x ); const variance = max$1( 0, distribution.y.mul( distribution.y ) ); let softnessProbability = variance.div( variance.add( distance.mul( distance ) ) ); // Chebeyshevs inequality softnessProbability = clamp( sub( softnessProbability, 0.3 ).div( 0.95 - 0.3 ) ); occlusion.assign( clamp( max$1( hardShadow, softnessProbability ) ) ); } ); return occlusion; } ); const VSMPassVertical = Fn( ( { samples, radius, size, shadowPass } ) => { const mean = float( 0 ).toVar(); const squaredMean = float( 0 ).toVar(); const uvStride = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( 2 ).div( samples.sub( 1 ) ) ); const uvStart = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( -1 ) ); Loop( { start: int( 0 ), end: int( samples ), type: 'int', condition: '<' }, ( { i } ) => { const uvOffset = uvStart.add( float( i ).mul( uvStride ) ); const depth = shadowPass.uv( add( screenCoordinate.xy, vec2( 0, uvOffset ).mul( radius ) ).div( size ) ).x; mean.addAssign( depth ); squaredMean.addAssign( depth.mul( depth ) ); } ); mean.divAssign( samples ); squaredMean.divAssign( samples ); const std_dev = sqrt( squaredMean.sub( mean.mul( mean ) ) ); return vec2( mean, std_dev ); } ); const VSMPassHorizontal = Fn( ( { samples, radius, size, shadowPass } ) => { const mean = float( 0 ).toVar(); const squaredMean = float( 0 ).toVar(); const uvStride = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( 2 ).div( samples.sub( 1 ) ) ); const uvStart = samples.lessThanEqual( float( 1 ) ).select( float( 0 ), float( -1 ) ); Loop( { start: int( 0 ), end: int( samples ), type: 'int', condition: '<' }, ( { i } ) => { const uvOffset = uvStart.add( float( i ).mul( uvStride ) ); const distribution = shadowPass.uv( add( screenCoordinate.xy, vec2( uvOffset, 0 ).mul( radius ) ).div( size ) ); mean.addAssign( distribution.x ); squaredMean.addAssign( add( distribution.y.mul( distribution.y ), distribution.x.mul( distribution.x ) ) ); } ); mean.divAssign( samples ); squaredMean.divAssign( samples ); const std_dev = sqrt( squaredMean.sub( mean.mul( mean ) ) ); return vec2( mean, std_dev ); } ); const _shadowFilterLib = [ BasicShadowMap, PCFShadowMap, PCFSoftShadowMap, VSMShadowMapNode ]; // let _overrideMaterial = null; const _quadMesh = /*@__PURE__*/ new QuadMesh(); class AnalyticLightNode extends LightingNode { static get type() { return 'AnalyticLightNode'; } constructor( light = null ) { super(); this.updateType = NodeUpdateType.FRAME; this.light = light; this.color = new Color(); this.colorNode = uniform( this.color ).setGroup( renderGroup ); this.baseColorNode = null; this.shadowMap = null; this.shadowNode = null; this.shadowColorNode = null; this.vsmShadowMapVertical = null; this.vsmShadowMapHorizontal = null; this.vsmMaterialVertical = null; this.vsmMaterialHorizontal = null; this.isAnalyticLightNode = true; } getCacheKey() { return hash$1( super.getCacheKey(), this.light.id, this.light.castShadow ? 1 : 0 ); } getHash() { return this.light.uuid; } setupShadow( builder ) { const { object, renderer } = builder; if ( renderer.shadowMap.enabled === false ) return; let shadowColorNode = this.shadowColorNode; if ( shadowColorNode === null ) { if ( _overrideMaterial === null ) { _overrideMaterial = new NodeMaterial(); _overrideMaterial.fragmentNode = vec4( 0, 0, 0, 1 ); _overrideMaterial.isShadowNodeMaterial = true; // Use to avoid other overrideMaterial override material.fragmentNode unintentionally when using material.shadowNode _overrideMaterial.name = 'ShadowMaterial'; } const shadowMapType = renderer.shadowMap.type; const shadow = this.light.shadow; const depthTexture = new DepthTexture(); depthTexture.compareFunction = LessCompare; const shadowMap = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height ); shadowMap.depthTexture = depthTexture; shadow.camera.updateProjectionMatrix(); // VSM if ( shadowMapType === VSMShadowMap ) { depthTexture.compareFunction = null; // VSM does not use textureSampleCompare()/texture2DCompare() this.vsmShadowMapVertical = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType } ); this.vsmShadowMapHorizontal = builder.createRenderTarget( shadow.mapSize.width, shadow.mapSize.height, { format: RGFormat, type: HalfFloatType } ); const shadowPassVertical = texture( depthTexture ); const shadowPassHorizontal = texture( this.vsmShadowMapVertical.texture ); const samples = reference( 'blurSamples', 'float', shadow ).setGroup( renderGroup ); const radius = reference( 'radius', 'float', shadow ).setGroup( renderGroup ); const size = reference( 'mapSize', 'vec2', shadow ).setGroup( renderGroup ); let material = this.vsmMaterialVertical || ( this.vsmMaterialVertical = new NodeMaterial() ); material.fragmentNode = VSMPassVertical( { samples, radius, size, shadowPass: shadowPassVertical } ).context( builder.getSharedContext() ); material.name = 'VSMVertical'; material = this.vsmMaterialHorizontal || ( this.vsmMaterialHorizontal = new NodeMaterial() ); material.fragmentNode = VSMPassHorizontal( { samples, radius, size, shadowPass: shadowPassHorizontal } ).context( builder.getSharedContext() ); material.name = 'VSMHorizontal'; } // const shadowIntensity = reference( 'intensity', 'float', shadow ).setGroup( renderGroup ); const bias = reference( 'bias', 'float', shadow ).setGroup( renderGroup ); const normalBias = reference( 'normalBias', 'float', shadow ).setGroup( renderGroup ); const position = object.material.shadowPositionNode || positionWorld; let shadowCoord = uniform( shadow.matrix ).setGroup( renderGroup ).mul( position.add( normalWorld.mul( normalBias ) ) ); shadowCoord = shadowCoord.xyz.div( shadowCoord.w ); let coordZ = shadowCoord.z.add( bias ); if ( renderer.coordinateSystem === WebGPUCoordinateSystem ) { coordZ = coordZ.mul( 2 ).sub( 1 ); // WebGPU: Convertion [ 0, 1 ] to [ - 1, 1 ] } shadowCoord = vec3( shadowCoord.x, shadowCoord.y.oneMinus(), // follow webgpu standards coordZ ); const frustumTest = shadowCoord.x.greaterThanEqual( 0 ) .and( shadowCoord.x.lessThanEqual( 1 ) ) .and( shadowCoord.y.greaterThanEqual( 0 ) ) .and( shadowCoord.y.lessThanEqual( 1 ) ) .and( shadowCoord.z.lessThanEqual( 1 ) ); // const filterFn = shadow.filterNode || _shadowFilterLib[ renderer.shadowMap.type ] || null; if ( filterFn === null ) { throw new Error( 'THREE.WebGPURenderer: Shadow map type not supported yet.' ); } const shadowColor = texture( shadowMap.texture, shadowCoord ); const shadowNode = frustumTest.select( filterFn( { depthTexture: ( shadowMapType === VSMShadowMap ) ? this.vsmShadowMapHorizontal.texture : depthTexture, shadowCoord, shadow } ), float( 1 ) ); this.shadowMap = shadowMap; this.light.shadow.map = shadowMap; this.shadowNode = shadowNode; this.shadowColorNode = shadowColorNode = this.colorNode.mul( mix( 1, shadowNode.rgb.mix( shadowColor, 1 ), shadowIntensity.mul( shadowColor.a ) ) ); this.baseColorNode = this.colorNode; } // this.colorNode = shadowColorNode; this.updateBeforeType = NodeUpdateType.RENDER; } setup( builder ) { this.colorNode = this.baseColorNode || this.colorNode; if ( this.light.castShadow ) { if ( builder.object.receiveShadow ) { this.setupShadow( builder ); } } else if ( this.shadowNode !== null ) { this.disposeShadow(); } } updateShadow( frame ) { const { shadowMap, light } = this; const { renderer, scene, camera } = frame; const shadowType = renderer.shadowMap.type; const depthVersion = shadowMap.depthTexture.version; this._depthVersionCached = depthVersion; const currentOverrideMaterial = scene.overrideMaterial; scene.overrideMaterial = _overrideMaterial; shadowMap.setSize( light.shadow.mapSize.width, light.shadow.mapSize.height ); light.shadow.updateMatrices( light ); light.shadow.camera.layers.mask = camera.layers.mask; const currentRenderTarget = renderer.getRenderTarget(); const currentRenderObjectFunction = renderer.getRenderObjectFunction(); renderer.setRenderObjectFunction( ( object, ...params ) => { if ( object.castShadow === true || ( object.receiveShadow && shadowType === VSMShadowMap ) ) { renderer.renderObject( object, ...params ); } } ); renderer.setRenderTarget( shadowMap ); renderer.render( scene, light.shadow.camera ); renderer.setRenderObjectFunction( currentRenderObjectFunction ); // vsm blur pass if ( light.isPointLight !== true && shadowType === VSMShadowMap ) { this.vsmPass( frame, light ); } renderer.setRenderTarget( currentRenderTarget ); scene.overrideMaterial = currentOverrideMaterial; } vsmPass( frame, light ) { const { renderer } = frame; this.vsmShadowMapVertical.setSize( light.shadow.mapSize.width, light.shadow.mapSize.height ); this.vsmShadowMapHorizontal.setSize( light.shadow.mapSize.width, light.shadow.mapSize.height ); renderer.setRenderTarget( this.vsmShadowMapVertical ); _quadMesh.material = this.vsmMaterialVertical; _quadMesh.render( renderer ); renderer.setRenderTarget( this.vsmShadowMapHorizontal ); _quadMesh.material = this.vsmMaterialHorizontal; _quadMesh.render( renderer ); } disposeShadow() { this.shadowMap.dispose(); this.shadowMap = null; if ( this.vsmShadowMapVertical !== null ) { this.vsmShadowMapVertical.dispose(); this.vsmShadowMapVertical = null; this.vsmMaterialVertical.dispose(); this.vsmMaterialVertical = null; } if ( this.vsmShadowMapHorizontal !== null ) { this.vsmShadowMapHorizontal.dispose(); this.vsmShadowMapHorizontal = null; this.vsmMaterialHorizontal.dispose(); this.vsmMaterialHorizontal = null; } this.shadowNode = null; this.shadowColorNode = null; this.baseColorNode = null; this.updateBeforeType = NodeUpdateType.NONE; } updateBefore( frame ) { const shadow = this.light.shadow; const needsUpdate = shadow.needsUpdate || shadow.autoUpdate; if ( needsUpdate ) { this.updateShadow( frame ); if ( this.shadowMap.depthTexture.version === this._depthVersionCached ) { shadow.needsUpdate = false; } } } update( /*frame*/ ) { const { light } = this; this.color.copy( light.color ).multiplyScalar( light.intensity ); } } const getDistanceAttenuation = /*@__PURE__*/ Fn( ( inputs ) => { const { lightDistance, cutoffDistance, decayExponent } = inputs; // based upon Frostbite 3 Moving to Physically-based Rendering // page 32, equation 26: E[window1] // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf const distanceFalloff = lightDistance.pow( decayExponent ).max( 0.01 ).reciprocal(); return cutoffDistance.greaterThan( 0 ).select( distanceFalloff.mul( lightDistance.div( cutoffDistance ).pow4().oneMinus().clamp().pow2() ), distanceFalloff ); } ); // validated let uniformsLib; function getLightData( light ) { uniformsLib = uniformsLib || new WeakMap(); let uniforms = uniformsLib.get( light ); if ( uniforms === undefined ) uniformsLib.set( light, uniforms = {} ); return uniforms; } function lightPosition( light ) { const data = getLightData( light ); return data.position || ( data.position = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( _, self ) => self.value.setFromMatrixPosition( light.matrixWorld ) ) ); } function lightTargetPosition( light ) { const data = getLightData( light ); return data.targetPosition || ( data.targetPosition = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( _, self ) => self.value.setFromMatrixPosition( light.target.matrixWorld ) ) ); } function lightViewPosition( light ) { const data = getLightData( light ); return data.viewPosition || ( data.viewPosition = uniform( new Vector3() ).setGroup( renderGroup ).onRenderUpdate( ( { camera }, self ) => { self.value = self.value || new Vector3(); self.value.setFromMatrixPosition( light.matrixWorld ); self.value.applyMatrix4( camera.matrixWorldInverse ); } ) ); } const lightTargetDirection = ( light ) => cameraViewMatrix.transformDirection( lightPosition( light ).sub( lightTargetPosition( light ) ) ); const hash = /*@__PURE__*/ Fn( ( [ seed ] ) => { // Taken from https://www.shadertoy.com/view/XlGcRh, originally from pcg-random.org const state = seed.toUint().mul( 747796405 ).add( 2891336453 ); const word = state.shiftRight( state.shiftRight( 28 ).add( 4 ) ).bitXor( state ).mul( 277803737 ); const result = word.shiftRight( 22 ).bitXor( word ); return result.toFloat().mul( 1 / 2 ** 32 ); // Convert to range [0, 1) } ); // remapping functions https://iquilezles.org/articles/functions/ const parabola = ( x, k ) => pow( mul( 4.0, x.mul( sub( 1.0, x ) ) ), k ); const gain = ( x, k ) => x.lessThan( 0.5 ) ? parabola( x.mul( 2.0 ), k ).div( 2.0 ) : sub( 1.0, parabola( mul( sub( 1.0, x ), 2.0 ), k ).div( 2.0 ) ); const pcurve = ( x, a, b ) => pow( div( pow( x, a ), add( pow( x, a ), pow( sub( 1.0, x ), b ) ) ), 1.0 / a ); const sinc = ( x, k ) => sin( PI.mul( k.mul( x ).sub( 1.0 ) ) ).div( PI.mul( k.mul( x ).sub( 1.0 ) ) ); // https://github.com/cabbibo/glsl-tri-noise-3d const tri = /*@__PURE__*/ Fn( ( [ x ] ) => { return x.fract().sub( .5 ).abs(); } ).setLayout( { name: 'tri', type: 'float', inputs: [ { name: 'x', type: 'float' } ] } ); const tri3 = /*@__PURE__*/ Fn( ( [ p ] ) => { return vec3( tri( p.z.add( tri( p.y.mul( 1. ) ) ) ), tri( p.z.add( tri( p.x.mul( 1. ) ) ) ), tri( p.y.add( tri( p.x.mul( 1. ) ) ) ) ); } ).setLayout( { name: 'tri3', type: 'vec3', inputs: [ { name: 'p', type: 'vec3' } ] } ); const triNoise3D = /*@__PURE__*/ Fn( ( [ p_immutable, spd, time ] ) => { const p = vec3( p_immutable ).toVar(); const z = float( 1.4 ).toVar(); const rz = float( 0.0 ).toVar(); const bp = vec3( p ).toVar(); Loop( { start: float( 0.0 ), end: float( 3.0 ), type: 'float', condition: '<=' }, () => { const dg = vec3( tri3( bp.mul( 2.0 ) ) ).toVar(); p.addAssign( dg.add( time.mul( float( 0.1 ).mul( spd ) ) ) ); bp.mulAssign( 1.8 ); z.mulAssign( 1.5 ); p.mulAssign( 1.2 ); const t = float( tri( p.z.add( tri( p.x.add( tri( p.y ) ) ) ) ) ).toVar(); rz.addAssign( t.div( z ) ); bp.addAssign( 0.14 ); } ); return rz; } ).setLayout( { name: 'triNoise3D', type: 'float', inputs: [ { name: 'p', type: 'vec3' }, { name: 'spd', type: 'float' }, { name: 'time', type: 'float' } ] } ); const rotateUV = /*@__PURE__*/ Fn( ( [ uv, rotation, center = vec2( 0.5 ) ] ) => { return rotate( uv.sub( center ), rotation ).add( center ); } ); const spherizeUV = /*@__PURE__*/ Fn( ( [ uv, strength, center = vec2( 0.5 ) ] ) => { const delta = uv.sub( center ); const delta2 = delta.dot( delta ); const delta4 = delta2.mul( delta2 ); const deltaOffset = delta4.mul( strength ); return uv.add( delta.mul( deltaOffset ) ); } ); const billboarding = /*@__PURE__*/ Fn( ( { position = null, horizontal = true, vertical = false } ) => { let worldMatrix; if ( position !== null ) { worldMatrix = modelWorldMatrix.toVar(); worldMatrix[ 3 ][ 0 ] = position.x; worldMatrix[ 3 ][ 1 ] = position.y; worldMatrix[ 3 ][ 2 ] = position.z; } else { worldMatrix = modelWorldMatrix; } const modelViewMatrix = cameraViewMatrix.mul( worldMatrix ); if ( defined( horizontal ) ) { modelViewMatrix[ 0 ][ 0 ] = modelWorldMatrix[ 0 ].length(); modelViewMatrix[ 0 ][ 1 ] = 0; modelViewMatrix[ 0 ][ 2 ] = 0; } if ( defined( vertical ) ) { modelViewMatrix[ 1 ][ 0 ] = 0; modelViewMatrix[ 1 ][ 1 ] = modelWorldMatrix[ 1 ].length(); modelViewMatrix[ 1 ][ 2 ] = 0; } modelViewMatrix[ 2 ][ 0 ] = 0; modelViewMatrix[ 2 ][ 1 ] = 0; modelViewMatrix[ 2 ][ 2 ] = 1; return cameraProjectionMatrix.mul( modelViewMatrix ).mul( positionLocal ); } ); const viewportSafeUV = /*@__PURE__*/ Fn( ( [ uv = null ] ) => { const depth = linearDepth(); const depthDiff = linearDepth( viewportDepthTexture( uv ) ).sub( depth ); const finalUV = depthDiff.lessThan( 0 ).select( screenUV, uv ); return finalUV; } ); const _objectData = new WeakMap(); class VelocityNode extends TempNode { static get type() { return 'VelocityNode'; } constructor() { super( 'vec2' ); this.updateType = NodeUpdateType.OBJECT; this.updateAfterType = NodeUpdateType.OBJECT; this.previousModelWorldMatrix = uniform( new Matrix4() ); this.previousProjectionMatrix = uniform( new Matrix4() ).setGroup( renderGroup ); this.previousCameraViewMatrix = uniform( new Matrix4() ); } update( { frameId, camera, object } ) { const previousModelMatrix = getPreviousMatrix( object ); this.previousModelWorldMatrix.value.copy( previousModelMatrix ); // const cameraData = getData( camera ); if ( cameraData.frameId !== frameId ) { cameraData.frameId = frameId; if ( cameraData.previousProjectionMatrix === undefined ) { cameraData.previousProjectionMatrix = new Matrix4(); cameraData.previousCameraViewMatrix = new Matrix4(); cameraData.currentProjectionMatrix = new Matrix4(); cameraData.currentCameraViewMatrix = new Matrix4(); cameraData.previousProjectionMatrix.copy( camera.projectionMatrix ); cameraData.previousCameraViewMatrix.copy( camera.matrixWorldInverse ); } else { cameraData.previousProjectionMatrix.copy( cameraData.currentProjectionMatrix ); cameraData.previousCameraViewMatrix.copy( cameraData.currentCameraViewMatrix ); } cameraData.currentProjectionMatrix.copy( camera.projectionMatrix ); cameraData.currentCameraViewMatrix.copy( camera.matrixWorldInverse ); this.previousProjectionMatrix.value.copy( cameraData.previousProjectionMatrix ); this.previousCameraViewMatrix.value.copy( cameraData.previousCameraViewMatrix ); } } updateAfter( { object } ) { getPreviousMatrix( object ).copy( object.matrixWorld ); } setup( /*builder*/ ) { const previousModelViewMatrix = this.previousCameraViewMatrix.mul( this.previousModelWorldMatrix ); const clipPositionCurrent = cameraProjectionMatrix.mul( modelViewMatrix ).mul( positionLocal ); const clipPositionPrevious = this.previousProjectionMatrix.mul( previousModelViewMatrix ).mul( positionPrevious ); const ndcPositionCurrent = clipPositionCurrent.xy.div( clipPositionCurrent.w ); const ndcPositionPrevious = clipPositionPrevious.xy.div( clipPositionPrevious.w ); const velocity = sub( ndcPositionCurrent, ndcPositionPrevious ); return velocity; } } function getData( object ) { let objectData = _objectData.get( object ); if ( objectData === undefined ) { objectData = {}; _objectData.set( object, objectData ); } return objectData; } function getPreviousMatrix( object, index = 0 ) { const objectData = getData( object ); let matrix = objectData[ index ]; if ( matrix === undefined ) { objectData[ index ] = matrix = new Matrix4(); } return matrix; } const velocity = /*@__PURE__*/ nodeImmutable( VelocityNode ); const burn = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { return min$1( 1.0, base.oneMinus().div( blend ) ).oneMinus(); } ).setLayout( { name: 'burnBlend', type: 'vec3', inputs: [ { name: 'base', type: 'vec3' }, { name: 'blend', type: 'vec3' } ] } ); const dodge = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { return min$1( base.div( blend.oneMinus() ), 1.0 ); } ).setLayout( { name: 'dodgeBlend', type: 'vec3', inputs: [ { name: 'base', type: 'vec3' }, { name: 'blend', type: 'vec3' } ] } ); const screen = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { return base.oneMinus().mul( blend.oneMinus() ).oneMinus(); } ).setLayout( { name: 'screenBlend', type: 'vec3', inputs: [ { name: 'base', type: 'vec3' }, { name: 'blend', type: 'vec3' } ] } ); const overlay = /*@__PURE__*/ Fn( ( [ base, blend ] ) => { return mix( base.mul( 2.0 ).mul( blend ), base.oneMinus().mul( 2.0 ).mul( blend.oneMinus() ).oneMinus(), step( 0.5, base ) ); } ).setLayout( { name: 'overlayBlend', type: 'vec3', inputs: [ { name: 'base', type: 'vec3' }, { name: 'blend', type: 'vec3' } ] } ); const motionBlur = /*@__PURE__*/ Fn( ( [ inputNode, velocity, numSamples = int( 16 ) ] ) => { const sampleColor = ( uv ) => inputNode.uv( uv ); const uvs = uv(); const colorResult = sampleColor( uvs ).toVar(); const fSamples = float( numSamples ); Loop( { start: int( 1 ), end: numSamples, type: 'int', condition: '<=' }, ( { i } ) => { const offset = velocity.mul( float( i ).div( fSamples.sub( 1 ) ).sub( 0.5 ) ); colorResult.addAssign( sampleColor( uvs.add( offset ) ) ); } ); colorResult.divAssign( fSamples ); return colorResult; } ); const bleach = /*@__PURE__*/ Fn( ( [ color, opacity = 1 ] ) => { const base = color; const lum = luminance( base.rgb ); const blend = vec3( lum ); const L = min$1( 1.0, max$1( 0.0, float( 10.0 ).mul( lum.sub( 0.45 ) ) ) ); const result1 = blend.mul( base.rgb ).mul( 2.0 ); const result2 = float( 2.0 ).mul( blend.oneMinus() ).mul( base.rgb.oneMinus() ).oneMinus(); const newColor = mix( result1, result2, L ); const A2 = base.a.mul( opacity ); const mixRGB = A2.mul( newColor.rgb ); mixRGB.addAssign( base.rgb.mul( A2.oneMinus() ) ); return vec4( mixRGB, base.a ); } ); const sepia = /*@__PURE__*/ Fn( ( [ color ] ) => { const c = vec3( color ); // https://github.com/evanw/glfx.js/blob/master/src/filters/adjust/sepia.js return vec4( dot( c, vec3( 0.393, 0.769, 0.189 ) ), dot( c, vec3( 0.349, 0.686, 0.168 ) ), dot( c, vec3( 0.272, 0.534, 0.131 ) ), color.a ); } ); const sRGBToLinearSRGB = /*@__PURE__*/ Fn( ( [ color ] ) => { const a = color.mul( 0.9478672986 ).add( 0.0521327014 ).pow( 2.4 ); const b = color.mul( 0.0773993808 ); const factor = color.lessThanEqual( 0.04045 ); const rgbResult = mix( a, b, factor ); return rgbResult; } ).setLayout( { name: 'sRGBToLinearSRGB', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' } ] } ); const linearSRGBTosRGB = /*@__PURE__*/ Fn( ( [ color ] ) => { const a = color.pow( 0.41666 ).mul( 1.055 ).sub( 0.055 ); const b = color.mul( 12.92 ); const factor = color.lessThanEqual( 0.0031308 ); const rgbResult = mix( a, b, factor ); return rgbResult; } ).setLayout( { name: 'linearSRGBTosRGB', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' } ] } ); // exposure only const linearToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { return color.mul( exposure ).clamp(); } ).setLayout( { name: 'linearToneMapping', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' }, { name: 'exposure', type: 'float' } ] } ); // source: https://www.cs.utah.edu/docs/techreports/2002/pdf/UUCS-02-001.pdf const reinhardToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { color = color.mul( exposure ); return color.div( color.add( 1.0 ) ).clamp(); } ).setLayout( { name: 'reinhardToneMapping', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' }, { name: 'exposure', type: 'float' } ] } ); // source: http://filmicworlds.com/blog/filmic-tonemapping-operators/ const cineonToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { // filmic operator by Jim Hejl and Richard Burgess-Dawson color = color.mul( exposure ); color = color.sub( 0.004 ).max( 0.0 ); const a = color.mul( color.mul( 6.2 ).add( 0.5 ) ); const b = color.mul( color.mul( 6.2 ).add( 1.7 ) ).add( 0.06 ); return a.div( b ).pow( 2.2 ); } ).setLayout( { name: 'cineonToneMapping', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' }, { name: 'exposure', type: 'float' } ] } ); // source: https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs const RRTAndODTFit = /*@__PURE__*/ Fn( ( [ color ] ) => { const a = color.mul( color.add( 0.0245786 ) ).sub( 0.000090537 ); const b = color.mul( color.add( 0.4329510 ).mul( 0.983729 ) ).add( 0.238081 ); return a.div( b ); } ); // source: https://github.com/selfshadow/ltc_code/blob/master/webgl/shaders/ltc/ltc_blit.fs const acesFilmicToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { // sRGB => XYZ => D65_2_D60 => AP1 => RRT_SAT const ACESInputMat = mat3( 0.59719, 0.35458, 0.04823, 0.07600, 0.90834, 0.01566, 0.02840, 0.13383, 0.83777 ); // ODT_SAT => XYZ => D60_2_D65 => sRGB const ACESOutputMat = mat3( 1.60475, -0.53108, -0.07367, -0.10208, 1.10813, -605e-5, -327e-5, -0.07276, 1.07602 ); color = color.mul( exposure ).div( 0.6 ); color = ACESInputMat.mul( color ); // Apply RRT and ODT color = RRTAndODTFit( color ); color = ACESOutputMat.mul( color ); // Clamp to [0, 1] return color.clamp(); } ).setLayout( { name: 'acesFilmicToneMapping', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' }, { name: 'exposure', type: 'float' } ] } ); const LINEAR_REC2020_TO_LINEAR_SRGB = /*@__PURE__*/ mat3( vec3( 1.6605, -0.1246, -0.0182 ), vec3( -0.5876, 1.1329, -0.1006 ), vec3( -0.0728, -83e-4, 1.1187 ) ); const LINEAR_SRGB_TO_LINEAR_REC2020 = /*@__PURE__*/ mat3( vec3( 0.6274, 0.0691, 0.0164 ), vec3( 0.3293, 0.9195, 0.0880 ), vec3( 0.0433, 0.0113, 0.8956 ) ); const agxDefaultContrastApprox = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { const x = vec3( x_immutable ).toVar(); const x2 = vec3( x.mul( x ) ).toVar(); const x4 = vec3( x2.mul( x2 ) ).toVar(); return float( 15.5 ).mul( x4.mul( x2 ) ).sub( mul( 40.14, x4.mul( x ) ) ).add( mul( 31.96, x4 ).sub( mul( 6.868, x2.mul( x ) ) ).add( mul( 0.4298, x2 ).add( mul( 0.1191, x ).sub( 0.00232 ) ) ) ); } ); const agxToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { const colortone = vec3( color ).toVar(); const AgXInsetMatrix = mat3( vec3( 0.856627153315983, 0.137318972929847, 0.11189821299995 ), vec3( 0.0951212405381588, 0.761241990602591, 0.0767994186031903 ), vec3( 0.0482516061458583, 0.101439036467562, 0.811302368396859 ) ); const AgXOutsetMatrix = mat3( vec3( 1.1271005818144368, -0.1413297634984383, -0.14132976349843826 ), vec3( -0.11060664309660323, 1.157823702216272, -0.11060664309660294 ), vec3( -0.016493938717834573, -0.016493938717834257, 1.2519364065950405 ) ); const AgxMinEv = float( -12.47393 ); const AgxMaxEv = float( 4.026069 ); colortone.mulAssign( exposure ); colortone.assign( LINEAR_SRGB_TO_LINEAR_REC2020.mul( colortone ) ); colortone.assign( AgXInsetMatrix.mul( colortone ) ); colortone.assign( max$1( colortone, 1e-10 ) ); colortone.assign( log2( colortone ) ); colortone.assign( colortone.sub( AgxMinEv ).div( AgxMaxEv.sub( AgxMinEv ) ) ); colortone.assign( clamp( colortone, 0.0, 1.0 ) ); colortone.assign( agxDefaultContrastApprox( colortone ) ); colortone.assign( AgXOutsetMatrix.mul( colortone ) ); colortone.assign( pow( max$1( vec3( 0.0 ), colortone ), vec3( 2.2 ) ) ); colortone.assign( LINEAR_REC2020_TO_LINEAR_SRGB.mul( colortone ) ); colortone.assign( clamp( colortone, 0.0, 1.0 ) ); return colortone; } ).setLayout( { name: 'agxToneMapping', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' }, { name: 'exposure', type: 'float' } ] } ); // https://modelviewer.dev/examples/tone-mapping const neutralToneMapping = /*@__PURE__*/ Fn( ( [ color, exposure ] ) => { const StartCompression = float( 0.8 - 0.04 ); const Desaturation = float( 0.15 ); color = color.mul( exposure ); const x = min$1( color.r, min$1( color.g, color.b ) ); const offset = select( x.lessThan( 0.08 ), x.sub( mul( 6.25, x.mul( x ) ) ), 0.04 ); color.subAssign( offset ); const peak = max$1( color.r, max$1( color.g, color.b ) ); If( peak.lessThan( StartCompression ), () => { return color; } ); const d = sub( 1, StartCompression ); const newPeak = sub( 1, d.mul( d ).div( peak.add( d.sub( StartCompression ) ) ) ); color.mulAssign( newPeak.div( peak ) ); const g = sub( 1, div( 1, Desaturation.mul( peak.sub( newPeak ) ).add( 1 ) ) ); return mix( color, vec3( newPeak ), g ); } ).setLayout( { name: 'neutralToneMapping', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' }, { name: 'exposure', type: 'float' } ] } ); class ComputeBuiltinNode extends Node { static get type() { return 'ComputeBuiltinNode'; } constructor( builtinName, nodeType ) { super( nodeType ); this._builtinName = builtinName; } getHash( builder ) { return this.getBuiltinName( builder ); } getNodeType( /*builder*/ ) { return this.nodeType; } setBuiltinName( builtinName ) { this._builtinName = builtinName; return this; } getBuiltinName( /*builder*/ ) { return this._builtinName; } hasBuiltin( builder ) { builder.hasBuiltin( this._builtinName ); } generate( builder, output ) { const builtinName = this.getBuiltinName( builder ); const nodeType = this.getNodeType( builder ); if ( builder.shaderStage === 'compute' ) { return builder.format( builtinName, nodeType, output ); } else { console.warn( `ComputeBuiltinNode: Compute built-in value ${builtinName} can not be accessed in the ${builder.shaderStage} stage` ); return builder.generateConst( nodeType ); } } serialize( data ) { super.serialize( data ); data.global = this.global; data._builtinName = this._builtinName; } deserialize( data ) { super.deserialize( data ); this.global = data.global; this._builtinName = data._builtinName; } } const computeBuiltin = ( name, nodeType ) => nodeObject( new ComputeBuiltinNode( name, nodeType ) ); const numWorkgroups = /*@__PURE__*/ computeBuiltin( 'numWorkgroups', 'uvec3' ); const workgroupId = /*@__PURE__*/ computeBuiltin( 'workgroupId', 'uvec3' ); const localId = /*@__PURE__*/ computeBuiltin( 'localId', 'uvec3' ); const subgroupSize = /*@__PURE__*/ computeBuiltin( 'subgroupSize', 'uint' ); class BarrierNode extends Node { constructor( scope ) { super(); this.scope = scope; } generate( builder ) { const { scope } = this; const { renderer } = builder; if ( renderer.backend.isWebGLBackend === true ) { builder.addFlowCode( `\t// ${scope}Barrier \n` ); } else { builder.addLineFlowCode( `${scope}Barrier()`, this ); } } } const barrier = nodeProxy( BarrierNode ); const workgroupBarrier = () => barrier( 'workgroup' ).append(); const storageBarrier = () => barrier( 'storage' ).append(); const textureBarrier = () => barrier( 'texture' ).append(); class WorkgroupInfoElementNode extends ArrayElementNode { constructor( workgroupInfoNode, indexNode ) { super( workgroupInfoNode, indexNode ); this.isWorkgroupInfoElementNode = true; } generate( builder, output ) { let snippet; const isAssignContext = builder.context.assign; snippet = super.generate( builder ); if ( isAssignContext !== true ) { const type = this.getNodeType( builder ); snippet = builder.format( snippet, type, output ); } // TODO: Possibly activate clip distance index on index access rather than from clipping context return snippet; } } class WorkgroupInfoNode extends Node { constructor( scope, bufferType, bufferCount = 0 ) { super( bufferType ); this.bufferType = bufferType; this.bufferCount = bufferCount; this.isWorkgroupInfoNode = true; this.scope = scope; } label( name ) { this.name = name; return this; } getHash() { return this.uuid; } setScope( scope ) { this.scope = scope; return this; } getInputType( /*builder*/ ) { return `${this.scope}Array`; } element( indexNode ) { return nodeObject( new WorkgroupInfoElementNode( this, indexNode ) ); } generate( builder ) { return builder.getScopedArray( this.name || `${this.scope}Array_${this.id}`, this.scope.toLowerCase(), this.bufferType, this.bufferCount ); } } const workgroupArray = ( type, count ) => nodeObject( new WorkgroupInfoNode( 'Workgroup', type, count ) ); class AtomicFunctionNode extends TempNode { static get type() { return 'AtomicFunctionNode'; } constructor( method, pointerNode, valueNode, storeNode = null ) { super( 'uint' ); this.method = method; this.pointerNode = pointerNode; this.valueNode = valueNode; this.storeNode = storeNode; } getInputType( builder ) { return this.pointerNode.getNodeType( builder ); } getNodeType( builder ) { return this.getInputType( builder ); } generate( builder ) { const method = this.method; const type = this.getNodeType( builder ); const inputType = this.getInputType( builder ); const a = this.pointerNode; const b = this.valueNode; const params = []; params.push( `&${ a.build( builder, inputType ) }` ); params.push( b.build( builder, inputType ) ); const methodSnippet = `${ builder.getMethod( method, type ) }( ${params.join( ', ' )} )`; if ( this.storeNode !== null ) { const varSnippet = this.storeNode.build( builder, inputType ); builder.addLineFlowCode( `${varSnippet} = ${methodSnippet}`, this ); } else { builder.addLineFlowCode( methodSnippet, this ); } } } AtomicFunctionNode.ATOMIC_LOAD = 'atomicLoad'; AtomicFunctionNode.ATOMIC_STORE = 'atomicStore'; AtomicFunctionNode.ATOMIC_ADD = 'atomicAdd'; AtomicFunctionNode.ATOMIC_SUB = 'atomicSub'; AtomicFunctionNode.ATOMIC_MAX = 'atomicMax'; AtomicFunctionNode.ATOMIC_MIN = 'atomicMin'; AtomicFunctionNode.ATOMIC_AND = 'atomicAnd'; AtomicFunctionNode.ATOMIC_OR = 'atomicOr'; AtomicFunctionNode.ATOMIC_XOR = 'atomicXor'; const atomicNode = nodeProxy( AtomicFunctionNode ); const atomicFunc = ( method, pointerNode, valueNode, storeNode ) => { const node = atomicNode( method, pointerNode, valueNode, storeNode ); node.append(); return node; }; const atomicStore = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_STORE, pointerNode, valueNode, storeNode ); const atomicAdd = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_ADD, pointerNode, valueNode, storeNode ); const atomicSub = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_SUB, pointerNode, valueNode, storeNode ); const atomicMax = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_MAX, pointerNode, valueNode, storeNode ); const atomicMin = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_MIN, pointerNode, valueNode, storeNode ); const atomicAnd = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_AND, pointerNode, valueNode, storeNode ); const atomicOr = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_OR, pointerNode, valueNode, storeNode ); const atomicXor = ( pointerNode, valueNode, storeNode = null ) => atomicFunc( AtomicFunctionNode.ATOMIC_XOR, pointerNode, valueNode, storeNode ); const checker = /*@__PURE__*/ Fn( ( [ coord = uv() ] ) => { const uv = coord.mul( 2.0 ); const cx = uv.x.floor(); const cy = uv.y.floor(); const result = cx.add( cy ).mod( 2.0 ); return result.sign(); } ); // Three.js Transpiler // https://raw.githubusercontent.com/AcademySoftwareFoundation/MaterialX/main/libraries/stdlib/genglsl/lib/mx_noise.glsl const mx_select = /*@__PURE__*/ Fn( ( [ b_immutable, t_immutable, f_immutable ] ) => { const f = float( f_immutable ).toVar(); const t = float( t_immutable ).toVar(); const b = bool( b_immutable ).toVar(); return select( b, t, f ); } ).setLayout( { name: 'mx_select', type: 'float', inputs: [ { name: 'b', type: 'bool' }, { name: 't', type: 'float' }, { name: 'f', type: 'float' } ] } ); const mx_negate_if = /*@__PURE__*/ Fn( ( [ val_immutable, b_immutable ] ) => { const b = bool( b_immutable ).toVar(); const val = float( val_immutable ).toVar(); return select( b, val.negate(), val ); } ).setLayout( { name: 'mx_negate_if', type: 'float', inputs: [ { name: 'val', type: 'float' }, { name: 'b', type: 'bool' } ] } ); const mx_floor = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { const x = float( x_immutable ).toVar(); return int( floor( x ) ); } ).setLayout( { name: 'mx_floor', type: 'int', inputs: [ { name: 'x', type: 'float' } ] } ); const mx_floorfrac = /*@__PURE__*/ Fn( ( [ x_immutable, i ] ) => { const x = float( x_immutable ).toVar(); i.assign( mx_floor( x ) ); return x.sub( float( i ) ); } ); const mx_bilerp_0 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => { const t = float( t_immutable ).toVar(); const s = float( s_immutable ).toVar(); const v3 = float( v3_immutable ).toVar(); const v2 = float( v2_immutable ).toVar(); const v1 = float( v1_immutable ).toVar(); const v0 = float( v0_immutable ).toVar(); const s1 = float( sub( 1.0, s ) ).toVar(); return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ); } ).setLayout( { name: 'mx_bilerp_0', type: 'float', inputs: [ { name: 'v0', type: 'float' }, { name: 'v1', type: 'float' }, { name: 'v2', type: 'float' }, { name: 'v3', type: 'float' }, { name: 's', type: 'float' }, { name: 't', type: 'float' } ] } ); const mx_bilerp_1 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, s_immutable, t_immutable ] ) => { const t = float( t_immutable ).toVar(); const s = float( s_immutable ).toVar(); const v3 = vec3( v3_immutable ).toVar(); const v2 = vec3( v2_immutable ).toVar(); const v1 = vec3( v1_immutable ).toVar(); const v0 = vec3( v0_immutable ).toVar(); const s1 = float( sub( 1.0, s ) ).toVar(); return sub( 1.0, t ).mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ); } ).setLayout( { name: 'mx_bilerp_1', type: 'vec3', inputs: [ { name: 'v0', type: 'vec3' }, { name: 'v1', type: 'vec3' }, { name: 'v2', type: 'vec3' }, { name: 'v3', type: 'vec3' }, { name: 's', type: 'float' }, { name: 't', type: 'float' } ] } ); const mx_bilerp = /*@__PURE__*/ overloadingFn( [ mx_bilerp_0, mx_bilerp_1 ] ); const mx_trilerp_0 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => { const r = float( r_immutable ).toVar(); const t = float( t_immutable ).toVar(); const s = float( s_immutable ).toVar(); const v7 = float( v7_immutable ).toVar(); const v6 = float( v6_immutable ).toVar(); const v5 = float( v5_immutable ).toVar(); const v4 = float( v4_immutable ).toVar(); const v3 = float( v3_immutable ).toVar(); const v2 = float( v2_immutable ).toVar(); const v1 = float( v1_immutable ).toVar(); const v0 = float( v0_immutable ).toVar(); const s1 = float( sub( 1.0, s ) ).toVar(); const t1 = float( sub( 1.0, t ) ).toVar(); const r1 = float( sub( 1.0, r ) ).toVar(); return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) ); } ).setLayout( { name: 'mx_trilerp_0', type: 'float', inputs: [ { name: 'v0', type: 'float' }, { name: 'v1', type: 'float' }, { name: 'v2', type: 'float' }, { name: 'v3', type: 'float' }, { name: 'v4', type: 'float' }, { name: 'v5', type: 'float' }, { name: 'v6', type: 'float' }, { name: 'v7', type: 'float' }, { name: 's', type: 'float' }, { name: 't', type: 'float' }, { name: 'r', type: 'float' } ] } ); const mx_trilerp_1 = /*@__PURE__*/ Fn( ( [ v0_immutable, v1_immutable, v2_immutable, v3_immutable, v4_immutable, v5_immutable, v6_immutable, v7_immutable, s_immutable, t_immutable, r_immutable ] ) => { const r = float( r_immutable ).toVar(); const t = float( t_immutable ).toVar(); const s = float( s_immutable ).toVar(); const v7 = vec3( v7_immutable ).toVar(); const v6 = vec3( v6_immutable ).toVar(); const v5 = vec3( v5_immutable ).toVar(); const v4 = vec3( v4_immutable ).toVar(); const v3 = vec3( v3_immutable ).toVar(); const v2 = vec3( v2_immutable ).toVar(); const v1 = vec3( v1_immutable ).toVar(); const v0 = vec3( v0_immutable ).toVar(); const s1 = float( sub( 1.0, s ) ).toVar(); const t1 = float( sub( 1.0, t ) ).toVar(); const r1 = float( sub( 1.0, r ) ).toVar(); return r1.mul( t1.mul( v0.mul( s1 ).add( v1.mul( s ) ) ).add( t.mul( v2.mul( s1 ).add( v3.mul( s ) ) ) ) ).add( r.mul( t1.mul( v4.mul( s1 ).add( v5.mul( s ) ) ).add( t.mul( v6.mul( s1 ).add( v7.mul( s ) ) ) ) ) ); } ).setLayout( { name: 'mx_trilerp_1', type: 'vec3', inputs: [ { name: 'v0', type: 'vec3' }, { name: 'v1', type: 'vec3' }, { name: 'v2', type: 'vec3' }, { name: 'v3', type: 'vec3' }, { name: 'v4', type: 'vec3' }, { name: 'v5', type: 'vec3' }, { name: 'v6', type: 'vec3' }, { name: 'v7', type: 'vec3' }, { name: 's', type: 'float' }, { name: 't', type: 'float' }, { name: 'r', type: 'float' } ] } ); const mx_trilerp = /*@__PURE__*/ overloadingFn( [ mx_trilerp_0, mx_trilerp_1 ] ); const mx_gradient_float_0 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable ] ) => { const y = float( y_immutable ).toVar(); const x = float( x_immutable ).toVar(); const hash = uint( hash_immutable ).toVar(); const h = uint( hash.bitAnd( uint( 7 ) ) ).toVar(); const u = float( mx_select( h.lessThan( uint( 4 ) ), x, y ) ).toVar(); const v = float( mul( 2.0, mx_select( h.lessThan( uint( 4 ) ), y, x ) ) ).toVar(); return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) ); } ).setLayout( { name: 'mx_gradient_float_0', type: 'float', inputs: [ { name: 'hash', type: 'uint' }, { name: 'x', type: 'float' }, { name: 'y', type: 'float' } ] } ); const mx_gradient_float_1 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => { const z = float( z_immutable ).toVar(); const y = float( y_immutable ).toVar(); const x = float( x_immutable ).toVar(); const hash = uint( hash_immutable ).toVar(); const h = uint( hash.bitAnd( uint( 15 ) ) ).toVar(); const u = float( mx_select( h.lessThan( uint( 8 ) ), x, y ) ).toVar(); const v = float( mx_select( h.lessThan( uint( 4 ) ), y, mx_select( h.equal( uint( 12 ) ).or( h.equal( uint( 14 ) ) ), x, z ) ) ).toVar(); return mx_negate_if( u, bool( h.bitAnd( uint( 1 ) ) ) ).add( mx_negate_if( v, bool( h.bitAnd( uint( 2 ) ) ) ) ); } ).setLayout( { name: 'mx_gradient_float_1', type: 'float', inputs: [ { name: 'hash', type: 'uint' }, { name: 'x', type: 'float' }, { name: 'y', type: 'float' }, { name: 'z', type: 'float' } ] } ); const mx_gradient_float = /*@__PURE__*/ overloadingFn( [ mx_gradient_float_0, mx_gradient_float_1 ] ); const mx_gradient_vec3_0 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable ] ) => { const y = float( y_immutable ).toVar(); const x = float( x_immutable ).toVar(); const hash = uvec3( hash_immutable ).toVar(); return vec3( mx_gradient_float( hash.x, x, y ), mx_gradient_float( hash.y, x, y ), mx_gradient_float( hash.z, x, y ) ); } ).setLayout( { name: 'mx_gradient_vec3_0', type: 'vec3', inputs: [ { name: 'hash', type: 'uvec3' }, { name: 'x', type: 'float' }, { name: 'y', type: 'float' } ] } ); const mx_gradient_vec3_1 = /*@__PURE__*/ Fn( ( [ hash_immutable, x_immutable, y_immutable, z_immutable ] ) => { const z = float( z_immutable ).toVar(); const y = float( y_immutable ).toVar(); const x = float( x_immutable ).toVar(); const hash = uvec3( hash_immutable ).toVar(); return vec3( mx_gradient_float( hash.x, x, y, z ), mx_gradient_float( hash.y, x, y, z ), mx_gradient_float( hash.z, x, y, z ) ); } ).setLayout( { name: 'mx_gradient_vec3_1', type: 'vec3', inputs: [ { name: 'hash', type: 'uvec3' }, { name: 'x', type: 'float' }, { name: 'y', type: 'float' }, { name: 'z', type: 'float' } ] } ); const mx_gradient_vec3 = /*@__PURE__*/ overloadingFn( [ mx_gradient_vec3_0, mx_gradient_vec3_1 ] ); const mx_gradient_scale2d_0 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { const v = float( v_immutable ).toVar(); return mul( 0.6616, v ); } ).setLayout( { name: 'mx_gradient_scale2d_0', type: 'float', inputs: [ { name: 'v', type: 'float' } ] } ); const mx_gradient_scale3d_0 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { const v = float( v_immutable ).toVar(); return mul( 0.9820, v ); } ).setLayout( { name: 'mx_gradient_scale3d_0', type: 'float', inputs: [ { name: 'v', type: 'float' } ] } ); const mx_gradient_scale2d_1 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { const v = vec3( v_immutable ).toVar(); return mul( 0.6616, v ); } ).setLayout( { name: 'mx_gradient_scale2d_1', type: 'vec3', inputs: [ { name: 'v', type: 'vec3' } ] } ); const mx_gradient_scale2d = /*@__PURE__*/ overloadingFn( [ mx_gradient_scale2d_0, mx_gradient_scale2d_1 ] ); const mx_gradient_scale3d_1 = /*@__PURE__*/ Fn( ( [ v_immutable ] ) => { const v = vec3( v_immutable ).toVar(); return mul( 0.9820, v ); } ).setLayout( { name: 'mx_gradient_scale3d_1', type: 'vec3', inputs: [ { name: 'v', type: 'vec3' } ] } ); const mx_gradient_scale3d = /*@__PURE__*/ overloadingFn( [ mx_gradient_scale3d_0, mx_gradient_scale3d_1 ] ); const mx_rotl32 = /*@__PURE__*/ Fn( ( [ x_immutable, k_immutable ] ) => { const k = int( k_immutable ).toVar(); const x = uint( x_immutable ).toVar(); return x.shiftLeft( k ).bitOr( x.shiftRight( int( 32 ).sub( k ) ) ); } ).setLayout( { name: 'mx_rotl32', type: 'uint', inputs: [ { name: 'x', type: 'uint' }, { name: 'k', type: 'int' } ] } ); const mx_bjmix = /*@__PURE__*/ Fn( ( [ a, b, c ] ) => { a.subAssign( c ); a.bitXorAssign( mx_rotl32( c, int( 4 ) ) ); c.addAssign( b ); b.subAssign( a ); b.bitXorAssign( mx_rotl32( a, int( 6 ) ) ); a.addAssign( c ); c.subAssign( b ); c.bitXorAssign( mx_rotl32( b, int( 8 ) ) ); b.addAssign( a ); a.subAssign( c ); a.bitXorAssign( mx_rotl32( c, int( 16 ) ) ); c.addAssign( b ); b.subAssign( a ); b.bitXorAssign( mx_rotl32( a, int( 19 ) ) ); a.addAssign( c ); c.subAssign( b ); c.bitXorAssign( mx_rotl32( b, int( 4 ) ) ); b.addAssign( a ); } ); const mx_bjfinal = /*@__PURE__*/ Fn( ( [ a_immutable, b_immutable, c_immutable ] ) => { const c = uint( c_immutable ).toVar(); const b = uint( b_immutable ).toVar(); const a = uint( a_immutable ).toVar(); c.bitXorAssign( b ); c.subAssign( mx_rotl32( b, int( 14 ) ) ); a.bitXorAssign( c ); a.subAssign( mx_rotl32( c, int( 11 ) ) ); b.bitXorAssign( a ); b.subAssign( mx_rotl32( a, int( 25 ) ) ); c.bitXorAssign( b ); c.subAssign( mx_rotl32( b, int( 16 ) ) ); a.bitXorAssign( c ); a.subAssign( mx_rotl32( c, int( 4 ) ) ); b.bitXorAssign( a ); b.subAssign( mx_rotl32( a, int( 14 ) ) ); c.bitXorAssign( b ); c.subAssign( mx_rotl32( b, int( 24 ) ) ); return c; } ).setLayout( { name: 'mx_bjfinal', type: 'uint', inputs: [ { name: 'a', type: 'uint' }, { name: 'b', type: 'uint' }, { name: 'c', type: 'uint' } ] } ); const mx_bits_to_01 = /*@__PURE__*/ Fn( ( [ bits_immutable ] ) => { const bits = uint( bits_immutable ).toVar(); return float( bits ).div( float( uint( int( 0xffffffff ) ) ) ); } ).setLayout( { name: 'mx_bits_to_01', type: 'float', inputs: [ { name: 'bits', type: 'uint' } ] } ); const mx_fade = /*@__PURE__*/ Fn( ( [ t_immutable ] ) => { const t = float( t_immutable ).toVar(); return t.mul( t ).mul( t ).mul( t.mul( t.mul( 6.0 ).sub( 15.0 ) ).add( 10.0 ) ); } ).setLayout( { name: 'mx_fade', type: 'float', inputs: [ { name: 't', type: 'float' } ] } ); const mx_hash_int_0 = /*@__PURE__*/ Fn( ( [ x_immutable ] ) => { const x = int( x_immutable ).toVar(); const len = uint( uint( 1 ) ).toVar(); const seed = uint( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ).toVar(); return mx_bjfinal( seed.add( uint( x ) ), seed, seed ); } ).setLayout( { name: 'mx_hash_int_0', type: 'uint', inputs: [ { name: 'x', type: 'int' } ] } ); const mx_hash_int_1 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable ] ) => { const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const len = uint( uint( 2 ) ).toVar(); const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); a.addAssign( uint( x ) ); b.addAssign( uint( y ) ); return mx_bjfinal( a, b, c ); } ).setLayout( { name: 'mx_hash_int_1', type: 'uint', inputs: [ { name: 'x', type: 'int' }, { name: 'y', type: 'int' } ] } ); const mx_hash_int_2 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable ] ) => { const z = int( z_immutable ).toVar(); const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const len = uint( uint( 3 ) ).toVar(); const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); a.addAssign( uint( x ) ); b.addAssign( uint( y ) ); c.addAssign( uint( z ) ); return mx_bjfinal( a, b, c ); } ).setLayout( { name: 'mx_hash_int_2', type: 'uint', inputs: [ { name: 'x', type: 'int' }, { name: 'y', type: 'int' }, { name: 'z', type: 'int' } ] } ); const mx_hash_int_3 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable ] ) => { const xx = int( xx_immutable ).toVar(); const z = int( z_immutable ).toVar(); const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const len = uint( uint( 4 ) ).toVar(); const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); a.addAssign( uint( x ) ); b.addAssign( uint( y ) ); c.addAssign( uint( z ) ); mx_bjmix( a, b, c ); a.addAssign( uint( xx ) ); return mx_bjfinal( a, b, c ); } ).setLayout( { name: 'mx_hash_int_3', type: 'uint', inputs: [ { name: 'x', type: 'int' }, { name: 'y', type: 'int' }, { name: 'z', type: 'int' }, { name: 'xx', type: 'int' } ] } ); const mx_hash_int_4 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable, xx_immutable, yy_immutable ] ) => { const yy = int( yy_immutable ).toVar(); const xx = int( xx_immutable ).toVar(); const z = int( z_immutable ).toVar(); const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const len = uint( uint( 5 ) ).toVar(); const a = uint().toVar(), b = uint().toVar(), c = uint().toVar(); a.assign( b.assign( c.assign( uint( int( 0xdeadbeef ) ).add( len.shiftLeft( uint( 2 ) ) ).add( uint( 13 ) ) ) ) ); a.addAssign( uint( x ) ); b.addAssign( uint( y ) ); c.addAssign( uint( z ) ); mx_bjmix( a, b, c ); a.addAssign( uint( xx ) ); b.addAssign( uint( yy ) ); return mx_bjfinal( a, b, c ); } ).setLayout( { name: 'mx_hash_int_4', type: 'uint', inputs: [ { name: 'x', type: 'int' }, { name: 'y', type: 'int' }, { name: 'z', type: 'int' }, { name: 'xx', type: 'int' }, { name: 'yy', type: 'int' } ] } ); const mx_hash_int = /*@__PURE__*/ overloadingFn( [ mx_hash_int_0, mx_hash_int_1, mx_hash_int_2, mx_hash_int_3, mx_hash_int_4 ] ); const mx_hash_vec3_0 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable ] ) => { const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const h = uint( mx_hash_int( x, y ) ).toVar(); const result = uvec3().toVar(); result.x.assign( h.bitAnd( int( 0xFF ) ) ); result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) ); result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) ); return result; } ).setLayout( { name: 'mx_hash_vec3_0', type: 'uvec3', inputs: [ { name: 'x', type: 'int' }, { name: 'y', type: 'int' } ] } ); const mx_hash_vec3_1 = /*@__PURE__*/ Fn( ( [ x_immutable, y_immutable, z_immutable ] ) => { const z = int( z_immutable ).toVar(); const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const h = uint( mx_hash_int( x, y, z ) ).toVar(); const result = uvec3().toVar(); result.x.assign( h.bitAnd( int( 0xFF ) ) ); result.y.assign( h.shiftRight( int( 8 ) ).bitAnd( int( 0xFF ) ) ); result.z.assign( h.shiftRight( int( 16 ) ).bitAnd( int( 0xFF ) ) ); return result; } ).setLayout( { name: 'mx_hash_vec3_1', type: 'uvec3', inputs: [ { name: 'x', type: 'int' }, { name: 'y', type: 'int' }, { name: 'z', type: 'int' } ] } ); const mx_hash_vec3 = /*@__PURE__*/ overloadingFn( [ mx_hash_vec3_0, mx_hash_vec3_1 ] ); const mx_perlin_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec2( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(); const fx = float( mx_floorfrac( p.x, X ) ).toVar(); const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); const u = float( mx_fade( fx ) ).toVar(); const v = float( mx_fade( fy ) ).toVar(); const result = float( mx_bilerp( mx_gradient_float( mx_hash_int( X, Y ), fx, fy ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar(); return mx_gradient_scale2d( result ); } ).setLayout( { name: 'mx_perlin_noise_float_0', type: 'float', inputs: [ { name: 'p', type: 'vec2' } ] } ); const mx_perlin_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec3( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); const fx = float( mx_floorfrac( p.x, X ) ).toVar(); const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); const fz = float( mx_floorfrac( p.z, Z ) ).toVar(); const u = float( mx_fade( fx ) ).toVar(); const v = float( mx_fade( fy ) ).toVar(); const w = float( mx_fade( fz ) ).toVar(); const result = float( mx_trilerp( mx_gradient_float( mx_hash_int( X, Y, Z ), fx, fy, fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_float( mx_hash_int( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_float( mx_hash_int( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar(); return mx_gradient_scale3d( result ); } ).setLayout( { name: 'mx_perlin_noise_float_1', type: 'float', inputs: [ { name: 'p', type: 'vec3' } ] } ); const mx_perlin_noise_float = /*@__PURE__*/ overloadingFn( [ mx_perlin_noise_float_0, mx_perlin_noise_float_1 ] ); const mx_perlin_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec2( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(); const fx = float( mx_floorfrac( p.x, X ) ).toVar(); const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); const u = float( mx_fade( fx ) ).toVar(); const v = float( mx_fade( fy ) ).toVar(); const result = vec3( mx_bilerp( mx_gradient_vec3( mx_hash_vec3( X, Y ), fx, fy ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y ), fx.sub( 1.0 ), fy ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ) ), fx, fy.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ) ), u, v ) ).toVar(); return mx_gradient_scale2d( result ); } ).setLayout( { name: 'mx_perlin_noise_vec3_0', type: 'vec3', inputs: [ { name: 'p', type: 'vec2' } ] } ); const mx_perlin_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec3( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); const fx = float( mx_floorfrac( p.x, X ) ).toVar(); const fy = float( mx_floorfrac( p.y, Y ) ).toVar(); const fz = float( mx_floorfrac( p.z, Z ) ).toVar(); const u = float( mx_fade( fx ) ).toVar(); const v = float( mx_fade( fy ) ).toVar(); const w = float( mx_fade( fz ) ).toVar(); const result = vec3( mx_trilerp( mx_gradient_vec3( mx_hash_vec3( X, Y, Z ), fx, fy, fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z ), fx.sub( 1.0 ), fy, fz ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z ), fx, fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz ), mx_gradient_vec3( mx_hash_vec3( X, Y, Z.add( int( 1 ) ) ), fx, fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y, Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy, fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X, Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx, fy.sub( 1.0 ), fz.sub( 1.0 ) ), mx_gradient_vec3( mx_hash_vec3( X.add( int( 1 ) ), Y.add( int( 1 ) ), Z.add( int( 1 ) ) ), fx.sub( 1.0 ), fy.sub( 1.0 ), fz.sub( 1.0 ) ), u, v, w ) ).toVar(); return mx_gradient_scale3d( result ); } ).setLayout( { name: 'mx_perlin_noise_vec3_1', type: 'vec3', inputs: [ { name: 'p', type: 'vec3' } ] } ); const mx_perlin_noise_vec3 = /*@__PURE__*/ overloadingFn( [ mx_perlin_noise_vec3_0, mx_perlin_noise_vec3_1 ] ); const mx_cell_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = float( p_immutable ).toVar(); const ix = int( mx_floor( p ) ).toVar(); return mx_bits_to_01( mx_hash_int( ix ) ); } ).setLayout( { name: 'mx_cell_noise_float_0', type: 'float', inputs: [ { name: 'p', type: 'float' } ] } ); const mx_cell_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec2( p_immutable ).toVar(); const ix = int( mx_floor( p.x ) ).toVar(); const iy = int( mx_floor( p.y ) ).toVar(); return mx_bits_to_01( mx_hash_int( ix, iy ) ); } ).setLayout( { name: 'mx_cell_noise_float_1', type: 'float', inputs: [ { name: 'p', type: 'vec2' } ] } ); const mx_cell_noise_float_2 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec3( p_immutable ).toVar(); const ix = int( mx_floor( p.x ) ).toVar(); const iy = int( mx_floor( p.y ) ).toVar(); const iz = int( mx_floor( p.z ) ).toVar(); return mx_bits_to_01( mx_hash_int( ix, iy, iz ) ); } ).setLayout( { name: 'mx_cell_noise_float_2', type: 'float', inputs: [ { name: 'p', type: 'vec3' } ] } ); const mx_cell_noise_float_3 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec4( p_immutable ).toVar(); const ix = int( mx_floor( p.x ) ).toVar(); const iy = int( mx_floor( p.y ) ).toVar(); const iz = int( mx_floor( p.z ) ).toVar(); const iw = int( mx_floor( p.w ) ).toVar(); return mx_bits_to_01( mx_hash_int( ix, iy, iz, iw ) ); } ).setLayout( { name: 'mx_cell_noise_float_3', type: 'float', inputs: [ { name: 'p', type: 'vec4' } ] } ); const mx_cell_noise_float$1 = /*@__PURE__*/ overloadingFn( [ mx_cell_noise_float_0, mx_cell_noise_float_1, mx_cell_noise_float_2, mx_cell_noise_float_3 ] ); const mx_cell_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = float( p_immutable ).toVar(); const ix = int( mx_floor( p ) ).toVar(); return vec3( mx_bits_to_01( mx_hash_int( ix, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, int( 2 ) ) ) ); } ).setLayout( { name: 'mx_cell_noise_vec3_0', type: 'vec3', inputs: [ { name: 'p', type: 'float' } ] } ); const mx_cell_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec2( p_immutable ).toVar(); const ix = int( mx_floor( p.x ) ).toVar(); const iy = int( mx_floor( p.y ) ).toVar(); return vec3( mx_bits_to_01( mx_hash_int( ix, iy, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, int( 2 ) ) ) ); } ).setLayout( { name: 'mx_cell_noise_vec3_1', type: 'vec3', inputs: [ { name: 'p', type: 'vec2' } ] } ); const mx_cell_noise_vec3_2 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec3( p_immutable ).toVar(); const ix = int( mx_floor( p.x ) ).toVar(); const iy = int( mx_floor( p.y ) ).toVar(); const iz = int( mx_floor( p.z ) ).toVar(); return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, int( 2 ) ) ) ); } ).setLayout( { name: 'mx_cell_noise_vec3_2', type: 'vec3', inputs: [ { name: 'p', type: 'vec3' } ] } ); const mx_cell_noise_vec3_3 = /*@__PURE__*/ Fn( ( [ p_immutable ] ) => { const p = vec4( p_immutable ).toVar(); const ix = int( mx_floor( p.x ) ).toVar(); const iy = int( mx_floor( p.y ) ).toVar(); const iz = int( mx_floor( p.z ) ).toVar(); const iw = int( mx_floor( p.w ) ).toVar(); return vec3( mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 0 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 1 ) ) ), mx_bits_to_01( mx_hash_int( ix, iy, iz, iw, int( 2 ) ) ) ); } ).setLayout( { name: 'mx_cell_noise_vec3_3', type: 'vec3', inputs: [ { name: 'p', type: 'vec4' } ] } ); const mx_cell_noise_vec3 = /*@__PURE__*/ overloadingFn( [ mx_cell_noise_vec3_0, mx_cell_noise_vec3_1, mx_cell_noise_vec3_2, mx_cell_noise_vec3_3 ] ); const mx_fractal_noise_float$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { const diminish = float( diminish_immutable ).toVar(); const lacunarity = float( lacunarity_immutable ).toVar(); const octaves = int( octaves_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); const result = float( 0.0 ).toVar(); const amplitude = float( 1.0 ).toVar(); Loop( octaves, () => { result.addAssign( amplitude.mul( mx_perlin_noise_float( p ) ) ); amplitude.mulAssign( diminish ); p.mulAssign( lacunarity ); } ); return result; } ).setLayout( { name: 'mx_fractal_noise_float', type: 'float', inputs: [ { name: 'p', type: 'vec3' }, { name: 'octaves', type: 'int' }, { name: 'lacunarity', type: 'float' }, { name: 'diminish', type: 'float' } ] } ); const mx_fractal_noise_vec3$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { const diminish = float( diminish_immutable ).toVar(); const lacunarity = float( lacunarity_immutable ).toVar(); const octaves = int( octaves_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); const result = vec3( 0.0 ).toVar(); const amplitude = float( 1.0 ).toVar(); Loop( octaves, () => { result.addAssign( amplitude.mul( mx_perlin_noise_vec3( p ) ) ); amplitude.mulAssign( diminish ); p.mulAssign( lacunarity ); } ); return result; } ).setLayout( { name: 'mx_fractal_noise_vec3', type: 'vec3', inputs: [ { name: 'p', type: 'vec3' }, { name: 'octaves', type: 'int' }, { name: 'lacunarity', type: 'float' }, { name: 'diminish', type: 'float' } ] } ); const mx_fractal_noise_vec2$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { const diminish = float( diminish_immutable ).toVar(); const lacunarity = float( lacunarity_immutable ).toVar(); const octaves = int( octaves_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); return vec2( mx_fractal_noise_float$1( p, octaves, lacunarity, diminish ), mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) ); } ).setLayout( { name: 'mx_fractal_noise_vec2', type: 'vec2', inputs: [ { name: 'p', type: 'vec3' }, { name: 'octaves', type: 'int' }, { name: 'lacunarity', type: 'float' }, { name: 'diminish', type: 'float' } ] } ); const mx_fractal_noise_vec4$1 = /*@__PURE__*/ Fn( ( [ p_immutable, octaves_immutable, lacunarity_immutable, diminish_immutable ] ) => { const diminish = float( diminish_immutable ).toVar(); const lacunarity = float( lacunarity_immutable ).toVar(); const octaves = int( octaves_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); const c = vec3( mx_fractal_noise_vec3$1( p, octaves, lacunarity, diminish ) ).toVar(); const f = float( mx_fractal_noise_float$1( p.add( vec3( int( 19 ), int( 193 ), int( 17 ) ) ), octaves, lacunarity, diminish ) ).toVar(); return vec4( c, f ); } ).setLayout( { name: 'mx_fractal_noise_vec4', type: 'vec4', inputs: [ { name: 'p', type: 'vec3' }, { name: 'octaves', type: 'int' }, { name: 'lacunarity', type: 'float' }, { name: 'diminish', type: 'float' } ] } ); const mx_worley_distance_0 = /*@__PURE__*/ Fn( ( [ p_immutable, x_immutable, y_immutable, xoff_immutable, yoff_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const yoff = int( yoff_immutable ).toVar(); const xoff = int( xoff_immutable ).toVar(); const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const p = vec2( p_immutable ).toVar(); const tmp = vec3( mx_cell_noise_vec3( vec2( x.add( xoff ), y.add( yoff ) ) ) ).toVar(); const off = vec2( tmp.x, tmp.y ).toVar(); off.subAssign( 0.5 ); off.mulAssign( jitter ); off.addAssign( 0.5 ); const cellpos = vec2( vec2( float( x ), float( y ) ).add( off ) ).toVar(); const diff = vec2( cellpos.sub( p ) ).toVar(); If( metric.equal( int( 2 ) ), () => { return abs( diff.x ).add( abs( diff.y ) ); } ); If( metric.equal( int( 3 ) ), () => { return max$1( abs( diff.x ), abs( diff.y ) ); } ); return dot( diff, diff ); } ).setLayout( { name: 'mx_worley_distance_0', type: 'float', inputs: [ { name: 'p', type: 'vec2' }, { name: 'x', type: 'int' }, { name: 'y', type: 'int' }, { name: 'xoff', type: 'int' }, { name: 'yoff', type: 'int' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_distance_1 = /*@__PURE__*/ Fn( ( [ p_immutable, x_immutable, y_immutable, z_immutable, xoff_immutable, yoff_immutable, zoff_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const zoff = int( zoff_immutable ).toVar(); const yoff = int( yoff_immutable ).toVar(); const xoff = int( xoff_immutable ).toVar(); const z = int( z_immutable ).toVar(); const y = int( y_immutable ).toVar(); const x = int( x_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); const off = vec3( mx_cell_noise_vec3( vec3( x.add( xoff ), y.add( yoff ), z.add( zoff ) ) ) ).toVar(); off.subAssign( 0.5 ); off.mulAssign( jitter ); off.addAssign( 0.5 ); const cellpos = vec3( vec3( float( x ), float( y ), float( z ) ).add( off ) ).toVar(); const diff = vec3( cellpos.sub( p ) ).toVar(); If( metric.equal( int( 2 ) ), () => { return abs( diff.x ).add( abs( diff.y ) ).add( abs( diff.z ) ); } ); If( metric.equal( int( 3 ) ), () => { return max$1( max$1( abs( diff.x ), abs( diff.y ) ), abs( diff.z ) ); } ); return dot( diff, diff ); } ).setLayout( { name: 'mx_worley_distance_1', type: 'float', inputs: [ { name: 'p', type: 'vec3' }, { name: 'x', type: 'int' }, { name: 'y', type: 'int' }, { name: 'z', type: 'int' }, { name: 'xoff', type: 'int' }, { name: 'yoff', type: 'int' }, { name: 'zoff', type: 'int' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_distance = /*@__PURE__*/ overloadingFn( [ mx_worley_distance_0, mx_worley_distance_1 ] ); const mx_worley_noise_float_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const p = vec2( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(); const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); const sqdist = float( 1e6 ).toVar(); Loop( { start: -1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { Loop( { start: -1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); sqdist.assign( min$1( sqdist, dist ) ); } ); } ); If( metric.equal( int( 0 ) ), () => { sqdist.assign( sqrt( sqdist ) ); } ); return sqdist; } ).setLayout( { name: 'mx_worley_noise_float_0', type: 'float', inputs: [ { name: 'p', type: 'vec2' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_noise_vec2_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const p = vec2( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(); const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); const sqdist = vec2( 1e6, 1e6 ).toVar(); Loop( { start: -1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { Loop( { start: -1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); If( dist.lessThan( sqdist.x ), () => { sqdist.y.assign( sqdist.x ); sqdist.x.assign( dist ); } ).ElseIf( dist.lessThan( sqdist.y ), () => { sqdist.y.assign( dist ); } ); } ); } ); If( metric.equal( int( 0 ) ), () => { sqdist.assign( sqrt( sqdist ) ); } ); return sqdist; } ).setLayout( { name: 'mx_worley_noise_vec2_0', type: 'vec2', inputs: [ { name: 'p', type: 'vec2' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_noise_vec3_0 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const p = vec2( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(); const localpos = vec2( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ) ).toVar(); const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar(); Loop( { start: -1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { Loop( { start: -1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { const dist = float( mx_worley_distance( localpos, x, y, X, Y, jitter, metric ) ).toVar(); If( dist.lessThan( sqdist.x ), () => { sqdist.z.assign( sqdist.y ); sqdist.y.assign( sqdist.x ); sqdist.x.assign( dist ); } ).ElseIf( dist.lessThan( sqdist.y ), () => { sqdist.z.assign( sqdist.y ); sqdist.y.assign( dist ); } ).ElseIf( dist.lessThan( sqdist.z ), () => { sqdist.z.assign( dist ); } ); } ); } ); If( metric.equal( int( 0 ) ), () => { sqdist.assign( sqrt( sqdist ) ); } ); return sqdist; } ).setLayout( { name: 'mx_worley_noise_vec3_0', type: 'vec3', inputs: [ { name: 'p', type: 'vec2' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_noise_float_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); const sqdist = float( 1e6 ).toVar(); Loop( { start: -1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { Loop( { start: -1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { Loop( { start: -1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); sqdist.assign( min$1( sqdist, dist ) ); } ); } ); } ); If( metric.equal( int( 0 ) ), () => { sqdist.assign( sqrt( sqdist ) ); } ); return sqdist; } ).setLayout( { name: 'mx_worley_noise_float_1', type: 'float', inputs: [ { name: 'p', type: 'vec3' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_noise_float$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_float_0, mx_worley_noise_float_1 ] ); const mx_worley_noise_vec2_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); const sqdist = vec2( 1e6, 1e6 ).toVar(); Loop( { start: -1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { Loop( { start: -1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { Loop( { start: -1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); If( dist.lessThan( sqdist.x ), () => { sqdist.y.assign( sqdist.x ); sqdist.x.assign( dist ); } ).ElseIf( dist.lessThan( sqdist.y ), () => { sqdist.y.assign( dist ); } ); } ); } ); } ); If( metric.equal( int( 0 ) ), () => { sqdist.assign( sqrt( sqdist ) ); } ); return sqdist; } ).setLayout( { name: 'mx_worley_noise_vec2_1', type: 'vec2', inputs: [ { name: 'p', type: 'vec3' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_noise_vec2$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_vec2_0, mx_worley_noise_vec2_1 ] ); const mx_worley_noise_vec3_1 = /*@__PURE__*/ Fn( ( [ p_immutable, jitter_immutable, metric_immutable ] ) => { const metric = int( metric_immutable ).toVar(); const jitter = float( jitter_immutable ).toVar(); const p = vec3( p_immutable ).toVar(); const X = int().toVar(), Y = int().toVar(), Z = int().toVar(); const localpos = vec3( mx_floorfrac( p.x, X ), mx_floorfrac( p.y, Y ), mx_floorfrac( p.z, Z ) ).toVar(); const sqdist = vec3( 1e6, 1e6, 1e6 ).toVar(); Loop( { start: -1, end: int( 1 ), name: 'x', condition: '<=' }, ( { x } ) => { Loop( { start: -1, end: int( 1 ), name: 'y', condition: '<=' }, ( { y } ) => { Loop( { start: -1, end: int( 1 ), name: 'z', condition: '<=' }, ( { z } ) => { const dist = float( mx_worley_distance( localpos, x, y, z, X, Y, Z, jitter, metric ) ).toVar(); If( dist.lessThan( sqdist.x ), () => { sqdist.z.assign( sqdist.y ); sqdist.y.assign( sqdist.x ); sqdist.x.assign( dist ); } ).ElseIf( dist.lessThan( sqdist.y ), () => { sqdist.z.assign( sqdist.y ); sqdist.y.assign( dist ); } ).ElseIf( dist.lessThan( sqdist.z ), () => { sqdist.z.assign( dist ); } ); } ); } ); } ); If( metric.equal( int( 0 ) ), () => { sqdist.assign( sqrt( sqdist ) ); } ); return sqdist; } ).setLayout( { name: 'mx_worley_noise_vec3_1', type: 'vec3', inputs: [ { name: 'p', type: 'vec3' }, { name: 'jitter', type: 'float' }, { name: 'metric', type: 'int' } ] } ); const mx_worley_noise_vec3$1 = /*@__PURE__*/ overloadingFn( [ mx_worley_noise_vec3_0, mx_worley_noise_vec3_1 ] ); // Three.js Transpiler // https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_hsv.glsl const mx_hsvtorgb = /*@__PURE__*/ Fn( ( [ hsv ] ) => { const s = hsv.y; const v = hsv.z; const result = vec3().toVar(); If( s.lessThan( 0.0001 ), () => { result.assign( vec3( v, v, v ) ); } ).Else( () => { let h = hsv.x; h = h.sub( floor( h ) ).mul( 6.0 ).toVar(); // TODO: check what .toVar() is needed in node system cache const hi = int( trunc( h ) ); const f = h.sub( float( hi ) ); const p = v.mul( s.oneMinus() ); const q = v.mul( s.mul( f ).oneMinus() ); const t = v.mul( s.mul( f.oneMinus() ).oneMinus() ); If( hi.equal( int( 0 ) ), () => { result.assign( vec3( v, t, p ) ); } ).ElseIf( hi.equal( int( 1 ) ), () => { result.assign( vec3( q, v, p ) ); } ).ElseIf( hi.equal( int( 2 ) ), () => { result.assign( vec3( p, v, t ) ); } ).ElseIf( hi.equal( int( 3 ) ), () => { result.assign( vec3( p, q, v ) ); } ).ElseIf( hi.equal( int( 4 ) ), () => { result.assign( vec3( t, p, v ) ); } ).Else( () => { result.assign( vec3( v, p, q ) ); } ); } ); return result; } ).setLayout( { name: 'mx_hsvtorgb', type: 'vec3', inputs: [ { name: 'hsv', type: 'vec3' } ] } ); const mx_rgbtohsv = /*@__PURE__*/ Fn( ( [ c_immutable ] ) => { const c = vec3( c_immutable ).toVar(); const r = float( c.x ).toVar(); const g = float( c.y ).toVar(); const b = float( c.z ).toVar(); const mincomp = float( min$1( r, min$1( g, b ) ) ).toVar(); const maxcomp = float( max$1( r, max$1( g, b ) ) ).toVar(); const delta = float( maxcomp.sub( mincomp ) ).toVar(); const h = float().toVar(), s = float().toVar(), v = float().toVar(); v.assign( maxcomp ); If( maxcomp.greaterThan( 0.0 ), () => { s.assign( delta.div( maxcomp ) ); } ).Else( () => { s.assign( 0.0 ); } ); If( s.lessThanEqual( 0.0 ), () => { h.assign( 0.0 ); } ).Else( () => { If( r.greaterThanEqual( maxcomp ), () => { h.assign( g.sub( b ).div( delta ) ); } ).ElseIf( g.greaterThanEqual( maxcomp ), () => { h.assign( add( 2.0, b.sub( r ).div( delta ) ) ); } ).Else( () => { h.assign( add( 4.0, r.sub( g ).div( delta ) ) ); } ); h.mulAssign( 1.0 / 6.0 ); If( h.lessThan( 0.0 ), () => { h.addAssign( 1.0 ); } ); } ); return vec3( h, s, v ); } ).setLayout( { name: 'mx_rgbtohsv', type: 'vec3', inputs: [ { name: 'c', type: 'vec3' } ] } ); // Three.js Transpiler // https://github.com/AcademySoftwareFoundation/MaterialX/blob/main/libraries/stdlib/genglsl/lib/mx_transform_color.glsl const mx_srgb_texture_to_lin_rec709 = /*@__PURE__*/ Fn( ( [ color_immutable ] ) => { const color = vec3( color_immutable ).toVar(); const isAbove = bvec3( greaterThan( color, vec3( 0.04045 ) ) ).toVar(); const linSeg = vec3( color.div( 12.92 ) ).toVar(); const powSeg = vec3( pow( max$1( color.add( vec3( 0.055 ) ), vec3( 0.0 ) ).div( 1.055 ), vec3( 2.4 ) ) ).toVar(); return mix( linSeg, powSeg, isAbove ); } ).setLayout( { name: 'mx_srgb_texture_to_lin_rec709', type: 'vec3', inputs: [ { name: 'color', type: 'vec3' } ] } ); const mx_aastep = ( threshold, value ) => { threshold = float( threshold ); value = float( value ); const afwidth = vec2( value.dFdx(), value.dFdy() ).length().mul( 0.70710678118654757 ); return smoothstep( threshold.sub( afwidth ), threshold.add( afwidth ), value ); }; const _ramp = ( a, b, uv, p ) => mix( a, b, uv[ p ].clamp() ); const mx_ramplr = ( valuel, valuer, texcoord = uv() ) => _ramp( valuel, valuer, texcoord, 'x' ); const mx_ramptb = ( valuet, valueb, texcoord = uv() ) => _ramp( valuet, valueb, texcoord, 'y' ); const _split = ( a, b, center, uv, p ) => mix( a, b, mx_aastep( center, uv[ p ] ) ); const mx_splitlr = ( valuel, valuer, center, texcoord = uv() ) => _split( valuel, valuer, center, texcoord, 'x' ); const mx_splittb = ( valuet, valueb, center, texcoord = uv() ) => _split( valuet, valueb, center, texcoord, 'y' ); const mx_transform_uv = ( uv_scale = 1, uv_offset = 0, uv_geo = uv() ) => uv_geo.mul( uv_scale ).add( uv_offset ); const mx_safepower = ( in1, in2 = 1 ) => { in1 = float( in1 ); return in1.abs().pow( in2 ).mul( in1.sign() ); }; const mx_contrast = ( input, amount = 1, pivot = .5 ) => float( input ).sub( pivot ).mul( amount ).add( pivot ); const mx_noise_float = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_float( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); //export const mx_noise_vec2 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); const mx_noise_vec3 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => mx_perlin_noise_vec3( texcoord.convert( 'vec2|vec3' ) ).mul( amplitude ).add( pivot ); const mx_noise_vec4 = ( texcoord = uv(), amplitude = 1, pivot = 0 ) => { texcoord = texcoord.convert( 'vec2|vec3' ); // overloading type const noise_vec4 = vec4( mx_perlin_noise_vec3( texcoord ), mx_perlin_noise_float( texcoord.add( vec2( 19, 73 ) ) ) ); return noise_vec4.mul( amplitude ).add( pivot ); }; const mx_worley_noise_float = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_float$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); const mx_worley_noise_vec2 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec2$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); const mx_worley_noise_vec3 = ( texcoord = uv(), jitter = 1 ) => mx_worley_noise_vec3$1( texcoord.convert( 'vec2|vec3' ), jitter, int( 1 ) ); const mx_cell_noise_float = ( texcoord = uv() ) => mx_cell_noise_float$1( texcoord.convert( 'vec2|vec3' ) ); const mx_fractal_noise_float = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_float$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); const mx_fractal_noise_vec2 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec2$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); const mx_fractal_noise_vec3 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec3$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); const mx_fractal_noise_vec4 = ( position = uv(), octaves = 3, lacunarity = 2, diminish = .5, amplitude = 1 ) => mx_fractal_noise_vec4$1( position, int( octaves ), lacunarity, diminish ).mul( amplitude ); const getShIrradianceAt = /*@__PURE__*/ Fn( ( [ normal, shCoefficients ] ) => { // normal is assumed to have unit length const x = normal.x, y = normal.y, z = normal.z; // band 0 let result = shCoefficients.element( 0 ).mul( 0.886227 ); // band 1 result = result.add( shCoefficients.element( 1 ).mul( 2.0 * 0.511664 ).mul( y ) ); result = result.add( shCoefficients.element( 2 ).mul( 2.0 * 0.511664 ).mul( z ) ); result = result.add( shCoefficients.element( 3 ).mul( 2.0 * 0.511664 ).mul( x ) ); // band 2 result = result.add( shCoefficients.element( 4 ).mul( 2.0 * 0.429043 ).mul( x ).mul( y ) ); result = result.add( shCoefficients.element( 5 ).mul( 2.0 * 0.429043 ).mul( y ).mul( z ) ); result = result.add( shCoefficients.element( 6 ).mul( z.mul( z ).mul( 0.743125 ).sub( 0.247708 ) ) ); result = result.add( shCoefficients.element( 7 ).mul( 2.0 * 0.429043 ).mul( x ).mul( z ) ); result = result.add( shCoefficients.element( 8 ).mul( 0.429043 ).mul( mul( x, x ).sub( mul( y, y ) ) ) ); return result; } ); class PointLightNode extends AnalyticLightNode { static get type() { return 'PointLightNode'; } constructor( light = null ) { super( light ); this.cutoffDistanceNode = uniform( 0 ).setGroup( renderGroup ); this.decayExponentNode = uniform( 0 ).setGroup( renderGroup ); } update( frame ) { const { light } = this; super.update( frame ); this.cutoffDistanceNode.value = light.distance; this.decayExponentNode.value = light.decay; } setup( builder ) { const { colorNode, cutoffDistanceNode, decayExponentNode, light } = this; const lightingModel = builder.context.lightingModel; const lVector = lightViewPosition( light ).sub( positionView ); // @TODO: Add it into LightNode const lightDirection = lVector.normalize(); const lightDistance = lVector.length(); const lightAttenuation = getDistanceAttenuation( { lightDistance, cutoffDistance: cutoffDistanceNode, decayExponent: decayExponentNode } ); const lightColor = colorNode.mul( lightAttenuation ); const reflectedLight = builder.context.reflectedLight; lightingModel.direct( { lightDirection, lightColor, reflectedLight }, builder.stack, builder ); } } class DirectionalLightNode extends AnalyticLightNode { static get type() { return 'DirectionalLightNode'; } constructor( light = null ) { super( light ); } setup( builder ) { super.setup( builder ); const lightingModel = builder.context.lightingModel; const lightColor = this.colorNode; const lightDirection = lightTargetDirection( this.light ); const reflectedLight = builder.context.reflectedLight; lightingModel.direct( { lightDirection, lightColor, reflectedLight }, builder.stack, builder ); } } const _matrix41 = /*@__PURE__*/ new Matrix4(); const _matrix42 = /*@__PURE__*/ new Matrix4(); let ltcLib = null; class RectAreaLightNode extends AnalyticLightNode { static get type() { return 'RectAreaLightNode'; } constructor( light = null ) { super( light ); this.halfHeight = uniform( new Vector3() ).setGroup( renderGroup ); this.halfWidth = uniform( new Vector3() ).setGroup( renderGroup ); } update( frame ) { super.update( frame ); const { light } = this; const viewMatrix = frame.camera.matrixWorldInverse; _matrix42.identity(); _matrix41.copy( light.matrixWorld ); _matrix41.premultiply( viewMatrix ); _matrix42.extractRotation( _matrix41 ); this.halfWidth.value.set( light.width * 0.5, 0.0, 0.0 ); this.halfHeight.value.set( 0.0, light.height * 0.5, 0.0 ); this.halfWidth.value.applyMatrix4( _matrix42 ); this.halfHeight.value.applyMatrix4( _matrix42 ); } setup( builder ) { super.setup( builder ); let ltc_1, ltc_2; if ( builder.isAvailable( 'float32Filterable' ) ) { ltc_1 = texture( ltcLib.LTC_FLOAT_1 ); ltc_2 = texture( ltcLib.LTC_FLOAT_2 ); } else { ltc_1 = texture( ltcLib.LTC_HALF_1 ); ltc_2 = texture( ltcLib.LTC_HALF_2 ); } const { colorNode, light } = this; const lightingModel = builder.context.lightingModel; const lightPosition = lightViewPosition( light ); const reflectedLight = builder.context.reflectedLight; lightingModel.directRectArea( { lightColor: colorNode, lightPosition, halfWidth: this.halfWidth, halfHeight: this.halfHeight, reflectedLight, ltc_1, ltc_2 }, builder.stack, builder ); } static setLTC( ltc ) { ltcLib = ltc; } } class SpotLightNode extends AnalyticLightNode { static get type() { return 'SpotLightNode'; } constructor( light = null ) { super( light ); this.coneCosNode = uniform( 0 ).setGroup( renderGroup ); this.penumbraCosNode = uniform( 0 ).setGroup( renderGroup ); this.cutoffDistanceNode = uniform( 0 ).setGroup( renderGroup ); this.decayExponentNode = uniform( 0 ).setGroup( renderGroup ); } update( frame ) { super.update( frame ); const { light } = this; this.coneCosNode.value = Math.cos( light.angle ); this.penumbraCosNode.value = Math.cos( light.angle * ( 1 - light.penumbra ) ); this.cutoffDistanceNode.value = light.distance; this.decayExponentNode.value = light.decay; } getSpotAttenuation( angleCosine ) { const { coneCosNode, penumbraCosNode } = this; return smoothstep( coneCosNode, penumbraCosNode, angleCosine ); } setup( builder ) { super.setup( builder ); const lightingModel = builder.context.lightingModel; const { colorNode, cutoffDistanceNode, decayExponentNode, light } = this; const lVector = lightViewPosition( light ).sub( positionView ); // @TODO: Add it into LightNode const lightDirection = lVector.normalize(); const angleCos = lightDirection.dot( lightTargetDirection( light ) ); const spotAttenuation = this.getSpotAttenuation( angleCos ); const lightDistance = lVector.length(); const lightAttenuation = getDistanceAttenuation( { lightDistance, cutoffDistance: cutoffDistanceNode, decayExponent: decayExponentNode } ); const lightColor = colorNode.mul( spotAttenuation ).mul( lightAttenuation ); const reflectedLight = builder.context.reflectedLight; lightingModel.direct( { lightDirection, lightColor, reflectedLight }, builder.stack, builder ); } } class IESSpotLightNode extends SpotLightNode { static get type() { return 'IESSpotLightNode'; } getSpotAttenuation( angleCosine ) { const iesMap = this.light.iesMap; let spotAttenuation = null; if ( iesMap && iesMap.isTexture === true ) { const angle = angleCosine.acos().mul( 1.0 / Math.PI ); spotAttenuation = texture( iesMap, vec2( angle, 0 ), 0 ).r; } else { spotAttenuation = super.getSpotAttenuation( angleCosine ); } return spotAttenuation; } } class AmbientLightNode extends AnalyticLightNode { static get type() { return 'AmbientLightNode'; } constructor( light = null ) { super( light ); } setup( { context } ) { context.irradiance.addAssign( this.colorNode ); } } class HemisphereLightNode extends AnalyticLightNode { static get type() { return 'HemisphereLightNode'; } constructor( light = null ) { super( light ); this.lightPositionNode = lightPosition( light ); this.lightDirectionNode = this.lightPositionNode.normalize(); this.groundColorNode = uniform( new Color() ).setGroup( renderGroup ); } update( frame ) { const { light } = this; super.update( frame ); this.lightPositionNode.object3d = light; this.groundColorNode.value.copy( light.groundColor ).multiplyScalar( light.intensity ); } setup( builder ) { const { colorNode, groundColorNode, lightDirectionNode } = this; const dotNL = normalView.dot( lightDirectionNode ); const hemiDiffuseWeight = dotNL.mul( 0.5 ).add( 0.5 ); const irradiance = mix( groundColorNode, colorNode, hemiDiffuseWeight ); builder.context.irradiance.addAssign( irradiance ); } } class LightProbeNode extends AnalyticLightNode { static get type() { return 'LightProbeNode'; } constructor( light = null ) { super( light ); const array = []; for ( let i = 0; i < 9; i ++ ) array.push( new Vector3() ); this.lightProbe = uniformArray( array ); } update( frame ) { const { light } = this; super.update( frame ); // for ( let i = 0; i < 9; i ++ ) { this.lightProbe.array[ i ].copy( light.sh.coefficients[ i ] ).multiplyScalar( light.intensity ); } } setup( builder ) { const irradiance = getShIrradianceAt( normalWorld, this.lightProbe ); builder.context.irradiance.addAssign( irradiance ); } } class NodeParser { parseFunction( /*source*/ ) { console.warn( 'Abstract function.' ); } } class NodeFunction { constructor( type, inputs, name = '', precision = '' ) { this.type = type; this.inputs = inputs; this.name = name; this.precision = precision; } getCode( /*name = this.name*/ ) { console.warn( 'Abstract function.' ); } } NodeFunction.isNodeFunction = true; const declarationRegexp = /^\s*(highp|mediump|lowp)?\s*([a-z_0-9]+)\s*([a-z_0-9]+)?\s*\(([\s\S]*?)\)/i; const propertiesRegexp = /[a-z_0-9]+/ig; const pragmaMain = '#pragma main'; const parse = ( source ) => { source = source.trim(); const pragmaMainIndex = source.indexOf( pragmaMain ); const mainCode = pragmaMainIndex !== -1 ? source.slice( pragmaMainIndex + pragmaMain.length ) : source; const declaration = mainCode.match( declarationRegexp ); if ( declaration !== null && declaration.length === 5 ) { // tokenizer const inputsCode = declaration[ 4 ]; const propsMatches = []; let nameMatch = null; while ( ( nameMatch = propertiesRegexp.exec( inputsCode ) ) !== null ) { propsMatches.push( nameMatch ); } // parser const inputs = []; let i = 0; while ( i < propsMatches.length ) { const isConst = propsMatches[ i ][ 0 ] === 'const'; if ( isConst === true ) { i ++; } let qualifier = propsMatches[ i ][ 0 ]; if ( qualifier === 'in' || qualifier === 'out' || qualifier === 'inout' ) { i ++; } else { qualifier = ''; } const type = propsMatches[ i ++ ][ 0 ]; let count = Number.parseInt( propsMatches[ i ][ 0 ] ); if ( Number.isNaN( count ) === false ) i ++; else count = null; const name = propsMatches[ i ++ ][ 0 ]; inputs.push( new NodeFunctionInput( type, name, count, qualifier, isConst ) ); } // const blockCode = mainCode.substring( declaration[ 0 ].length ); const name = declaration[ 3 ] !== undefined ? declaration[ 3 ] : ''; const type = declaration[ 2 ]; const precision = declaration[ 1 ] !== undefined ? declaration[ 1 ] : ''; const headerCode = pragmaMainIndex !== -1 ? source.slice( 0, pragmaMainIndex ) : ''; return { type, inputs, name, precision, inputsCode, blockCode, headerCode }; } else { throw new Error( 'FunctionNode: Function is not a GLSL code.' ); } }; class GLSLNodeFunction extends NodeFunction { constructor( source ) { const { type, inputs, name, precision, inputsCode, blockCode, headerCode } = parse( source ); super( type, inputs, name, precision ); this.inputsCode = inputsCode; this.blockCode = blockCode; this.headerCode = headerCode; } getCode( name = this.name ) { let code; const blockCode = this.blockCode; if ( blockCode !== '' ) { const { type, inputsCode, headerCode, precision } = this; let declarationCode = `${ type } ${ name } ( ${ inputsCode.trim() } )`; if ( precision !== '' ) { declarationCode = `${ precision } ${ declarationCode }`; } code = headerCode + declarationCode + blockCode; } else { // interface function code = ''; } return code; } } class GLSLNodeParser extends NodeParser { parseFunction( source ) { return new GLSLNodeFunction( source ); } } class NodeLibrary { constructor() { this.lightNodes = new WeakMap(); this.materialNodes = new Map(); this.toneMappingNodes = new Map(); this.colorSpaceNodes = new Map(); } fromMaterial( material ) { if ( material.isNodeMaterial ) return material; let nodeMaterial = null; const nodeMaterialClass = this.getMaterialNodeClass( material.type ); if ( nodeMaterialClass !== null ) { nodeMaterial = new nodeMaterialClass(); for ( const key in material ) { nodeMaterial[ key ] = material[ key ]; } } return nodeMaterial; } addColorSpace( colorSpaceNode, colorSpace ) { this.addType( colorSpaceNode, colorSpace, this.colorSpaceNodes ); } getColorSpaceFunction( colorSpace ) { return this.colorSpaceNodes.get( colorSpace ) || null; } addToneMapping( toneMappingNode, toneMapping ) { this.addType( toneMappingNode, toneMapping, this.toneMappingNodes ); } getToneMappingFunction( toneMapping ) { return this.toneMappingNodes.get( toneMapping ) || null; } getMaterialNodeClass( materialType ) { return this.materialNodes.get( materialType ) || null; } addMaterial( materialNodeClass, materialClass ) { this.addType( materialNodeClass, materialClass.name, this.materialNodes ); } getLightNodeClass( light ) { return this.lightNodes.get( light ) || null; } addLight( lightNodeClass, lightClass ) { this.addClass( lightNodeClass, lightClass, this.lightNodes ); } addType( nodeClass, type, library ) { if ( library.has( type ) ) { console.warn( `Redefinition of node ${ type }` ); return; } if ( typeof nodeClass !== 'function' ) throw new Error( `Node class ${ nodeClass.name } is not a class.` ); if ( typeof type === 'function' || typeof type === 'object' ) throw new Error( `Base class ${ type } is not a class.` ); library.set( type, nodeClass ); } addClass( nodeClass, baseClass, library ) { if ( library.has( baseClass ) ) { console.warn( `Redefinition of node ${ baseClass.name }` ); return; } if ( typeof nodeClass !== 'function' ) throw new Error( `Node class ${ nodeClass.name } is not a class.` ); if ( typeof baseClass !== 'function' ) throw new Error( `Base class ${ baseClass.name } is not a class.` ); library.set( baseClass, nodeClass ); } } class IESSpotLight extends SpotLight { constructor( color, intensity, distance, angle, penumbra, decay ) { super( color, intensity, distance, angle, penumbra, decay ); this.iesMap = null; } copy( source, recursive ) { super.copy( source, recursive ); this.iesMap = source.iesMap; return this; } } class BasicNodeLibrary extends NodeLibrary { constructor() { super(); this.addLight( PointLightNode, PointLight ); this.addLight( DirectionalLightNode, DirectionalLight ); this.addLight( RectAreaLightNode, RectAreaLight ); this.addLight( SpotLightNode, SpotLight ); this.addLight( AmbientLightNode, AmbientLight ); this.addLight( HemisphereLightNode, HemisphereLight ); this.addLight( LightProbeNode, LightProbe ); this.addLight( IESSpotLightNode, IESSpotLight ); this.addToneMapping( linearToneMapping, LinearToneMapping ); this.addToneMapping( reinhardToneMapping, ReinhardToneMapping ); this.addToneMapping( cineonToneMapping, CineonToneMapping ); this.addToneMapping( acesFilmicToneMapping, ACESFilmicToneMapping ); this.addToneMapping( agxToneMapping, AgXToneMapping ); this.addToneMapping( neutralToneMapping, NeutralToneMapping ); this.addColorSpace( linearSRGBTosRGB, getColorSpaceMethod( LinearSRGBColorSpace, SRGBColorSpace ) ); this.addColorSpace( sRGBToLinearSRGB, getColorSpaceMethod( SRGBColorSpace, LinearSRGBColorSpace ) ); } } if ( typeof __THREE_DEVTOOLS__ !== 'undefined' ) { __THREE_DEVTOOLS__.dispatchEvent( new CustomEvent( 'register', { detail: { revision: REVISION, } } ) ); } if ( typeof window !== 'undefined' ) { try { if ( import.meta ) { if ( ! window.__THREE__IMPORTS__) window.__THREE__IMPORTS__ = []; window.__THREE__IMPORTS__.push( { url: import.meta.url, revision: REVISION } ); } } catch { } if ( window.__THREE__ ) { console.warn( 'WARNING: Multiple instances of Three.js being imported. Existing: ' + window.__THREE__ + ', new: ' + REVISION ); console.warn( window.__THREE__IMPORTS__ ); } else { window.__THREE__ = REVISION; } } export { ACESFilmicToneMapping, AONode, AddEquation, AddOperation, AdditiveAnimationBlendMode, AdditiveBlending, AfterImageNode, AgXToneMapping, AlphaFormat, AlwaysCompare, AlwaysDepth, AlwaysStencilFunc, AmbientLight, AmbientLightNode, AnaglyphPassNode, AnalyticLightNode, AnamorphicNode, AnimationAction, AnimationClip, AnimationLoader, AnimationMixer, AnimationObjectGroup, AnimationUtils, ArcCurve, ArrayCamera, ArrayElementNode, ArrowHelper, AssignNode, AttachedBindMode, AttributeNode, Audio, AudioAnalyser, AudioContext, AudioListener, AudioLoader, AxesHelper, BRDF_GGX, BRDF_Lambert, BackSide, BasicDepthPacking, BasicEnvironmentNode, BasicNodeLibrary, BasicShadowMap$1 as BasicShadowMap, BatchNode, BatchedMesh, BloomNode, Bone, BooleanKeyframeTrack, Box2, Box3, Box3Helper, BoxGeometry, BoxHelper, Break, BufferAttribute, BufferAttributeNode, BufferGeometry, BufferGeometryLoader, BufferNode, BumpMapNode, BypassNode, ByteType, Cache, CacheNode, Camera, CameraHelper, CanvasTexture, CapsuleGeometry, CatmullRomCurve3, CineonToneMapping, CircleGeometry, ClampToEdgeWrapping, Clock, CodeNode, Color, ColorKeyframeTrack, ColorManagement, ColorSpaceNode, CompressedArrayTexture, CompressedCubeTexture, CompressedTexture, CompressedTextureLoader, ComputeNode, ConeGeometry, ConstNode, ConstantAlphaFactor, ConstantColorFactor, ContextNode, Continue, Controls, ConvertNode, CubeCamera, CubeReflectionMapping, CubeRefractionMapping, CubeTexture, CubeTextureLoader, CubeTextureNode, CubeUVReflectionMapping, CubicBezierCurve, CubicBezierCurve3, CubicInterpolant, CullFaceBack, CullFaceFront, CullFaceFrontBack, CullFaceNone, Curve, CurvePath, CustomBlending, CustomToneMapping, CylinderGeometry, Cylindrical, DFGApprox, D_GGX, Data3DTexture, DataArrayTexture, DataTexture, DataTextureLoader, DataUtils, DecrementStencilOp, DecrementWrapStencilOp, DefaultLoadingManager, DenoiseNode, DepthFormat, DepthOfFieldNode, DepthStencilFormat, DepthTexture, DetachedBindMode, DirectionalLight, DirectionalLightHelper, DirectionalLightNode, Discard, DiscreteInterpolant, DisplayP3ColorSpace, DodecahedronGeometry, DotScreenNode, DoubleSide, DstAlphaFactor, DstColorFactor, DynamicCopyUsage, DynamicDrawUsage, DynamicReadUsage, EPSILON, EdgesGeometry, EllipseCurve, EnvironmentNode, EqualCompare, EqualDepth, EqualStencilFunc, EquirectUVNode, EquirectangularReflectionMapping, EquirectangularRefractionMapping, Euler, EventDispatcher, ExpressionNode, ExtrudeGeometry, FXAANode, F_Schlick, FileLoader, FilmNode, Float16BufferAttribute, Float32BufferAttribute, FloatType, Fn, Fog, FogExp2, FogExp2Node, FogNode, FogRangeNode, FramebufferTexture, FrontFacingNode, FrontSide, Frustum, FunctionCallNode, FunctionNode, FunctionOverloadingNode, GLBufferAttribute, GLSL1, GLSL3, GLSLNodeParser, GTAONode, GaussianBlurNode, GreaterCompare, GreaterDepth, GreaterEqualCompare, GreaterEqualDepth, GreaterEqualStencilFunc, GreaterStencilFunc, GridHelper, Group, HalfFloatType, HemisphereLight, HemisphereLightHelper, HemisphereLightNode, IESSpotLightNode, INFINITY, IcosahedronGeometry, If, ImageBitmapLoader, ImageLoader, ImageUtils, IncrementStencilOp, IncrementWrapStencilOp, IndexNode, InstanceNode, InstancedBufferAttribute, InstancedBufferGeometry, InstancedInterleavedBuffer, InstancedMesh, InstancedPointsNodeMaterial, Int16BufferAttribute, Int32BufferAttribute, Int8BufferAttribute, IntType, InterleavedBuffer, InterleavedBufferAttribute, Interpolant, InterpolateDiscrete, InterpolateLinear, InterpolateSmooth, InvertStencilOp, IrradianceNode, JoinNode, KeepStencilOp, KeyframeTrack, LOD, LatheGeometry, Layers, LessCompare, LessDepth, LessEqualCompare, LessEqualDepth, LessEqualStencilFunc, LessStencilFunc, Light, LightProbe, LightProbeNode, LightingContextNode, LightingModel, LightingNode, LightsNode, Line, Line2NodeMaterial, Line3, LineBasicMaterial, LineBasicNodeMaterial, LineCurve, LineCurve3, LineDashedMaterial, LineDashedNodeMaterial, LineLoop, LineSegments, LinearDisplayP3ColorSpace, LinearFilter, LinearInterpolant, LinearMipMapLinearFilter, LinearMipMapNearestFilter, LinearMipmapLinearFilter, LinearMipmapNearestFilter, LinearSRGBColorSpace, LinearToneMapping, LinearTransfer, Loader, LoaderUtils, LoadingManager, Loop, LoopNode, LoopOnce, LoopPingPong, LoopRepeat, LuminanceAlphaFormat, LuminanceFormat, Lut3DNode, MOUSE, MRTNode, MatcapUVNode, Material, MaterialLoader, MaterialNode, MaterialReferenceNode, MathUtils, Matrix2, Matrix3, Matrix4, MaxEquation, MaxMipLevelNode, Mesh, MeshBasicMaterial, MeshBasicNodeMaterial, MeshDepthMaterial, MeshDistanceMaterial, MeshLambertMaterial, MeshLambertNodeMaterial, MeshMatcapMaterial, MeshMatcapNodeMaterial, MeshNormalMaterial, MeshNormalNodeMaterial, MeshPhongMaterial, MeshPhongNodeMaterial, MeshPhysicalMaterial, MeshPhysicalNodeMaterial, MeshSSSNodeMaterial, MeshStandardMaterial, MeshStandardNodeMaterial, MeshToonMaterial, MeshToonNodeMaterial, MinEquation, MirroredRepeatWrapping, MixOperation, ModelNode, ModelViewProjectionNode, MorphNode, MultiplyBlending, MultiplyOperation, NearestFilter, NearestMipMapLinearFilter, NearestMipMapNearestFilter, NearestMipmapLinearFilter, NearestMipmapNearestFilter, NeutralToneMapping, NeverCompare, NeverDepth, NeverStencilFunc, NoBlending, NoColorSpace, NoToneMapping, Node, NodeAttribute, NodeBuilder, NodeCache, NodeCode, NodeFrame, NodeFunctionInput, NodeLoader, NodeMaterial, NodeMaterialLoader, NodeMaterialObserver, NodeObjectLoader, NodeShaderStage, NodeType, NodeUniform, NodeUpdateType, NodeUtils, NodeVar, NodeVarying, NormalAnimationBlendMode, NormalBlending, NormalMapNode, NotEqualCompare, NotEqualDepth, NotEqualStencilFunc, NumberKeyframeTrack, Object3D, Object3DNode, ObjectLoader, ObjectSpaceNormalMap, OctahedronGeometry, OneFactor, OneMinusConstantAlphaFactor, OneMinusConstantColorFactor, OneMinusDstAlphaFactor, OneMinusDstColorFactor, OneMinusSrcAlphaFactor, OneMinusSrcColorFactor, OrthographicCamera, OscNode, OutputStructNode, P3Primaries, PCFShadowMap$1 as PCFShadowMap, PCFSoftShadowMap$1 as PCFSoftShadowMap, PI, PI2, PMREMGenerator$1 as PMREMGenerator, PMREMNode, ParallaxBarrierPassNode, ParameterNode, PassNode, Path, PerspectiveCamera, PhongLightingModel, PhysicalLightingModel, PixelationPassNode, Plane, PlaneGeometry, PlaneHelper, PointLight, PointLightHelper, PointLightNode, PointUVNode, Points, PointsMaterial, PointsNodeMaterial, PolarGridHelper, PolyhedronGeometry, PositionalAudio, PosterizeNode, PropertyBinding, PropertyMixer, PropertyNode, QuadraticBezierCurve, QuadraticBezierCurve3, Quaternion, QuaternionKeyframeTrack, QuaternionLinearInterpolant, RED_GREEN_RGTC2_Format, RED_RGTC1_Format, REVISION, RGBADepthPacking, RGBAFormat, RGBAIntegerFormat, RGBA_ASTC_10x10_Format, RGBA_ASTC_10x5_Format, RGBA_ASTC_10x6_Format, RGBA_ASTC_10x8_Format, RGBA_ASTC_12x10_Format, RGBA_ASTC_12x12_Format, RGBA_ASTC_4x4_Format, RGBA_ASTC_5x4_Format, RGBA_ASTC_5x5_Format, RGBA_ASTC_6x5_Format, RGBA_ASTC_6x6_Format, RGBA_ASTC_8x5_Format, RGBA_ASTC_8x6_Format, RGBA_ASTC_8x8_Format, RGBA_BPTC_Format, RGBA_ETC2_EAC_Format, RGBA_PVRTC_2BPPV1_Format, RGBA_PVRTC_4BPPV1_Format, RGBA_S3TC_DXT1_Format, RGBA_S3TC_DXT3_Format, RGBA_S3TC_DXT5_Format, RGBDepthPacking, RGBFormat, RGBIntegerFormat, RGBShiftNode, RGB_BPTC_SIGNED_Format, RGB_BPTC_UNSIGNED_Format, RGB_ETC1_Format, RGB_ETC2_Format, RGB_PVRTC_2BPPV1_Format, RGB_PVRTC_4BPPV1_Format, RGB_S3TC_DXT1_Format, RGDepthPacking, RGFormat, RGIntegerFormat, RTTNode, RangeNode, RawShaderMaterial, Ray, Raycaster, Rec709Primaries, RectAreaLight, RectAreaLightNode, RedFormat, RedIntegerFormat, ReferenceNode, ReflectorNode, ReinhardToneMapping, RemapNode, RenderOutputNode, RenderTarget, RendererReferenceNode, RepeatWrapping, ReplaceStencilOp, Return, ReverseSubtractEquation, RingGeometry, RotateNode, SIGNED_RED_GREEN_RGTC2_Format, SIGNED_RED_RGTC1_Format, SRGBColorSpace, SRGBTransfer, SSAAPassNode, Scene, SceneNode, Schlick_to_F0, ScreenNode, ScriptableNode, ScriptableValueNode, SetNode, ShaderChunk, ShaderLib, ShaderMaterial, ShaderNode, ShadowMaterial, ShadowNodeMaterial, Shape, ShapeGeometry, ShapePath, ShapeUtils, ShortType, Skeleton, SkeletonHelper, SkinnedMesh, SkinningNode, SobelOperatorNode, Source, Sphere, SphereGeometry, Spherical, SphericalHarmonics3, SplineCurve, SplitNode, SpotLight, SpotLightHelper, SpotLightNode, Sprite, SpriteMaterial, SpriteNodeMaterial, SpriteSheetUVNode, SrcAlphaFactor, SrcAlphaSaturateFactor, SrcColorFactor, StackNode, StaticCopyUsage, StaticDrawUsage, StaticReadUsage, StereoCamera, StereoPassNode, StorageArrayElementNode, StorageBufferNode, StorageTextureNode, StreamCopyUsage, StreamDrawUsage, StreamReadUsage, StringKeyframeTrack, SubtractEquation, SubtractiveBlending, TBNViewMatrix, TOUCH, TangentSpaceNormalMap, TempNode, TetrahedronGeometry, Texture, Texture3DNode, TextureLoader, TextureNode, TextureSizeNode, TextureUtils, TimerNode, ToneMappingNode, ToonOutlinePassNode, TorusGeometry, TorusKnotGeometry, TransitionNode, Triangle, TriangleFanDrawMode, TriangleStripDrawMode, TrianglesDrawMode, TriplanarTexturesNode, TubeGeometry, UVMapping, Uint16BufferAttribute, Uint32BufferAttribute, Uint8BufferAttribute, Uint8ClampedBufferAttribute, Uniform$1 as Uniform, UniformArrayNode, UniformGroupNode, UniformNode, UniformsGroup, UniformsLib, UniformsUtils, UnsignedByteType, UnsignedInt248Type, UnsignedInt5999Type, UnsignedIntType, UnsignedShort4444Type, UnsignedShort5551Type, UnsignedShortType, UserDataNode, VSMShadowMap, V_GGX_SmithCorrelated, VarNode, VaryingNode, Vector2, Vector3, Vector4, VectorKeyframeTrack, VertexColorNode, VideoTexture, ViewportDepthNode, ViewportDepthTextureNode, ViewportSharedTextureNode, ViewportTextureNode, VolumeNodeMaterial, WebGL3DRenderTarget, WebGLArrayRenderTarget, WebGLCoordinateSystem, WebGLCubeRenderTarget, WebGLMultipleRenderTargets, WebGLRenderTarget, WebGLRenderer, WebGLUtils, WebGPUCoordinateSystem, WireframeGeometry, WrapAroundEnding, ZeroCurvatureEnding, ZeroFactor, ZeroSlopeEnding, ZeroStencilOp, abs, acesFilmicToneMapping, acos, add, addMethodChaining, addNodeElement, afterImage, agxToneMapping, all, alphaT, anaglyphPass, anamorphic, and, anisotropy, anisotropyB, anisotropyT, any, ao, append, arrayBuffer, asin, assign, atan, atan2, atomicAdd, atomicAnd, atomicFunc, atomicMax, atomicMin, atomicOr, atomicStore, atomicSub, atomicXor, attenuationColor, attenuationDistance, attribute, backgroundBlurriness, backgroundIntensity, batch, billboarding, bitAnd, bitNot, bitOr, bitXor, bitangentGeometry, bitangentLocal, bitangentView, bitangentWorld, bitcast, bleach, bloom, blur, bool, buffer, bufferAttribute, bumpMap, burn, bvec2, bvec3, bvec4, bypass, cache, call, cameraFar, cameraLogDepth, cameraNear, cameraNormalMatrix, cameraPosition, cameraProjectionMatrix, cameraProjectionMatrixInverse, cameraViewMatrix, cameraWorldMatrix, cbrt, ceil, checker, cineonToneMapping, clamp, clearcoat, clearcoatRoughness, code, color, colorSpaceToWorking, colorToDirection, compute, cond, context, convert, convertToTexture, cos, createCanvasElement, cross, cubeTexture, dFdx, dFdy, dashSize, defaultBuildStages, defaultShaderStages, defined, degrees, denoise, densityFog, depth, depthPass, difference, diffuseColor, directionToColor, dispersion, distance, div, dodge, dof, dot, dotScreen, drawIndex, dynamicBufferAttribute, element, emissive, equal, equals, equirectUV, exp, exp2, expression, faceDirection, faceForward, film, float, floor, fog, fract, frameGroup, frameId, frontFacing, fwidth, fxaa, gain, gapSize, gaussianBlur, getColorSpaceMethod, getConstNodeType, getCurrentStack, getDirection, getDistanceAttenuation, getGeometryRoughness, getRoughness, getShIrradianceAt, getTextureIndex, global, glsl, glslFn, grayscale, greaterThan, greaterThanEqual, hash, highPrecisionModelNormalViewMatrix, highPrecisionModelViewMatrix, hue, instance, instanceIndex, instancedBufferAttribute, instancedDynamicBufferAttribute, int, inverseSqrt, invocationLocalIndex, invocationSubgroupIndex, ior, iridescence, iridescenceIOR, iridescenceThickness, ivec2, ivec3, ivec4, js, label, length, lengthSq, lessThan, lessThanEqual, lightPosition, lightTargetDirection, lightTargetPosition, lightViewPosition, lightingContext, lights, linearDepth, linearSRGBTosRGB, linearToneMapping, localId, log, log2, loop, luminance, lut3D, mat2, mat3, mat4, matcapUV, materialAOMap, materialAlphaTest, materialAnisotropy, materialAnisotropyVector, materialAttenuationColor, materialAttenuationDistance, materialClearcoat, materialClearcoatNormal, materialClearcoatRoughness, materialColor, materialDispersion, materialEmissive, materialIOR, materialIridescence, materialIridescenceIOR, materialIridescenceThickness, materialLightMap, materialLineDashOffset, materialLineDashSize, materialLineGapSize, materialLineScale, materialLineWidth, materialMetalness, materialNormal, materialOpacity, materialPointWidth, materialReference, materialReflectivity, materialRefractionRatio, materialRotation, materialRoughness, materialSheen, materialSheenRoughness, materialShininess, materialSpecular, materialSpecularColor, materialSpecularIntensity, materialSpecularStrength, materialThickness, materialTransmission, max$1 as max, maxMipLevel, metalness, min$1 as min, mix, mixElement, mod, modInt, modelDirection, modelNormalMatrix, modelPosition, modelScale, modelViewMatrix, modelViewPosition, modelViewProjection, modelWorldMatrix, modelWorldMatrixInverse, morphReference, motionBlur, mrt, mul, mx_aastep, mx_cell_noise_float, mx_contrast, mx_fractal_noise_float, mx_fractal_noise_vec2, mx_fractal_noise_vec3, mx_fractal_noise_vec4, mx_hsvtorgb, mx_noise_float, mx_noise_vec3, mx_noise_vec4, mx_ramplr, mx_ramptb, mx_rgbtohsv, mx_safepower, mx_splitlr, mx_splittb, mx_srgb_texture_to_lin_rec709, mx_transform_uv, mx_worley_noise_float, mx_worley_noise_vec2, mx_worley_noise_vec3, negate, neutralToneMapping, nodeArray, nodeImmutable, nodeObject, nodeObjects, nodeProxy, normalFlat, normalGeometry, normalLocal, normalMap, normalView, normalWorld, normalize, not, notEqual, numWorkgroups, objectDirection, objectGroup, objectPosition, objectScale, objectViewPosition, objectWorldMatrix, oneMinus, or, orthographicDepthToViewZ, oscSawtooth, oscSine, oscSquare, oscTriangle, output, outputStruct, overlay, overloadingFn, parabola, parallaxBarrierPass, parallaxDirection, parallaxUV, parameter, pass, passTexture, pcurve, perspectiveDepthToViewZ, pixelationPass, pmremTexture, pointUV, pointWidth, positionGeometry, positionLocal, positionPrevious, positionView, positionViewDirection, positionWorld, positionWorldDirection, posterize, pow, pow2, pow3, pow4, property, radians, rand, range, rangeFog, reciprocal, reference, referenceBuffer, reflect, reflectVector, reflectView, reflector, refract, refractVector, refractView, reinhardToneMapping, remainder, remap, remapClamp, renderGroup, renderOutput, rendererReference, rgbShift, rotate, rotateUV, roughness, round, rtt, sRGBToLinearSRGB, sampler, saturate, saturation, screen, screenCoordinate, screenSize, screenUV, scriptable, scriptableValue, select, sepia, setCurrentStack, shaderStages, sharedUniformGroup, sheen, sheenRoughness, shiftLeft, shiftRight, shininess, sign, sin, sinc, skinning, skinningReference, smoothstep, smoothstepElement, sobel, specularColor, specularF90, spherizeUV, split, spritesheetUV, sqrt, ssaaPass, stack, step, stereoPass, storage, storageBarrier, storageObject, storageTexture, string, sub, subgroupIndex, subgroupSize, tan, tangentGeometry, tangentLocal, tangentView, tangentWorld, temp, texture, texture3D, textureBarrier, textureBicubic, textureCubeUV, textureLoad, textureSize, textureStore, thickness, threshold, timerDelta, timerGlobal, timerLocal, toOutputColorSpace, toWorkingColorSpace, toneMapping, toneMappingExposure, toonOutlinePass, transformDirection, transformNormal, transformNormalToView, transformedBentNormalView, transformedBitangentView, transformedBitangentWorld, transformedClearcoatNormalView, transformedNormalView, transformedNormalWorld, transformedTangentView, transformedTangentWorld, transition, transmission, transpose, tri, tri3, triNoise3D, triplanarTexture, triplanarTextures, trunc, tslFn, uint, uniform, uniformArray, uniformGroup, uniforms, userData, uv, uvec2, uvec3, uvec4, varying, varyingProperty, vec2, vec3, vec4, vectorComponents, velocity, vertexColor, vertexIndex, vibrance, viewZToOrthographicDepth, viewZToPerspectiveDepth, viewport, viewportBottomLeft, viewportCoordinate, viewportDepthTexture, viewportLinearDepth, viewportMipTexture, viewportResolution, viewportSafeUV, viewportSharedTexture, viewportSize, viewportTexture, viewportTopLeft, viewportUV, wgsl, wgslFn, workgroupArray, workgroupBarrier, workgroupId, workingToColorSpace, xor };